Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94196
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾zh_TW
dc.contributor.advisorChia-Lin Chungen
dc.contributor.author劉則言zh_TW
dc.contributor.authorTse-Yen Liuen
dc.date.accessioned2024-08-15T16:10:05Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationAfridi, M. S., Javed, M. A., Ali, S., De Medeiros, F. H. V., Ali, B., Salam, A., Sumaira, Marc, R. A., Alkhalifah, D. H. M., Selim, S., and Santoyo, G. 2022. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front. Plant Sci. 13:899464.
Akiba, M., Ota, Y., Tsai, I. J., Hattori, T., Sahashi, N., and Kikuchi, T. 2015. Genetic differentiation and spatial structure of Phellinus noxius, the causal agent of brown root rot of woody plants in Japan. PLoS One 10:e0141792.
Ann, P. J., and Ko, W. H. 1992. Decline of longan trees: association with brown root rot caused by Phellinus norius. Plant Pathol. 1:1.
Ann, P. J., Lee, H. L., and Huang, T. C. 1999a. Brown root rot of 10 Species of fruit trees caused by Phellinus noxius in Taiwan. Plant Dis. 83:746-750.
Ann, P. J., Lee, H. L., and Tsai, J. N. 1999b. Survey of brown root rot disease of fruit and ornamental trees caused by Phellinus noxius in Taiwan. Plant Pathol. Bull. 8:51-60.
Ann, P. J., Chang, T. T., and Ko, W. H. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in Taiwan. Plant Dis. 86:820-826.
Beckers, B., Op De Beeck, M., Weyens, N., Boerjan, W., and Vangronsveld, J. 2017. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25.
Bell, A. A., and Wheeler, M. H. 1986. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopathol. 24:411-451.
Berendsen, R. L., Pieterse, C. M., and Bakker, P. A. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478-486.
Blaustein, R. A., Lorca, G. L., Meyer, J. L., Gonzalez, C. F., and Teplitski, M. 2017. Defining the core citrus leaf- and root-associated microbiota: factors associated with community structure and implications for managing Huanglongbing (Citrus Greening) disease. Appl. Environ. Microbiol. 83.
Boddy, L. 2000. Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol. Ecol. 31:185-194.
Boddy, L., and Heilmann-Clausen, J. 2008. Basidiomycete community development in temperate angiosperm wood. Pages 211-237 in: Ecology of Saprotrophic Basidiomycetes vol 28 (1st ed.). Boddy, L., Frankland, J. C., and Van West, P. eds. Academic Press, Cambridge, UK.
Bolland, L. 1984. Phellinus noxius: cause of a significant root-rot in Queensland hoop pine plantations. Aust. For. 47:2-10.
Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A., and Godfray, H. C. 2013. The consequence of tree pests and diseases for ecosystem services. Science 342:1235773.
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838.
Bullington, L. S., Lekberg, Y., Sniezko, R., and Larkin, B. 2018. The influence of genetics, defensive chemistry and the fungal microbiome on disease outcome in whitebark pine trees. Mol. Plant Pathol. 19:1847-1858.
CABI. 2022. Phellinus noxius (brown tea root disease). In: Invasive Species Compendium. CAB International, Wallingford, U.K. www.cabi.org/isc
Carrión, V. J., Perez-Jaramillo, J., Cordovez, V., Tracanna, V., de Hollander, M., Ruiz-Buck, D., Mendes, L. W., van Ijcken, W. F. J., Gomez-Exposito, R., Elsayed, S. S., Mohanraju, P., Arifah, A., van der Oost, J., Paulson, J. N., Mendes, R., van Wezel, G. P., Medema, M. H., and Raaijmakers, J. M. 2019. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606-612.
Carrus, G., Scopelliti, M., Lafortezza, R., Colangelo, G., Ferrini, F., Salbitano, F., Agrimi, M., Portoghesi, L., Semenzato, P., and Sanesi, G. 2015. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 134:221-228.
Chang, T. T. 1992. Decline of some forest trees associated with brown root rot caused by Phellinus noxius. Plant Pathol. Bull. 1:90-95.
Chang, T. T. 1996. Survival of Phellinus noxius in soil and in the toots of dead host plants. Phytopathology 86(3), 272-276.
