Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94191Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃振康 | zh_TW |
| dc.contributor.advisor | Chen-Kang Huang | en |
| dc.contributor.author | 李誥晉 | zh_TW |
| dc.contributor.author | Gao-Jin Li | en |
| dc.date.accessioned | 2024-08-15T16:08:26Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | 蘇忠楨,李汪盛,吳有恒,黃振康,臺灣農業使用永續能源之現況與展望,中國工程師學會會刊。2022。
Abdel-Monem, M., Trad, K., Omar, N., Hegazy, O., Van den Bossche, P., & Van Mierlo, J. (2017). Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries. Energy, 120, 179-191. https://doi.org/https://doi.org/10.1016/j.energy.2016.12.110 Adenusi, H., Chass, G. A., Passerini, S., Tian, K. V., & Chen, G. (2023). Lithium batteries and the solid electrolyte interphase (SEI)—progress and outlook. Advanced Energy Materials, 13(10), 2203307. Barai, A., Uddin, K., Widanage, W. D., McGordon, A., & Jennings, P. (2018). A study of the influence of measurement timescale on internal resistance characterisation methodologies for lithium-ion cells. Scientific Reports, 8(1), 21. https://doi.org/10.1038/s41598-017-18424-5 Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Van Mierlo, J., & Van den Bossche, P. (2016). Critical review of state of health estimation methods of Li-ion batteries for real applications. Renewable and Sustainable Energy Reviews, 56, 572-587. https://doi.org/https://doi.org/10.1016/j.rser.2015.11.042 Bi, J., Zhang, T., Yu, H., & Kang, Y. (2016). State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter. Applied Energy, 182, 558-568. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.08.138 Chen, L., Lü, Z., Lin, W., Li, J., & Pan, H. (2018). A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity. Measurement, 116, 586-595. https://doi.org/https://doi.org/10.1016/j.measurement.2017.11.016 Chen, Z., Danilov, D. L., Raijmakers, L. H. J., Chayambuka, K., Jiang, M., Zhou, L., Zhou, J., Eichel, R.-A., & Notten, P. H. L. (2021). Overpotential analysis of graphite-based Li-ion batteries seen from a porous electrode modeling perspective. Journal of Power Sources, 509, 230345. https://doi.org/https://doi.org/10.1016/j.jpowsour.2021.230345 Choudhari, V. G., Dhoble, D. A. S., & Sathe, T. M. (2020). A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. Journal of Energy Storage, 32, 101729. https://doi.org/https://doi.org/10.1016/j.est.2020.101729 Galeotti, M., Cinà, L., Giammanco, C., Cordiner, S., & Di Carlo, A. (2015). Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. Energy, 89, 678-686. https://doi.org/https://doi.org/10.1016/j.energy.2015.05.148 He, H., Xiong, R., & Fan, J. (2011). Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies, 4(4), 582-598. https://www.mdpi.com/1996-1073/4/4/582 Hossain, E., Murtaugh, D., Mody, J., Faruque, H. M. R., Sunny, M. S. H., & Mohammad, N. (2019). A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies. IEEE Access, 7, 73215-73252. https://doi.org/10.1109/ACCESS.2019.2917859 Huang, X., Liu, W., Meng, J., Li, Y., Jin, S., Teodorescu, R., & Stroe, D. I. (2023). Lifetime Extension of Lithium-Ion Batteries With Low-Frequency Pulsed Current Charging. IEEE Journal of Emerging and Selected Topics in Power Electronics, 11(1), 57-66. https://doi.org/10.1109/JESTPE.2021.3130424 Klass, V., Behm, M., & Lindbergh, G. (2014). A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. Journal of Power Sources, 270, 262-272. https://doi.org/https://doi.org/10.1016/j.jpowsour.2014.07.116 Lai, X., Zheng, Y., & Sun, T. (2018). A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries. Electrochimica