請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94217完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周承復 | zh_TW |
| dc.contributor.advisor | Cheng-Fu Chou | en |
| dc.contributor.author | 吳祐任 | zh_TW |
| dc.contributor.author | Yu-Jen Wu | en |
| dc.date.accessioned | 2024-08-15T16:16:35Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-04 | - |
| dc.identifier.citation | [1] P. Baldi. Autoencoders, unsupervised learning, and deep architectures. In I. Guyon,G. Dror, V. Lemaire, G. Taylor, and D. Silver, editors, Proceedings of ICML Workshop on Unsupervised and Transfer Learning, volume 27 of Proceedings of Machine Learning Research, pages 37–49, Bellevue, Washington, USA, 02 Jul 2012. PMLR.
[2] P.Y. Chen, Y.H. Lin, T.C. Liu, Y.H. Lin, L.H. Tseng, T.H. Yang, P.L. Chen, C.C. Wu, and C.J. Hsu. Prediction model for audiological outcomes in patients with gjb2 mutations. Ear and hearing, 41(1):143–149, 2020. [3] P.Y. Chen, T.W. Yang, Y.S. Tseng, C.Y. Tsai, C.S. Yeh, Y.H. Lee, P.H. Lin, T.C. Lin, Y.J. Wu, T.H. Yang, et al. Machine learningbased longitudinal prediction for gjb2related sensorineural hearing loss. Computers in Biology and Medicine,176:108597, 2024. [4] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016. [5] L. A. Everett, B. Glaser, J. C. Beck, J. R. Idol, A. Buchs, M. Heyman, F. Adawi, E. Hazani, E. Nassir, A. D. Baxevanis, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (pds). Nature genetics, 17(4):411–422, 1997. [6] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pages 1189–1232, 2001. [7] J. A. Hartigan and M. A. Wong. Algorithm as 136: A kmeans clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979. [8] A. E. Hoerl and R. W. Kennard. Ridge regression: applications to nonorthogonal problems. Technometrics, 12(1):69–82, 1970. [9] J. Ječmenica and A. BajecOpančina. Sudden hearing loss in children. Clinical pediatrics, 53(9):874–878, 2014. [10] J. Jing, Z. Liu, H. Guan, W. Zhu, Z. Zhang, X. Meng, J. Cheng, Y. Pan, Y. Jiang, Y. Wang, et al. A deep learning system to predict recurrence and disability outcomes in patients with transient ischemic attack or ischemic stroke. Advanced Intelligent Systems, 5(4):2200240, 2023. [11] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.Y. Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30, 2017. [12] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information processing systems, 31, 2018. [13] X. Shi, Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, and W.c. Woo. Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 28, 2015. [14] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1):267–288, 1996. [15] S. Tonekaboni, D. Eytan, and A. Goldenberg. Unsupervised representation learning for time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021. [16] P. Tripathi and P. Deshmukh. Sudden sensorineural hearing loss: a review. Cureus, 14(9), 2022. [17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017. [18] H. Xia, L. Yuan, W. Zhao, C. Zhang, L. Zhao, J. Hou, Y. Luan, Y. Bi, and Y. Feng. Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and ct radiomics. Frontiers in Neurology, 14:1105616, 2023. [19] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(2):301–320, 2005. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94217 | - |
| dc.description.abstract | 聽力損失是感官障礙的一種,通常是環境或遺傳因素引起。其中,遺傳因素在先天性和早發性聽力損失案例中佔有很大的比例。理解特定基因型的表現有助於我們提早進行針對性治療或投藥。SLC26A4是常見的遺傳性聽力損失基因之一。已有多個研究討論了其他基因型,例如GJB2和MYO15A在聽力表現方面的影響。而在本論文的主要目的是利用機器學習技術來探討SLC26A4,以預測病患未來的聽力狀況,並針對可能發生的急性聽力損失進行預測。我們將使用類急性聽力損失為預測目標來討論波動型聽力損失在未來半年內的發生機率。我們利用病患過去的看診聽力檢查數據以及相關的臨床病徵作為特徵,並將類似急性聽力損失的狀況作為預測標籤,以此來探討機器學習在預測波動型聽力損失發生與否方面的能力。在本論文中使用的資料來自具有SLC26A4基因型的病患,其回診追蹤數據具有不定次數和不定間隔的特點。我們的研究包括資料集的建立、缺失值處理、特徵提取和模型架構的建立。最終,我們將會展示在該資料集上的預測能力。 | zh_TW |
| dc.description.abstract | Hearing loss is a sensory impairment, typically caused by environmental or genetic factors. Genetic factors are a significant contributing factor in cases of congenital and early-onset hearing loss. Understanding the clinical manifestations of specific genotypes helps us to initiate targeted treatments or medication at an early stage.
SLC26A4 is one of the common genes associated with hereditary hearing loss. Numerous studies have investigated the impact of other genotypes, such as GJB2 and MYO15A, on hearing performance. The main goal of this paper is to explore SLC26A4 using machine learning techniques to predict the future hearing conditions of patients and to forecast the occurrence of acute hearing loss. We will use pseudo-sudden hearing loss as a predictive target to discuss the probability of fluctuating hearing loss over the next six months. We utilize past audiometric examination data and related clinical symptoms of patients as features, and we treat conditions similar to acute hearing loss as predictive labels, to explore machine learning's ability to predict occurrence of fluctuating hearing loss. The data used in this study is sourced from patients with the SLC26A4 genotype, characterized by irregular follow-up frequencies and intervals. Our research encompasses dataset construction, missing value handling, feature extraction, and model architecture development and optimization. Ultimately, we will demonstrate our predictive capability on this dataset. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:16:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:16:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Feature Extraction 5 2.2 Regression 6 2.3 Classification 7 Chapter 3 Dataset 9 3.1 Dataset Overview 9 3.2 regression problem 11 3.3 SLC26A4 classification Dataset 11 3.4 Dataset Statistics 13 Chapter 4 Method 17 4.1 Feature Engineering 17 4.1.1 Statistical Features 17 4.1.2 Time Series Pattern 19 4.2 Regression Problem 24 4.2.1 Linear Models 24 4.2.2 Neural Network Models 25 4.3 Classification Problem 28 Chapter 5 Experiments 33 5.1 Experimental Setup 33 5.2 Main Results 34 5.3 Ablation Study 37 Chapter 6 Conclusion 41 References 43 | - |
| dc.language.iso | en | - |
| dc.subject | 遺傳性聽損 | zh_TW |
| dc.subject | 聽損基因 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 時序資料 | zh_TW |
| dc.subject | SLC26A4 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | Hereditary Hearing Loss | en |
| dc.subject | SLC26A4 | en |
| dc.subject | Time Series Data | en |
| dc.subject | Machine Learning | en |
| dc.subject | Deafness Gene | en |
| dc.title | 與遺傳基因有關的聽力結果和類突發性聽力損失的預測研究 | zh_TW |
| dc.title | Predictive Study of Auditory Outcomes and Analogous Sudden Hearing Loss Related to Hereditary Gene | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳曉光;蔡子傑;吳振吉;黃志煒 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Kuang Wu;Tzu-Chieh Tsai;Chen-Chi Wu;Chih-Wei Huang | en |
| dc.subject.keyword | 遺傳性聽損,聽損基因,深度學習,機器學習,時序資料,SLC26A4, | zh_TW |
| dc.subject.keyword | Hereditary Hearing Loss,Deafness Gene,Deep Learning,Machine Learning,Time Series Data,SLC26A4, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202403263 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