Chang, T. T., and Yang, W. W. 1998. Phellinus noxius in Taiwan: distribution, host plants and the pH and texture of the rhizosphere soils of infected hosts. Mycol. Res. 102:1085-1088.
Chang, T. T., and Chang, R. J. 1999. Generation of volatile ammonia from urea fungicidal to Phellinus noxius in infested wood in soil under controlled conditions. Plant Pathol. 48:337-344.
Chapelle, E., Mendes, R., Bakker, P. A., and Raaijmakers, J. M. 2016. Fungal invasion of the rhizosphere microbiome. ISME J. 10:265-268.
Chen, C. Y., Wu, Z. C., Liu, T. Y., Yu, S. S., Tsai, J. N., Tsai, Y. C., Tsai, I. J., and Chung, C. L. 2023. Investigation of asymptomatic infection of Phellinus noxius in herbaceous plants. Phytopathology 113:460-469.
Chou, H., Xiao, Y. T., Tsai, J. N., Li, T. T., Wu, H. Y., Liu, L. D., Tzeng, D. S., and Chung, C. L. 2019. In vitro and in planta evaluation of Trichoderma asperellum TA as a biocontrol agent against Phellinus noxius, the cause of brown root rot disease of trees. Plant Dis. 103:2733-2741.
Chung, C. L., Huang, S. Y., Huang, Y. C., Tzean, S. S., Ann, P. J., Tsai, J. N., Yang, C. C., Lee, H. H., Huang, T. W., Huang, H. Y., Chang, T. T., Lee, H. L., and Liou, R. F. 2015. The genetic structure of Phellinus noxius and dissemination pattern of brown root rot disease in Taiwan. PLoS One 10:e0139445.
Chung, C. L., Lee, T. J., Akiba, M., Lee, H. H., Kuo, T. H., Liu, D., Ke, H. M., Yokoi, T., Roa, M. B., Lu, M. J., Chang, Y. Y., Ann, P. J., Tsai, J. N., Chen, C. Y., Tzean, S. S., Ota, Y., Hattori, T., Sahashi, N., Liou, R. F., Kikuchi, T., and Tsai, I. J. 2017. Comparative and population genomic landscape of Phellinus noxius: a hypervariable fungus causing root rot in trees. Mol. Ecol. 26:6301-6316.
Corner, E. J. H. 1932. The identification of the brown-root fungus. Gard. Bull. Straits Settl. 5:317-350.
Cregger, M. A., Veach, A. M., Yang, Z. K., Crouch, M. J., Vilgalys, R., Tuskan, G. A., and Schadt, C. W. 2018. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6:31.
Cunningham, G. H. 1965. Polyporaceae of New Zealand. N.Z. Dep. Sci. Indust. Res. Bull. 164:221-222.
Dastogeer, K. M. G., Tumpa, F. H., Sultana, A., Akter, M. A., and Chakraborty, A. 2020. Plant microbiome–an account of the factors that shape community composition and diversity. Curr. Plant Biol. 23:100161.
Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., and Kubicek, C. P. 2011. Trichoderma: the genomics of opportunistic success. Nat. Rev. Microbiol. 9:749-759.
Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., and Hacquard, S. 2018. Microbial interkingdom interactions in roots promote arabidopsis survival. Cell 175(4):973-983.
Fu, C. H., Hu, B. Y., Chang, T. T., Hsueh, K. L., and Hsu, W. T. 2012. Evaluation of dazomet as fumigant for the control of brown root rot disease. Pest Manag. Sci. 68:959-962.
Ginnan, N. A., Dang, T., Bodaghi, S., Ruegger, P. M., McCollum, G., England, G., Vidalakis, G., Borneman, J., Rolshausen, P. E., and Roper, M. C. 2020. Disease-induced microbial shifts in citrus indicate microbiome-derived responses to Huanglongbing across the disease severity spectrum. Phytobiomes J. 4:375-387.
Grylls, T., and van Reeuwijk, M. 2022. How trees affect urban air quality: It depends on the source. Atmos. Environ. 290:119275.
Haran, S., Schickler, H., and Chet, I. 1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321-2331.