Acta, 259, 566-577. https://doi.org/https://doi.org/10.1016/j.electacta.2017.10.153 Lain, M. J., Brandon, J., & Kendrick, E. (2019). Design Strategies for High Power vs. High Energy Lithium Ion Cells. Batteries, 5(4), 64. https://www.mdpi.com/2313-0105/5/4/64 Li, J., Murphy, E., Winnick, J., & Kohl, P. A. (2001). The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries. Journal of Power Sources, 102(1), 302-309. https://doi.org/https://doi.org/10.1016/S0378-7753(01)00820-5 Lin, Q., Wang, J., Xiong, R., Shen, W., & He, H. (2019). Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries. Energy, 183, 220-234. https://doi.org/https://doi.org/10.1016/j.energy.2019.06.128 Lin, X., Khosravinia, K., Hu, X., Li, J., & Lu, W. (2021). Lithium plating mechanism, detection, and mitigation in lithium-ion batteries. Progress in Energy and Combustion Science, 87, 100953. Liu, Y., Zhang, R., Wang, J., & Wang, Y. (2021). Current and future lithium-ion battery manufacturing. iScience, 24(4), 102332. https://doi.org/https://doi.org/10.1016/j.isci.2021.102332 Madani, S. S., Schaltz, E., & Knudsen Kær, S. (2019). Effect of Current Rate and Prior Cycling on the Coulombic Efficiency of a Lithium-Ion Battery. Batteries, 5(3). Markovics, D., & Mayer, M. J. (2022). Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable and Sustainable Energy Reviews, 161, 112364. https://doi.org/https://doi.org/10.1016/j.rser.2022.112364 Meng, J., Ricco, M., Luo, G., Swierczynski, M., Stroe, D. I., Stroe, A. I., & Teodorescu, R. (2018). An Overview and Comparison of Online Implementable SOC Estimation Methods for Lithium-Ion Battery. IEEE Transactions on Industry Applications, 54(2), 1583-1591. https://doi.org/10.1109/TIA.2017.2775179 Nguyen Van, C., & Quang, D. T. (2023). Estimation of SoH and internal resistances of Lithium ion battery based on LSTM network. International Journal of Electrochemical Science, 18(6), 100166. https://doi.org/https://doi.org/10.1016/j.ijoes.2023.100166 Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/https://doi.org/10.1016/j.mattod.2014.10.040 Plett, G. L. (2004). Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification. Journal of Power Sources, 134(2), 262-276. https://doi.org/https://doi.org/10.1016/j.jpowsour.2004.02.032 Rajagopalan Kannan, D. R., & Weatherspoon, M. H. (2020). The effect of pulse charging on commercial lithium nickel cobalt oxide (NMC) cathode lithium-ion batteries. Journal of Power Sources, 479, 229085. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.229085 Saha, B., & Goebel, K. (2009). Modeling Li-ion battery capacity depletion in a particle filtering framework. Proceedings of the Annual Conference of the Prognostics and Health Mngt Society, 1-10. Scolaro, E., Beligoj, M., Estevez, M. P., Alberti, L., Renzi, M., & Mattetti, M. (2021). Electrification of Agricultural Machinery: A Review. IEEE Access, 9, 164520-164541. https://doi.org/10.1109/ACCESS.2021.3135037 Tomaszewska, A., Chu, Z., Feng, X., O'Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L., Li, Y., Zheng, S., Vetterlein, S., Gao, M., Du, J., Parkes, M., Ouyang, M., Marinescu, M., Offer, G., & Wu, B. (2019). Lithium-ion battery fast charging: A review. eTransportation, 1, 100011. https://doi.org/https://doi.org/10.1016/j.etran.2019.100011 Tran, M.