Hong, S., Yuan, X., Yang, J., Yang, Y., Jv, H., Li, R., Jia, Z., and Ruan, Y. 2023. Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana Fusarium wilt disease. New Phytol. 238:2194-2209.
Hsiao, W. W., Hung, T. H., and Sun, E. J. 2019a. Newly discovered basidiocarps of Phellinus noxius on 33 tree species with brown root rot disease in Taiwan and the basidiospore variations in growth rate. Taiwania 64:263-268.
Hsiao, W. W., Hung, T. H., and Sun, E. J. 2019b. The pathogenicity of basidiospores of Phellinus noxius which causes brown root rot disease in Taiwan. Taiwania 64:189-194.
Huang, Y. H., Chen, C. H., Hung, T. H., Wu, M. L., and Chang, T. T. 2014. Development of the Detection Method for Tree brown Root Rot Disease Based on the Loop-mediated Isothermal Amplification (LAMP). Plant Pathol. Bull. 23:1-13.
Hynes, J., Müller, C. T., Jones, T. H., and Boddy, L. 2007. Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J. Chem. Ecol. 33:43-57.
Ibarra Caballero, J. R., Ata, J. P., Leddy, K. A., Glenn, T. C., Kieran, T. J., Klopfenstein, N. B., Kim, M.-S., and Stewart, J. E. 2020. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Fungal Biol. 124:144-154.
Jeffries, P. 1995. Biology and ecology of mycoparasitism. Canad. J. Bot. 73:1284-1290.
Kovalchuk, A., Mukrimin, M., Zeng, Z., Raffaello, T., Liu, M., Kasanen, R., Sun, H., and Asiegbu, F. O. 2018. Mycobiome analysis of asymptomatic and symptomatic Norway spruce trees naturally infected by the conifer pathogens Heterobasidion spp. Environ. Microbiol. Rep. 10(5):532-541.
Kumar, V., Sharma, D., Babu, A., and Datta, R. 1998. SEM studies on the hyphal interactions between a biocontrol agent Trichoderma harzianum and a mycopathogen Fusarium solani causing root rot disease in mulberry. Ind. J. Seric. 37(1):17-20
Leung, K. T., Chen, C. Y., You, B. J., Lee, M. H., and Huang, J. W. 2020. Brown root rot disease of Phyllanthus myrtifolius: the causal agent and two potential biological control agents. Plant Dis. 104:3043-3053.
Li, Q., Guo, R., Li, Y., Hartman, W. H., Li, S., Zhang, Z., Tringe, S. G., and Wang, H. 2019. Insight into the bacterial endophytic communities of peach cultivars related to crown gall disease resistance. Appl. Environ. Microbiol. 85(9):e02931-18.
Liao, T. Z., Chen, Y. H., Tsai, J. N., Chao, C., Huang, T. P., Hong, C. F., Wu, Z. C., Tsai, I. J., Lee, H. H., Klopfenstein, N. B., Kim, M. S., Stewart, J. E., Atibalentja, N., Brooks, F. E., Cannon, P. G., Farid, A. M., Hattori, T., Kwan, H. S., Ching Lam, R. Y., Ota, Y., Sahashi, N., Schlub, R. L., Shuey, L. S., Tang, A. M. C., and Chung, C. L. 2023. Translocation of fungicides and their efficacy in controlling Phellinus noxius, the cause of brown root rot disease. Plant Dis. 107(7):2039-2053.
Liu, T.-Y., Chen, C.-H., Yang, Y.-L., Tsai, I. J., Ho, Y.-N., and Chung, C.-L. 2022. The brown root rot fungus Phellinus noxius affects microbial communities in different root‐associated niches of Ficus trees. Environ. Microbiol. 24:276-297.
Mendes, L. W., Raaijmakers, J. M., de Hollander, M., Sepo, E., Gómez Expósito, R., Chiorato, A. F., Mendes, R., Tsai, S. M., and Carrión, V. J. 2023. Impact of the fungal pathogen Fusarium oxysporum on the taxonomic and functional diversity of the common bean root microbiome. Environ. Microbiome 18(1):68.
Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A., and Raaijmakers, J. M. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097-1100.
Mukherjee, P. K., Mendoza-Mendoza, A., Zeilinger, S., and Horwitz, B. A. 2022. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biol. Rev. 39:15-33.
Neal, A. L., Ahmad, S., Gordon-Weeks, R., and Ton, J. 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:e35498.
Pataki, D. E., Alberti, M., Cadenasso, M. L., Felson, A. J., McDonnell, M. J., Pincetl, S., Pouyat, R. V., Setälä, H., and Whitlow, T. H. 2021. The benefits and limits of urban tree planting for environmental and human health. Front. ecol. evol. 9:603757.
Rajala, T., Tuomivirta, T., Pennanen, T., and Mäkipää, R. 2015. Habitat models of wood-inhabiting fungi along a decay gradient of Norway spruce logs. Fungal Ecol. 18:48-55.
Rayner, A. D. M., Boddy, L., and Dowson, C. G. 1987. Temporary parasitism of Coriolus spp. by Lenzites betulina: A strategy for domain capture in wood decay fungi. FEMS Microbiol. Lett. 45:53-58.
Ren, F., Kovalchuk, A., Mukrimin, M., Liu, M., Zeng, Z., Ghimire, R. P., Kivimäenpää, M., Holopainen, J. K., Sun, H., and Asiegbu, F. O. 2019. Tissue microbiome of Norway spruce affected by Heterobasidion-induced wood decay. Microb. Ecol. 77:640-650.
Ribera, J., Tang, A., Lam, R. Y. C., Chu, L. M., Leung, M. W. K., Kwan, H., Bas Cerdá, M. d. C., and Schwarze, F. 2016. In-vitro evaluation of antagonistic Trichoderma strains for eradicating Phellinus noxius in colonised wood. J. Trop. For. Sci. 28:457-468.
Sahashi, N., Akiba, M., Ishihara, M., Ota, Y., and Kanzaki, N. 2012. Brown root rot of trees caused by Phellinus noxius in the Ryukyu Islands, subtropical areas of Japan. For. Pathol. 42:353-361.
Schwarze, F. W. M. R., Jauss, F., Spencer, C., Hallam, C., and Schubert, M. 2012a. Evaluation of an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biol. Control 61:160-168.
Schwarze, F. W. M. R., Jauss, F., Spencer, C., Hallam, C., and Schubert, M. 2012b. Evaluation of an antagonistic Trichoderma strain for reducing the rate of wood decomposition by the white rot fungus Phellinus noxius. Biol. Control 61:160-168.
Solís-García, I. A., Ceballos-Luna, O., Cortazar-Murillo, E. M., Desgarennes, D., Garay-Serrano, E., Patiño-Conde, V., Guevara-Avendaño, E., Méndez-Bravo, A., and Reverchon, F. 2021. Phytophthora root rot modifies the composition of the avocado rhizosphere microbiome and increases the abundance of opportunistic fungal pathogens. Front. microbiol. 11:574110.
Stewart, J. E., Kim, M. S., Ota, Y., Sahashi, N., Hanna, J. W., Akiba, M., Ata, J. P., Atibalentja, N., Brooks, F., Chung, C. L., Dann, E. K., Mohd Farid, A., Hattori, T., Lee, S. S., Otto, K., Pegg, G. S., Schlub, R. L., Shuey, L. S., Tang, A. M. C., Tsai, J. N., Cannon, P. G., and Klopfenstein, N. B. 2020. Phylogenetic and population genetic analyses reveal three distinct lineages of the invasive brown root-rot pathogen, Phellinus noxius, and bioclimatic modeling predicts differences in associated climate niches. Eur. J. Plant Pathol. 156:751-766.
Tienda, S., Vida, C., Lagendijk, E., de Weert, S., Linares, I., González-Fernández, J., Guirado, E., de Vicente, A., and Cazorla, F. M. 2020. Soil application of a formulated biocontrol rhizobacterium, Pseudomonas chlororaphis PCL1606, induces soil suppressiveness by impacting specific microbial communities. Front. microbiol. 11:1874.
Tkacz, A., Bestion, E., Bo, Z., Hortala, M., and Poole, P. S. 2020. Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. mBio 11(1):10-1128.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., and Singh, B. K. 2020. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18:607-621.