-K., Mathew, M., Janhunen, S., Panchal, S., Raahemifar, K., Fraser, R., & Fowler, M. (2021). A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. Journal of Energy Storage, 43, 103252. https://doi.org/https://doi.org/10.1016/j.est.2021.103252 Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K. C., Besenhard, J. O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., & Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1), 269-281. https://doi.org/https://doi.org/10.1016/j.jpowsour.2005.01.006 Visser, L., AlSkaif, T., & van Sark, W. (2022). Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution. Renewable Energy, 183, 267-282. https://doi.org/https://doi.org/10.1016/j.renene.2021.10.102 Wang, W., Wei, X., Choi, D., Lu, X., Yang, G., & Sun, C. (2015). Chapter 1 - Electrochemical cells for medium- and large-scale energy storage: fundamentals. In C. Menictas, M. Skyllas-Kazacos, & T. M. Lim (Eds.), Advances in Batteries for Medium and Large-Scale Energy Storage (pp. 3-28). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-1-78242-013-2.00001-7 Wang, Z., Feng, G., Zhen, D., Gu, F., & Ball, A. (2021). A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles. Energy Reports, 7, 5141-5161. https://doi.org/https://doi.org/10.1016/j.egyr.2021.08.113 Wassiliadis, N., Schneider, J., Frank, A., Wildfeuer, L., Lin, X., Jossen, A., & Lienkamp, M. (2021). Review of fast charging strategies for lithium-ion battery systems and their applicability for battery electric vehicles. Journal of Energy Storage, 44, 103306. https://doi.org/https://doi.org/10.1016/j.est.2021.103306 Weng, S., Yang, G., Zhang, S., Liu, X., Zhang, X., Liu, Z., Cao, M., Ateş, M. N., Li, Y., & Chen, L. (2023). Kinetic limits of graphite anode for fast-charging lithium-ion batteries. Nano-Micro Letters, 15(1), 215. Xiong, R., Li, L., & Tian, J. (2018). Towards a smarter battery management system: A critical review on battery state of health monitoring methods. Journal of Power Sources, 405, 18-29. https://doi.org/https://doi.org/10.1016/j.jpowsour.2018.10.019 Yang, F., Qiao, Y., Gao, B., Duan, P., & Zhu, Y. (2016). Investigation on Li-ion battery charging polarization characteristics and influence factors. Ionics, 22(9), 1603-1610. https://doi.org/10.1007/s11581-016-1694-1 Zhang, L., Ji, T., Yu, S., & Liu, G. (2023). Accurate Prediction Approach of SOH for Lithium-Ion Batteries Based on LSTM Method. Batteries, 9(3), 177. https://www.mdpi.com/2313-0105/9/3/177 Zhang, S. S. (2006). The effect of the charging protocol on the cycle life of a Li-ion battery. Journal of Power Sources, 161(2), 1385-1391. https://doi.org/https://doi.org/10.1016/j.jpowsour.2006.06.040 Zhang, Z., & Ramadass, P. (2012). Lithium-Ion Batterylithium-ion batterySystems and Technologylithium-ion batterytechnology. In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology (pp. 6122-6149). Springer New York. https://doi.org/10.1007/978-1-4419-0851-3_663 Zhou, W., Zheng, Y., Pan, Z., & Lu, Q. (2021). Review on the Battery Model and SOC Estimation Method. Processes, 9(9), 1685. https://www.mdpi.com/2227-9717/9/9/1685 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94191 | - |
| dc.description.abstract | 現今有許多與電池測試、建模相關的研究,也有許多學者嘗試以正向脈衝充電法 (PPC) 為電池進行充電最佳化,卻常常僅分析相同種類的鋰電池,缺乏針對不同種電池的綜合評估,實驗結果也大多未獲得共識,因此本研究為不同種類、不同健康度的電池進行各式測試,實驗結果顯示鋰三元 (NMC) 電池於充放電時具有較明顯的溫度變化,磷酸鋰鐵 (LFP) 、鈦酸鋰 (LTO) 電池的溫度與電壓變化較小,兩種LFP電池中動力型電池的內阻、最大溫升皆低於能量型電池。脈衝放電測試中,本研究為鈷酸鋰 (LCO) 和NMC電池建置了二階戴維寧等效電路模型,結果顯示模型參數可反映出電池性能的優劣,且可估算出電池的內阻值。於PPC實驗中,本研究以2C-PPC充電法為各式電池進行充電,結果顯示充電過程的最大溫升均高於1C-CC充電法,且0.25 Hz 的脈衝頻率優於較為低頻的0.05 Hz,而0.25 Hz 的1C-PPC充電法可顯著降低老化NMC電池的溫升。此外,本研究製作了基於Arduino微控制器的電池監控裝置,可同時記錄電壓、電流和溫度數據。本研究亦利用中央氣象署與實驗室發電數據,以線性迴歸、多項式迴歸、嶺迴歸模型進行太陽能發電量迴歸分析,結果顯示多項式迴歸模型表現最佳,MSE為0.007,MAE為0.065,R-squared為0.94。 | zh_TW |