Tsai, J. N., Ann, P. J., and Hsieh, W. H. 2005. Evaluation of fungicides for suppression of three major wood-decay fungi Phellinus noxius, Rosellinia necatrix and Ganoderma australe in Taiwan. Plant Pathol. Bull. 14:115-124.
Tsai, J. N., Hsieh, W. H., Ann, P. J., and Yang, C. M. 2007. Development of specific primers for Phellinus noxius. Plant Pathol. Bull. 16:193-202.
Tsang, K. S. W., Cheung, M. K., Lam, R. Y. C., and Kwan, H. S. 2020. A preliminary examination of the bacterial, archaeal, and fungal rhizosphere microbiome in healthy and Phellinus noxius-infected trees. MicrobiologyOpen 9(10):e1115.
Turner-Skoff, J. B., and Cavender, N. 2019. The benefits of trees for livable and sustainable communities. Plants, People, Planet 1:323-335.
Tzean, Y., Shu, P. Y., Liou, R. F., and Tzean, S. S. 2016. Development of oligonucleotide microarrays for simultaneous multi-species identification of Phellinus tree-pathogenic fungi. Microb. Biotechnol. 9:235-244.
Vannier, N., Agler, M., and Hacquard, S. 2019. Microbiota-mediated disease resistance in plants. PLoS Pathogens 15:e1007740.
Wang, Y. F., Meng, H., Gu, V., and Gu, J. D. 2016. Molecular diagnosis of the brown root-rot disease agent Phellinus noxius on trees and in soil by rDNA ITS analysis. Appl. Environ. Biotechnol. 1(1):81-91.
Wang, Y., Teng, Y., Zhang, J., Zhang, Z., Wang, C., Wu, X., and Long, X. 2023. Passion fruit plants alter the soil microbial community with continuous cropping and improve plant disease resistance by recruiting beneficial microorganisms. PLoS One 18:e0281854.
Weindling, R. 1932. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837-845.
Wu, M. L., Chen, C. H., Chang, T. T., Jaung, L. M., and Hung, T. H. 2011. Establishment of the SOP of PCR detection techniques for brown root rot disease. Quart. J. Chin. For. 44:7-17.
Wu, M. L., Chang, T. T., Jaung, L. M., Hung, T. H., Chen, C. H., and Lin, L. D. 2009. Establishment of PCR rapid detection technique for tree brown root rot disease. Quart. J. Chin. For. 42:239-247.
Wu, Z. C., Chang, Y. Y., Lai, Q. J., Lin, H. A., Tzean, S. S., Liou, R. F., Tsai, I. J., and Chung, C. L. 2020. Soil is not a reservoir for Phellinus noxius. Phytopathology 110:362-369.
Xie, F., Williams, A., Edwards, A., and Downie, J. A. 2012. A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum. Mol. Plant-Microbe Interact. 25:250-258.
Xiong, C., Zhu, Y. G., Wang, J. T., Singh, B., Han, L. L., Shen, J. P., Li, P. P., Wang, G. B., Wu, C. F., Ge, A. H., Zhang, L. M., and He, J. Z. 2021. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 229:1091-1104.
Zhang, Y., Du, B. H., Jin, Z. G., Li, Z. H., Song, H. H., and Ding, Y. Q. 2011. Analysis of bacterial communities in rhizosphere soil of healthy and diseased cotton (Gossypium sp.) at different plant growth stages. Plant Soil. 339:447-455.
Zhang, Y., Xu, J., Riera, N., Jin, T., Li, J., and Wang, N. 2017. Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5:97.
Zhou, L. W., Ji, X. H., Vlasák, J., and Dai, Y. C. 2018. Taxonomy and phylogeny of Pyrrhoderma: a redefinition, the segregation of Fulvoderma, gen. nov., and identifying four new species. Mycologia 110:872-889.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94196-
dc.description.abstract褐根病是熱帶和亞熱帶地區的重要樹木病害,由木材白腐朽真菌Phellinus noxius (Corner) G. Cunn.所引起。為釐清褐根病危害對樹木根部相關微生物族群的影響,本研究以榕樹為材料,採集被褐根病菌自然感染榕樹之五類根部相關樣本 (立地環境土、幼根根圈土、老根根圈土、幼根組織及老根組織),對樣本中的核醣體內轉錄區間 (ribosomal internal transcribed spacer, ITS) 和16S核醣體RNA (16S rRNA) 進行次世代定序。發現在罹染褐根病樹木的立地環境土、老根根圈土及老根組織中,真菌的物種多樣性顯著降低。雖然褐根病菌的侵染對細菌多樣性沒有顯著影響,但仍造成細菌組成在健康及罹病樣本間有所差異。值得注意的是,Cosmospora是唯一與褐根病菌感染呈正相關的真菌屬。透過26個真菌屬和35個細菌屬共838個分離株與褐根病菌的對峙培養實驗,發現Bacillus、Pseudomonas、Aspergillus、Penicillium和Trichoderma對褐根病菌具有拮抗能力。透過玻璃紙覆蓋及纖維素/木質素培養實驗,發現Cosmospora對褐根病菌的分泌物具耐受性,並推測褐根病菌對木質素的分解可為Cosmospora創造適合的生長環境。進一步的顯微觀察發現,在木質素培養基上對峙培養褐根病菌和Cosmospora時,可觀察到似夾狀的菌絲特化結構。經由和其他真菌的對峙培養,推測該特化菌絲結構為褐根病菌所產生,其功能仍有待釐清。此外,由於褐根病初期的病徵和病兆常在組織廣泛被病原菌侵染後才顯現,本研究進一步發展褐根病菌即時定量聚合酶連鎖反應 (real-time quantitative PCR, qPCR) 偵測技術。透過不同褐根病菌分離株之ITS序列比對,新設計引子對Pn_ITS_F/Pn_ITS_R;另透過比較基因體分析,篩選出褐根病菌特有Nucleotide-binding-oligomerization-domain-like receptor (NLR) 基因家族,據此設計引子對Pn_NLR_F/Pn_NLR_R。將此兩組新設計的引子對和目前廣泛用於褐根病菌傳統PCR檢測的引子對G1F/G1R (吳等 2009),應用於qPCR並進行反應條件的優化。針對61株自世界各地收集的褐根病菌菌株、5種其他Phellinus屬真菌和22種其他木材腐朽菌進行專一性測試,發現G1F/G1R之專一性最佳。三組引子對在qPCR反應中,對褐根病菌基因體核酸 (genomic DNA) 的檢測極限均可低至100 fg,其中Pn_NLR_F/Pn_NLR_R有較佳的增幅效率。為建立qPCR檢測褐根病菌的陽性檢測標準,本研究也針對各引子對分別設定檢測臨界Cq值,G1F/G1R為34,Pn_ITS_F/Pn_ITS_R為29,Pn_NLR_F/Pn_NLR_R為32。進一步使用人工接種褐根病菌的垂榕 (Ficus benjamina) 枝條,以及6種野外自然感染褐根病的樹木、根圈土和植穴土,驗證qPCR之實用性。總結來說,本研究透過分析樹木根部相關微生物族群,瞭解褐根病菌在自然生態中所扮演的角色,而新建立具高靈敏度及專一性的qPCR檢測技術,可實際應用於褐根病菌的檢測和定量,有助於褐根病的長期監測和防治。zh_TW
dc.description.abstractBrown root rot disease (BRRD), caused by the white rot fungus Phellinus noxius (Corner) G. Cunn., is a destructive tree disease prevalent in tropical and subtropical regions. To clarify the influence of BRRD on the root-associated microbiota of trees, the five root-associated compartments (i.e., bulk soil, young root rhizosphere soil, old root rhizosphere soil, young root tissue, and old root tissue) of Ficus trees naturally infected by P. noxius were analyzed using next generation sequencing (NGS) of the ribosomal internal transcribed spacer (ITS) and 16S rRNA. The results showed that fungal diversity significantly decreased in the bulk soil, old root rhizosphere soil, and old root tissue of BRRD samples. In contrast, bacterial diversity was not significantly affected by P. noxius-infection, although the bacterial composition differed between healthy and BRRD samples. Notably, Cosmospora was the only fungal genus positively correlated with infection by P. noxius. Dual culture assays with 838 isolates from 26 fungal and 35 bacterial genera showed antagonistic activities against P. noxius for isolates of Bacillus, Pseudomonas, Aspergillus, Penicillium, and Trichoderma. Cellophane overlay and cellulose/lignin utilization assays suggested that Cosmospora could tolerate P. noxius secretions, and P. noxius might create suitable conditions for Cosmospora growth through lignin degradation. Microscopic observation of the interaction between P. noxius and Cosmospora sp. on the lignin medium revealed the formation of the specialized clamp-like hyphal structure. Dual culture assays with other fungal species suggested that this specialized hyphal structure was produced by P. noxius. However, its function needs further investigation. Additionally, because