| dc.description.abstract | Many studies focus on battery testing, modeling, and charging optimization. However, these studies often lack comprehensive evaluations across different battery types, and their experimental results usually don't reach a consensus. Therefore, this study conducts various tests on batteries with different types and SOH. Experimental results show that NMC batteries have notable temperature changes during charging and discharging, while LFP and LTO batteries show smaller temperature and voltage changes. LFP power cell has lower internal resistance and temperature rise compared to LFP energy cell. In pulse discharge tests, this study establishes second-order Thevenin battery models for LCO and NMC batteries. Model parameters can reflect battery performance and estimate internal resistance. In Positive Pulse Charging (PPC) charging experiments, this study uses 2C-PPC charging method for various batteries. Results show that the maximum temperature rise during 2C-PPC is higher than 1C-CC. 0.25 Hz 2C-PPC was found to be better than 0.05 Hz 2C-PPC, and 0.25 Hz 1C-PPC can significantly reduce the temperature rise in aged NMC batteries. This study also developed a battery monitoring device based on the Arduino microcontroller, which can record voltage, current, and temperature simultaneously. Another part of this study is regression analysis of solar power. This study uses solar power data and weather data from the Central Weather Bureau, employing Linear Regression, Polynomial Regression, and Ridge Regression models. Results show that Polynomial Regression model performs best, with 0.007 MSE, 0.065 MAE, and an R-squared of 0.94. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:08:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:08:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT ii 目次 iii 圖次 v 表次 ix 第一章 緒論 1 1.1 研究背景 1 1.2 電池種類 2 1.3 研究動機 5 1.4 研究目的 6 第二章 文獻探討 9 2.1 電池基本名詞: 9 2.1.1 電流倍率 9 2.1.2 電池荷電狀態 10 2.1.3 電池等效電路模型 13 2.1.4 電池健康度 15 2.2 電池結構與運作原理 19 2.3 電池老化機制 21 2.4 過電位 24 2.5 鋰電池內阻估測 25 2.6 充電方式與最佳化 29 2.7 太陽能發電量預測 38 第三章 研究方法 41 3.1 電池測試 41 3.1.1 四線式量測法 41 3.1.2 實驗儀器 42 3.1.3 基本測試 44 3.1.4 脈衝放電測試 44 3.2 充電最佳化 48 3.3 電池監控裝置 50 3.4 太陽能發電量迴歸分析 50 3.4.1 定義目標與收集資料 51 3.4.2 特徵選擇與預處理 52 3.4.3 模型選擇及介紹 53 第四章 結果與討論 57 4.1 基本測試結果 57 4.1.1 電芯基本測試 57 4.1.2 電池組基本測試 68 4.2 脈衝測試結果 78 4.3 充電最佳化結果 80 4.3.1 PPC的頻率與充電效果 86 4.3.2 PPC於老化電池的表現 93 4.4 歐姆內阻與電池健康度 97 4.5 電池監控裝置結果 98 4.6 太陽能發電量迴歸分析結果 99 第五章 結論與建議 113 5.1 結論 113 5.2 建議 114 參考文獻 115 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | 電池測試 | zh_TW |
| dc.subject | 脈衝充電法 | zh_TW |
| dc.subject | 太陽能發電量預測 | zh_TW |
| dc.subject | 迴歸分析 | zh_TW |
| dc.subject | Battery testing | en |
| dc.subject | Lithium-ion battery | en |
| dc.subject | Regression analysis | en |
| dc.subject | Solar power prediction | en |
| dc.subject | Pulse charging method | en |
| dc.title | 鋰離子電池充放電特性與模型建立 | zh_TW |
| dc.title | Charging and Discharging Characteristics and Model Establishment of Li-ion Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊棧雲;吳有恒 | zh_TW |
| dc.contributor.oralexamcommittee | Chan-Yun Yang;Yu-Heng Wu | en |
| dc.subject.keyword | 鋰離子電池,電池測試,脈衝充電法,太陽能發電量預測,迴歸分析, | zh_TW |
| dc.subject.keyword | Lithium-ion battery,Battery testing,Pulse charging method,Solar power prediction,Regression analysis, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202403145 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| Appears in Collections: | 生物機電工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 8.27 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