the first disease symptoms and signs of BRRD are often observed only after extensive tissue colonization, this study aimed to develop real-time quantitative PCR (qPCR) assays for P. noxius. By comparing ITS sequences of different P. noxius isolates, a new primer pair Pn_ITS_F/Pn_ITS_R was designed. Through comparative genome analysis, the nucleotide-binding-oligomerization-domain-like receptor (NLR) gene family unique to P. noxius was identified, and the primer pair Pn_NLR_F/Pn_NLR_R was designed accordingly. The two newly designed primer pairs and G1F/G1R, a currently widely used primer pair for P. noxius detection by conventional PCR (Wu et al. 2009), were optimized for qPCR. Specificity tests using 61 P. noxius isolates collected worldwide, five other species of Phellinus, and 22 wood-decay fungal species indicated that G1F/G1R showed the highest specificity. All three primer pairs could detect as little as 100 fg of P. noxius genomic DNA, with Pn_NLR_F/Pn_NLR_R exhibiting the highest amplification efficiency. To establish criteria for positive detection of P. noxius by qPCR, cutoff Cq values were assigned for each primer pair, with 34 for G1F/G1R, 29 for Pn_ITS_F/Pn_ITS_R, and 32 for Pn_NLR_F/Pn_NLR_R. The practicality of the qPCR assays was further validated using samples from Ficus benjamina seedlings artificially inoculated with P. noxius, six tree species naturally infected by P. noxius, rhizosphere soil, and bulk soil. In conclusion, analysis of the root-associated microbiota of trees enhanced our knowledge of the ecological role of P. noxius in the natural environment. The newly developed qPCR assays with high sensitivity and specificity can be applied to detect and quantify P. noxius, which are helpful for the long-term monitoring and control of BRRD.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:10:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:10:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致 謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xiii
LIST OF SUPPLEMENTAL TABLES xv
LIST OF SUPPLEMENTAL FIGURES xvi
Chapter 1 Introduction 1
1.1 Research motivations 2
1.2 Brown root rot disease 3
1.2.1 Phellinus noxius 4
1.2.2 Symptoms and signs 5
1.2.3 Occurrence and dissemination 6
1.2.4 Pathogen population 7
1.2.5 Brown root rot disease in Taiwan 8
1.2.6 Disease control 8
1.3 The plant microbiome 9
1.3.1 Root-associated microbiome 10
1.3.2 Tree-associated microbiome 11
1.4 Fungal-fungal interactions 12
1.4.1 Wood-decay fungal competition 12
1.4.2 Mycoparasitism 13
1.5 Diagnosis of Phellinus noxius 14
1.5.1 Culture-based methods 14
1.5.2 Molecular diagnostic techniques 14
1.6 References 16
1.7 Figures 27
Chapter 2 The brown root rot fungus Phellinus noxius affects microbial communities in different root-associated niches of Ficus trees 30
2.1 Abstract 31
2.2 Introduction 32
2.3 Materials and methods 35
2.3.1 Sample collection 35
2.3.2 DNA extraction, amplification, and Illumina sequencing 36
2.3.3 Quantification of P. noxius by real-time quantitative PCR (qPCR) 36
2.3.4 Microbial isolation and identification 37
2.3.5 Dual-culture assay 39
2.3.6 Investigation of the interactions between Cosmospora and P. noxius by dual-culture, overlay, and cellulose and lignin utilization assays 40
2.3.7 Data analysis 42
2.4 Results 44
2.4.1 The diversity of the microbial communities in different root-associated compartments of asymptomatic and symptomatic F. microcarpa trees 44
2.4.2 The assemblage of microbial communities in different compartments with different levels of P. noxius abundance 45
2.4.3 The correlation between native root-associated microbiota and P. noxius 48
2.4.4 Collection of root-associated microbes and assessment of their interactions with P. noxius 49
2.4.5 Investigation of the interactions between Cosmospora sp. and P. noxius by dual-culture, overlay, and cellulose and lignin utilization assays 51
2.5 Discussion 53
2.6 References 59
2.7 Tables 73
2.8 Figures 77
2.9 Supplemental materials 88
Chapter 3 The specialized hyphal structure formed between Phellinus noxius and Cosmospora sp. 170
3.1 Abstract 171
3.2 Introduction 172
3.3 Materials and methods 174
3.3.1 The fungal-fungal interactions on the overlay agar plate 174
3.3.2 Evans blue staining and light microscope observation 175
3.3.3 Cryo-SEM observation of the interactions between P. noxius and Cosmospora sp. 176
3.4 Results 176
3.4.1 Dual-culture assays of fungal-fungal interactions 176
3.4.2 Development of the specialized clamp-like hyphal structure 177
3.4.3 Cryo-SEM observation of the interaction between P. noxius and Cosmospora sp. 177
3.5 Discussion 178
3.6 References 181
3.7 Figures 185
Chapter 4 Development and evaluation of real-time quantitative PCR assays for detection of Phellinus noxius causing brown root rot disease 189
4.1 Abstract 190
4.2 Introduction 191
4.3 Materials and methods 194
4.3.1 Fungal isolates and cultivation 194
4.3.2 DNA extraction 195
4.3.3 Target region selection and primer design 196
4.3.4 Efficiency, specificity, and sensitivity of the real-time qPCR assay 197
4.3.5 qPCR analysis of P. noxius in infected plant tissues 198
4.4 Results 200
4.4.1 Identification of P. noxius-specific regions for primer design 200
4.4.2 Efficiency, specificity, and sensitivity of the qPCR assays 201
4.4.3 Validation of the qPCR assays with artificially inoculated F. benjamina tissues 202
4.4.4 Application of the qPCR assays for field samples 203
4.5 Discussion 204
4.6 References 209
4.7 Tables 217
4.8 Figures 227
4.9 Supplemental materials 232
Chapter 5 Conclusions 244
5.1 References 249
Appendices 252
Publications 253
-
dc.language.isoen-
dc.subjectCosmosporazh_TW
dc.subject內轉錄間隔區zh_TW
dc.subject即時定量聚合酶連鎖反應zh_TW
dc.subject木質素zh_TW
dc.subject拮抗作用zh_TW
dc.subject根部相關微生物相zh_TW
dc.subject比較基因體分析zh_TW
dc.subjectinternal transcribed spacer (ITS)en
dc.subjectroot-associated microbiomeen
dc.subjectantagonismen
dc.subjectligninen
dc.subjectcomparative genomics analysisen
dc.subjectreal-time quantitative PCR (qPCR)en
dc.subjectCosmosporaen
dc.title褐根病對都市樹木根部微生物族群之影響及褐根病菌即時定量PCR偵測技術開發zh_TW
dc.titleThe effects of brown root rot disease on the root-associated microbiota of urban trees and the development of real-time quantitative PCR assays for detection of Phellinus noxiusen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee曾顯雄;劉瑞芬;朱宇敏;吳孟玲;楊爵因zh_TW
dc.contributor.oralexamcommitteeShean-Shong Tzean;Ruey-Fen Liou;Yu-Ming Ju;Meng-Ling Wu;Jiue-in Yangen
dc.subject.keyword根部相關微生物相,拮抗作用,木質素,比較基因體分析,內轉錄間隔區,即時定量聚合酶連鎖反應,Cosmospora,zh_TW
dc.subject.keywordroot-associated microbiome,antagonism,lignin,comparative genomics analysis,internal transcribed spacer (ITS),real-time quantitative PCR (qPCR),Cosmospora,en
dc.relation.page253-
dc.identifier.doi10.6342/NTU202402812-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2029-08-05-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
9.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved