Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊啓伸zh_TW
dc.contributor.advisorChii-Shen Yangen
dc.contributor.author柯齡甯zh_TW
dc.contributor.authorLing-Ning Koen
dc.date.accessioned2024-08-14T17:09:18Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation1 Ernst, O. P., Lodowski, D. T., Elstner, M., Hegemann, P., Brown, L. S. & Kandori, H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114, 126-163, doi:10.1021/cr4003769 (2014).
2 Spudich, J. L., Yang, C. S., Jung, K. H. & Spudich, E. N. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16, 365-392, doi:10.1146/annurev.cellbio.16.1.365 (2000).
3 Spudich, J. L., Sineshchekov, O. A. & Govorunova, E. G. Mechanism divergence in microbial rhodopsins. Bba-Bioenergetics 1837, 546-552, doi:10.1016/j.bbabio.2013.06.006 (2014).
4 Costanzi, S., Siegel, J., Tikhonova, I. G. & Jacobson, K. A. Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr Pharm Des 15, 3994-4002, doi:10.2174/138161209789824795 (2009).
5 Lawson, M. A., Zacks, D. N., Derguini, F., Nakanishi, K. & Spudich, J. L. Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Biophys J 60, 1490-1498, doi:10.1016/S0006-3495(91)82184-1 (1991).
6 Tsunoda, S. P., Ewers, D., Gazzarrini, S., Moroni, A., Gradmann, D. & Hegemann, P. H+ -pumping rhodopsin from the marine alga Acetabularia. Biophys J 91, 1471-1479, doi:10.1529/biophysj.106.086421 (2006).
7 Wald, G., Brown, P. K. & Smith, P. H. Iodopsin. J Gen Physiol 38, 623-681, doi:10.1085/jgp.38.5.623 (1955).
8 Haupts, U., Tittor, J. & Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28, 367-399, doi:10.1146/annurev.biophys.28.1.367 (1999).
9 Tittor, J., Schweiger, U., Oesterhelt, D. & Bamberg, E. Inversion of proton translocation in bacteriorhodopsin mutants D85N, D85T, and D85,96N. Biophys J 67, 1682-1690, doi:10.1016/S0006-3495(94)80642-3 (1994).
10 Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D. & Heberle, J. In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc Natl Acad Sci U S A 96, 5498-5503, doi:10.1073/pnas.96.10.5498 (1999).
11 Zimanyi, L., Cao, Y., Chang, M., Ni, B., Needleman, R. & Lanyi, J. K. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements. Photochem Photobiol 56, 1049-1055, doi:10.1111/j.1751-1097.1992.tb09728.x (1992).
12 Sineshchekov, O. A., Spudich, E. N., Trivedi, V. D. & Spudich, J. L. Role of the cytoplasmic domain in Anabaena sensory rhodopsin photocycling: vectoriality of Schiff base deprotonation. Biophys J 91, 4519-4527, doi:10.1529/biophysj.106.093641 (2006).
13 Korenstein, R., Hess, B. & Kuschmitz, D. Branching reactions in the photocycle of bacteriorhodopsin. FEBS Lett 93, 266-270, doi:10.1016/0014-5793(78)81118-1 (1978).
14 Tsuda, M., Shirotani, I., Minomura, S. & Terayama, Y. Pressure induced intermediates in the photochemical reaction of squid rhodopsin. Biochem Biophys Res Commun 76, 989-994, doi:10.1016/0006-291x(77)90953-6 (1977).
15 Walsby, A. E. A square bacterium. Nature 283, 69-71, doi:10.1038/283069a0 (1980).
16 Boetius, A. & Joye, S. Ecology. Thriving in salt. Science 324, 1523-1525, doi:10.1126/science.1172979 (2009).
17 Oren, A. The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence. Life (Basel) 3, 1-20, doi:10.3390/life3010001 (2012).
18 Bolhuis, H., Poele, E. M. & Rodriguez-Valera, F. Isolation and cultivation of Walsby's square archaeon. Environ Microbiol 6, 1287-1291, doi:10.1111/j.1462-2920.2004.00692.x (2004).
19 Burns, D. G., Janssen, P. H., Itoh, T., Kamekura, M., Li, Z., Jensen, G., Rodriguez-Valera, F., Bolhuis, H. & Dyall-Smith, M. L. Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57, 387-392, doi:10.1099/ijs.0.64690-0 (2007).
20 Oren, A. Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. International Journal of Systematic and Evolutionary Microbiology 33, 381-386 (1983).
21 Oren, A., Weisburg, W. G., Kessel, M. & Woese, C. R. Halobacteroides halobius gen. nov., sp. nov., a Moderately Halophic Anaerobic Bacterium from the Bottom Sediments of the Dead Sea. Systematic and applied microbiology 5, 58-70 (1984).
22 Oren, A., Gurevich, P., Gemmell, R. T. & Teske, A. Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45, 747-754, doi:10.1099/00207713-45-4-747 (1995).
23 Lobasso, S., Lopalco, P., Mascolo, G. & Corcelli, A. Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi. Archaea 2, 177-183, doi:10.1155/2008/870191 (2008).
24 Bolhuis, H., Palm, P., Wende, A., Falb, M., Rampp, M., Rodriguez-Valera, F., Pfeiffer, F. & Oesterhelt, D. The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity. BMC Genomics 7, 169, doi:10.1186/1471-2164-7-169 (2006).
25 Hsu, M. F., Fu, H. Y., Cai, C. J., Yi, H. P., Yang, C. S. & Wang, A. H. Structural and Functional Studies of a Newly Grouped Haloquadratum walsbyi Bacteriorhodopsin Reveal the Acid-resistant Light-driven Proton Pumping Activity. J Biol Chem 290, 29567-29577, doi:10.1074/jbc.M115.685065 (2015).
26 Sudo, Y., Ihara, K., Kobayashi, S., Suzuki, D., Irieda, H., Kikukawa, T., Kandori, H. & Homma, M. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286, 5967-5976, doi:10.1074/jbc.M110.190058 (2011).
27 Fu, H. Y., Chang, Y. N., Jheng, M. J. & Yang, C. S. Ser(262) determines the chloride-dependent colour tuning of a new halorhodopsin from Haloquadratum walsbyi. Biosci Rep 32, 501-509, doi:10.1042/BSR20120054 (2012).
28 Khan, S. T., Nakagawa, Y. & Harayama, S. Krokinobacter gen. nov., with three novel species, in the family Flavobacteriaceae. Int J Syst Evol Microbiol 56, 323-328, doi:10.1099/ijs.0.63841-0 (2006).
29 Inoue, K., Ono, H., Abe-Yoshizumi, R., Yoshizawa, S., Ito, H., Kogure, K. & Kandori, H. A light-driven sodium ion pump in marine bacteria. Nat Commun 4, 1678, doi:10.1038/ncomms2689 (2013).
30 Kato, Y., Inoue, K. & Kandori, H. Kinetic Analysis of H(+)-Na(+) Selectivity in a Light-Driven Na(+)-Pumping Rhodopsin. J Phys Chem Lett 6, 5111-5115, doi:10.1021/acs.jpclett.5b02371 (2015).
31 Kato, H. E., Inoue, K., Abe-Yoshizumi, R., Kato, Y., Ono, H., Konno, M., Hososhima, S., Ishizuka, T., Hoque, M. R., Kunitomo, H., Ito, J., Yoshizawa, S., Yamashita, K., Takemoto, M., Nishizawa, T., Taniguchi, R., Kogure, K., Maturana, A. D., Iino, Y., Yawo, H., Ishitani, R., Kandori, H. & Nureki, O. Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump. Nature 521, 48-53, doi:10.1038/nature14322 (2015).
32 Nishimura, N., Mizuno, M., Kandori, H. & Mizutani, Y. Distortion and a Strong Hydrogen Bond in the Retinal Chromophore Enable Sodium-Ion Transport by the Sodium-Ion Pump KR2. J Phys Chem B 123, 3430-3440, doi:10.1021/acs.jpcb.9b00928 (2019).
33 Maeda, A., Ogurusu, T., Yoshizawa, T. & Kitagawa, T. Resonance Raman study on binding of chloride to the chromophore of halorhodopsin. Biochemistry-Us 24, 2517-2521 (1985).
34 Philosof, A. & Beja, O. Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ Microbiol Rep 5, 475-482, doi:10.1111/1758-2229.12037 (2013).
35 Inoue, K., Nomura, Y. & Kandori, H. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps. J Biol Chem 291, 9883-9893, doi:10.1074/jbc.M116.716498 (2016).
36 Wilhelm, L. J., Tripp, H. J., Givan, S. A., Smith, D. P. & Giovannoni, S. J. Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol Direct 2, 27, doi:10.1186/1745-6150-2-27 (2007).
37 Grant, S. R., Church, M. J., Ferron, S., Laws, E. A. & Rappe, M. S. Elemental Composition, Phosphorous Uptake, and Characteristics of Growth of a SAR11 Strain in Batch and Continuous Culture. mSystems 4, doi:10.1128/mSystems.00218-18 (2019).
38 Kataoka, C., Sugimoto, T., Shigemura, S., Katayama, K., Tsunoda, S. P., Inoue, K., Beja, O. & Kandori, H. TAT rhodopsin is an ultraviolet-dependent environmental pH sensor. Biochemistry-Us 60, 899-907 (2021).
39 Baliga, N. S., Bonneau, R., Facciotti, M. T., Pan, M., Glusman, G., Deutsch, E. W., Shannon, P., Chiu, Y., Weng, R. S. & Gan, R. R. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome research 14, 2221-2234 (2004).
40 Fu, H. Y., Lin, Y. C., Chang, Y. N., Tseng, H., Huang, C. C., Liu, K. C., Huang, C. S., Su, C. W., Weng, R. R., Lee, Y. Y., Ng, W. V. & Yang, C. S. A novel six-rhodopsin system in a single archaeon. J Bacteriol 192, 5866-5873, doi:10.1128/JB.00642-10 (2010).
41 Fu, H. Y., Yi, H. P., Lu, Y. H. & Yang, C. S. Insight into a single halobacterium using a dual‐bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Mol Microbiol 88, 551-561 (2013).
42 Ishchenko, A., Round, E., Borshchevskiy, V., Grudinin, S., Gushchin, I., Klare, J. P., Remeeva, A., Polovinkin, V., Utrobin, P., Balandin, T., Engelhard, M., Buldt, G. & Gordeliy, V. New Insights on Signal Propagation by Sensory Rhodopsin II/Transducer Complex. Sci Rep 7, 41811, doi:10.1038/srep41811 (2017).
43 Gordeliy, V. I., Labahn, J., Moukhametzianov, R., Efremov, R., Granzin, J., Schlesinger, R., Buldt, G., Savopol, T., Scheidig, A. J., Klare, J. P. & Engelhard, M. Molecular basis of transmembrane signalling by sensory rhodopsin II-transducer complex. Nature 419, 484-487, doi:10.1038/nature01109 (2002).
44 Orekhov, P. S., Klose, D., Mulkidjanian, A. Y., Shaitan, K. V., Engelhard, M., Klare, J. P. & Steinhoff, H. J. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Comput Biol 11, e1004561, doi:10.1371/journal.pcbi.1004561 (2015).
45 Chen, J. L., Lin, Y. C., Fu, H. Y. & Yang, C. S. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep 9, 5672, doi:10.1038/s41598-019-42193-y (2019).
46 Koch, M. K. & Oesterhelt, D. MpcT is the transducer for membrane potential changes in Halobacterium salinarum. Mol Microbiol 55, 1681-1694, doi:10.1111/j.1365-2958.2005.04516.x (2005).
47 Hartmann, R., Sickinger, H. D. & Oesterhelt, D. Quantitative aspects of energy conversion in halobacteria. FEBS Lett 82, 1-6, doi:10.1016/0014-5793(77)80873-9 (1977).
48 Varo, G., Needleman, R. & Lanyi, J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry-Us 34, 14500-14507, doi:10.1021/bi00044a028 (1995).
49 Okonechnikov, K., Golosova, O., Fursov, M. & team, U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166-1167, doi:10.1093/bioinformatics/bts091 (2012).
50 Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R. & Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303, doi:10.1093/nar/gky427 (2018).
51 Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millan, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, J. H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., Opperman, D. J., Sagmeister, T., Buhlheller, C., Pavkov-Keller, T., Rathinaswamy, M. K., Dalwadi, U., Yip, C. K., Burke, J. E., Garcia, K. C., Grishin, N. V., Adams, P. D., Read, R. J. & Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871-876, doi:10.1126/science.abj8754 (2021).
52 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P. & Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589, doi:10.1038/s41586-021-03819-2 (2021).
53 Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H. & Ferrin, T. E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci 32, e4792, doi:10.1002/pro.4792 (2023).
54 Tu, C. H., Yi, H. P., Hsieh, S. Y., Lin, H. S. & Yang, C. S. Overexpression of Different Types of Microbial Rhodopsins with a Highly Expressible Bacteriorhodopsin from Haloarcula marismortui as a Single Protein in E. coli. Sci Rep 8, 14026, doi:10.1038/s41598-018-32399-x (2018).
55 Chu, L. K., Yen, C. W. & El-Sayed, M. A. Bacteriorhodopsin-based photo-electrochemical cell. Biosens Bioelectron 26, 620-626, doi:10.1016/j.bios.2010.07.013 (2010).
56 Tamogami, J., Kikukawa, T., Miyauchi, S., Muneyuki, E. & Kamo, N. A tin oxide transparent electrode provides the means for rapid time-resolved pH measurements: application to photoinduced proton transfer of bacteriorhodopsin and proteorhodopsin. Photochem Photobiol 85, 578-589, doi:10.1111/j.1751-1097.2008.00520.x (2009).
57 Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4, 706-731, doi:10.1038/nprot.2009.31 (2009).
58 Nogly, P., James, D., Wang, D., White, T. A., Zatsepin, N., Shilova, A., Nelson, G., Liu, H., Johansson, L., Heymann, M., Jaeger, K., Metz, M., Wickstrand, C., Wu, W., Båth, P., Berntsen, P., Oberthuer, D., Panneels, V., Cherezov, V., Chapman, H., Schertler, G., Neutze, R., Spence, J., Moraes, I., Burghammer, M., Standfuss, J. & Weierstall, U. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation. IUCrJ 2, 168-176, doi:10.1107/s2052252514026487 (2015).
59 Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr D Struct Biol 74, 441-449, doi:10.1107/S2059798318004576 (2018).
60 Foadi, J., Aller, P., Alguel, Y., Cameron, A., Axford, D., Owen, R. L., Armour, W., Waterman, D. G., Iwata, S. & Evans, G. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 69, 1617-1632, doi:10.1107/S0907444913012274 (2013).
61 Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326, doi:10.1016/S0076-6879(97)76066-X (1997).
62 Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455-461, doi:10.1002/jcc.21334 (2010).
63 Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model 61, 3891-3898, doi:10.1021/acs.jcim.1c00203 (2021).
64 Liebschner, D., Afonine, P. V., Baker, M. L., Bunkoczi, G., Chen, V. B., Croll, T. I., Hintze, B., Hung, L. W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant, M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V., Stockwell, D. H., Terwilliger, T. C., Urzhumtsev, A. G., Videau, L. L., Williams, C. J. & Adams, P. D. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75, 861-877, doi:10.1107/S2059798319011471 (2019).
65 Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Basle, A., Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Marmol, J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L., Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I., Debreczeni, J. E., Devenish, N. E., Dodson, E. J., Drevon, T. R., Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-Montero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K., Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins, H. T., Jimenez, E., Joosten, R. P., Keegan, R. M., Keep, N., Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson, D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F., Maly, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millan, C., Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M., Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J., Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W., Sammito, M., Sanchez Rodrguez, F., Sheldrick, G. M., Shelley, K. L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R. A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T., Uski, V., Uson, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H., Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. & Yamashita, K. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr D Struct Biol 79, 449-461, doi:10.1107/S2059798323003595 (2023).
66 Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501, doi:10.1107/S0907444910007493 (2010).
67 Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E. & DeLong, E. F. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc Natl Acad Sci U S A 104, 5590-5595, doi:10.1073/pnas.0611470104 (2007).
68 Ludmann, K., Gergely, C. & Varo, G. Kinetic and thermodynamic study of the bacteriorhodopsin photocycle over a wide pH range. Biophys J 75, 3110-3119, doi:10.1016/S0006-3495(98)77752-5 (1998).
69 Zhang, J., Mizuno, K., Murata, Y., Koide, H., Murakami, M., Ihara, K. & Kouyama, T. Crystal structure of deltarhodopsin-3 from Haloterrigena thermotolerans. Proteins 81, 1585-1592, doi:10.1002/prot.24316 (2013).
70 Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res 45, D313-D319, doi:10.1093/nar/gkw1132 (2017).
71 Kupferschmidt, K. Do chronic infections breed dangerous new variants? Science 373, 848, doi:10.1126/science.373.6557.848 (2021).
72 Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S. & Steinegger, M. ColabFold - Making protein folding accessible to all. bioRxiv, 2021.2008.2015.456425, doi:10.1101/2021.08.15.456425 (2021).
73 Duddy, W. J., Nissink, J. W. M., Allen, F. H. & Milner-White, E. J. Mimicry by asx- and ST-turns of the four main types of β-turn in proteins. Protein Science 13, 3051-3055, doi:10.1110/ps.04920904 (2004).
74 Thibeault, P. E. & Ramachandran, R. Role of the Helix-8 and C-Terminal Tail in Regulating Proteinase Activated Receptor 2 Signaling. ACS Pharmacol Transl Sci 3, 868-882, doi:10.1021/acsptsci.0c00039 (2020).
75 Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797, doi:10.1016/j.jmb.2007.05.022 (2007).
76 Palczewski, K. G protein-coupled receptor rhodopsin. Annu Rev Biochem 75, 743-767, doi:10.1146/annurev.biochem.75.103004.142743 (2006).
77 Sato, M., Kanamori, T., Kamo, N., Demura, M. & Nitta, K. Stopped-flow analysis on anion binding to blue-form halorhodopsin from Natronobacterium pharaonis: comparison with the anion-uptake process during the photocycle. Biochemistry 41, 2452-2458, doi:10.1021/bi011788g (2002).
78 Facciotti, M. T., Cheung, V. S., Nguyen, D., Rouhani, S. & Glaeser, R. M. Crystal structure of the bromide-bound D85S mutant of bacteriorhodopsin: principles of ion pumping. Biophys J 85, 451-458, doi:10.1016/S0006-3495(03)74490-7 (2003).
79 Kim, J. M., Booth, P. J., Allen, S. J. & Khorana, H. G. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. J Mol Biol 308, 409-422, doi:10.1006/jmbi.2001.4603 (2001).
80 Yu, C. H., Wu, H. Y., Lin, H. S. & Yang, C. S. A conserved Trp residue in HwBR contributes to its unique tolerance toward acidic environments. Biophys J 121, 3136-3145, doi:10.1016/j.bpj.2022.07.009 (2022).
81 Fu, H.-Y., Yi, H.-P., Lu, Y.-H. & Yang, C.-S. Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Molecular Microbiology 88, 551-561, doi:10.1111/mmi.12208 (2013).
82 Zimanyi, L., Varo, G., Chang, M., Ni, B., Needleman, R. & Lanyi, J. K. Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry-Us 31, 8535-8543, doi:10.1021/bi00151a022 (1992).
83 Sharma, A. K., Walsh, D. A., Bapteste, E., Rodriguez-Valera, F., Doolittle, W. F. & Papke, R. T. Evolution of rhodopsin ion pumps in haloarchaea. Bmc Evol Biol 7, doi:10.1186/1471-2148-7-79 (2007).
84 Varo, G., Zimanyi, L., Fan, X., Sun, L., Needleman, R. & Lanyi, J. K. Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J 68, 2062-2072, doi:10.1016/S0006-3495(95)80385-1 (1995).
85 Guskov, A., Nordin, N., Reynaud, A., Engman, H., Lundbäck, A.-K., Jong, A. J. O., Cornvik, T., Phua, T. & Eshaghi, S. Structural insights into the mechanisms of Mg<sup>2+</sup> uptake, transport, and gating by CorA. Proceedings of the National Academy of Sciences 109, 18459-18464, doi:10.1073/pnas.1210076109 (2012).
86 Echols, N., Morshed, N., Afonine, P. V., McCoy, A. J., Miller, M. D., Read, R. J., Richardson, J. S., Terwilliger, T. C. & Adams, P. D. Automated identification of elemental ions in macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 70, 1104-1114, doi:10.1107/S1399004714001308 (2014).
87 Chen, X. R., Huang, Y. C., Yi, H. P. & Yang, C. S. A Unique Light-Driven Proton Transportation Signal in Halorhodopsin from Natronomonas pharaonis. Biophys J 111, 2600-2607, doi:10.1016/j.bpj.2016.11.003 (2016).
88 Turner, B., Burkhart, B. W., Weidenbach, K., Ross, R., Limbach, P. A., Schmitz, R. A., de Crecy-Lagard, V., Stedman, K. M., Santangelo, T. J. & Iwata-Reuyl, D. Archaeosine Modification of Archaeal tRNA: Role in Structural Stabilization. J Bacteriol 202, doi:10.1128/JB.00748-19 (2020).
89 Gout, E., Rébeillé, F., Douce, R. & Bligny, R. Interplay of Mg<sup>2+</sup>, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg<sup>2+</sup> in cell respiration. Proceedings of the National Academy of Sciences 111, E4560-E4567, doi:10.1073/pnas.1406251111 (2014).
90 Ador, L., Jaeger, S., Geslain, R., Martin, F., Cavarelli, J. & Eriani, G. Mutation and evolution of the magnesium-binding site of a class II aminoacyl-tRNA synthetase. Biochemistry 43, 7028-7037, doi:10.1021/bi049617+ (2004).
91 Airas, R. K. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Eur J Biochem 240, 223-231, doi:10.1111/j.1432-1033.1996.0223h.x (1996).
92 Tolia, N. H. & Joshua-Tor, L. Strategies for protein coexpression in Escherichia coli. Nat Methods 3, 55-64, doi:10.1038/nmeth0106-55 (2006).
93 Pfeiffer, W. & Hager, A. A Ca2+-ATPase and a Mg2+/H+-antiporter are present on tonoplast membranes from roots of Zea mays L. Planta 191, 377-385, doi:10.1007/BF00195696 (1993).
94 Kandori, H., Kinoshita, N., Shichida, Y. & Maeda, A. Protein Structural Changes in Bacteriorhodopsin upon Photoisomerization As Revealed by Polarized FTIR Spectroscopy. The Journal of Physical Chemistry B 102, 7899-7905, doi:10.1021/jp981949z (1998).
95 Otomo, A., Mizuno, M., Inoue, K., Kandori, H. & Mizutani, Y. Allosteric Communication with the Retinal Chromophore upon Ion Binding in a Light-Driven Sodium Ion-Pumping Rhodopsin. Biochemistry 59, 520-529, doi:10.1021/acs.biochem.9b01062 (2020).
96 Yang, C. S., Sineshchekov, O., Spudich, E. N. & Spudich, J. L. The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II. J Biol Chem 279, 42970-42976, doi:10.1074/jbc.M406504200 (2004).
97 Kim, S. Y., Yoon, S. R., Han, S., Yun, Y. & Jung, K. H. A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction. Mol Microbiol 93, 403-414, doi:10.1111/mmi.12635 (2014).
98 Komiya, Y. & Runnels, L. W. TRPM channels and magnesium in early embryonic development. Int J Dev Biol 59, 281-288, doi:10.1387/ijdb.150196lr (2015).
99 Nadezhdin, K. D., Correia, L., Narangoda, C., Patel, D. S., Neuberger, A., Gudermann, T., Kurnikova, M. G., Chubanov, V. & Sobolevsky, A. I. Structural mechanisms of TRPM7 activation and inhibition. Nat Commun 14, 2639, doi:10.1038/s41467-023-38362-3 (2023).
100 Ciaglia, T., Vestuto, V., Bertamino, A., Gonzalez-Muniz, R. & Gomez-Monterrey, I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 12, 1065935, doi:10.3389/fonc.2022.1065935 (2022).
101 Yang, C. S., Skiba, N. P., Mazzoni, M. R. & Hamm, H. E. Conformational changes at the carboxyl terminus of Galpha occur during G protein activation. J Biol Chem 274, 2379-2385, doi:10.1074/jbc.274.4.2379 (1999).
102 Shim, J. G., Cho, S. G., Kim, S. H., Chuon, K., Meas, S., Choi, A. & Jung, K. H. Heliorhodopsin Helps Photolyase to Enhance the DNA Repair Capacity. Microbiol Spectr 10, e0221522, doi:10.1128/spectrum.02215-22 (2022).
103 Zhu, P., Somvanshi, T., Bao, J. & Scheller, S. CRISPR/Cas12a toolbox for genome editing in Methanosarcina acetivorans. Front Microbiol 14, 1235616, doi:10.3389/fmicb.2023.1235616 (2023).
104 Ihara, K., Umemura, T., Katagiri, I., Kitajima-Ihara, T., Sugiyama, Y., Kimura, Y. & Mukohata, Y. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation. J Mol Biol 285, 163-174, doi:10.1006/jmbi.1998.2286 (1999).
105 Bamberg, E., Tittor, J. & Oesterhelt, D. Light-driven proton or chloride pumping by halorhodopsin. Proc Natl Acad Sci U S A 90, 639-643, doi:10.1073/pnas.90.2.639 (1993).
106 Sasaki, J., Brown, L. S., Chon, Y. S., Kandori, H., Maeda, A., Needleman, R. & Lanyi, J. K. Conversion of bacteriorhodopsin into a chloride ion pump. Science 269, 73-75, doi:10.1126/science.7604281 (1995).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94188-
dc.description.abstract古細菌、海洋細菌或是一些特定藻類足以存活於高光照、高鹽或是極端酸鹼值的環境中,而表現在這些生物細胞膜上的微生物視紫紅質 (microbial rhodopsin, mRho),可以藉由吸收太陽光作為能量來源來執行他們多樣的功能。依照微生物視紫紅質的功能可以區分為兩大類:一類為光驅動離子幫浦,如向外運輸的氫離子幫浦 (bacteriorhodopsin, BR) 和向內運輸的氯離子幫浦 (halorhodopsin, HR),另一類為感光型視紫紅質 (sensory rhodopsin, SR),調控趨光或是避光的光趨性訊號。這些微生物視紫紅質被認為可以藉由本身的功能,來達成產生能量以供細菌使用、維持細胞滲透壓以抵抗外界溶劑以及調節光趨性訊號。近來許多證據顯示,微生物視紫紅質可以感知環境中因子的變化像是氯化鎂與氯化鈉濃度、酸鹼值、膜電位、滲透壓與壓力,從而影響其生理意義。本研究對一未知功能的微生物視紫紅質Middle rhodopsin (MR) 進行全方面探討,其被發現於鹽方扁平古菌 (Haloquadratum walsbyi, Hw),此嗜鹽古細菌可以生存於高鹽且含有高濃度MgCl2的環境中 (2.0 M)。透過結構分析、光學特性分析與功能測試發現,MR可以作為一向內運輸鎂離子的轉運蛋白,在其結構中確定了兩個關鍵鎂離子結合位點,且其胺基酸D84、T216、D95個別扮演了離子選擇性、離子穩定、離子參與的關鍵位點。而位於蛋白質C端呈現靈活且高絲胺酸-蘇胺酸比例,極高可能與下游蛋白質結合進行訊號傳遞,光週期的結果可以支持此推測。由此我們提出了一個模型闡述了MR的鎂離子運輸機制。此外,因為在H. walsbyi基因組中BR與MR的近距離呈現出功能相關性,因此我們建構了一可以表現BR-MR融合蛋白的質體,並發現MR可以藉由幫助BR抵抗外界高濃度的鎂離子來維持質子運輸,最終達成生產能量供給細菌使用。在本研究中,我們以多面向的實驗方法來釐清MR向內運輸鎂離子的功能如何協助H. walsbyi生存。zh_TW
dc.description.abstractArchaea, marine bacteria, and certain algae have demonstrated remarkable resilience in environments with high light intensity, salinity, or extreme pH levels. Within these organisms, microbial rhodopsins (mRho) are on cell membranes, harnessing sunlight to perform diverse functions. mRhos are classified into two primary categories based on their functions: light-driven ion pumps, such as outward proton pumps (bacteriorhodopsin, BR) and inward chloride pumps (halorhodopsin, HR), and sensory rhodopsins (SR), which mediate phototaxis signaling, facilitating either attraction or repulsion in response to light stimuli. The functions of mRhos are essential for energy generation, maintaining osmolarity against external solutes, and regulating phototaxis. Emerging evidences indicate that mRhos have the capability to sense changes in environmental factors like MgCl2 concentration, NaCl level, pH, membrane potential, osmolarity, and pressure, thereby influencing their physiological significances. Here, we conducted a comprehensive analysis of Middle rhodopsin (MR) derived from Haloquadratum walsbyi, a haloarchaeon surviving in a high-salinity environment with excessive MgCl2 concentrations (2.0 M). Through structural analysis, optical characterization, and functional assays, we determined that MR functioned as an inward Mg2+ transporter and identified two key Mg2+ binding sites. Specifically, residues D84, T216, and D95 were implicated in Mg2+ ion selectivity, stabilization, and association, respectively. Additionally, the flexible and high serine-threonine content in the C-terminus of MR implied potential protein interactions facilitating signal transduction, supported by photocycle kinetics. Our findings proposed a model elucidating the mechanism of Mg2+ transportation by MR. Furthermore, given the proximity of BR and MR in the genome of H. walsbyi, indicating their function correlation, we engineered a plasmid encoding a chimeric protein BR-MR. This construct demonstrated that MR aided BR in proton pumping against excessive Mg2+, leading to ATP production. In this study, we utilized a multifaceted approach to clarify the pivotal role of MR in the survival strategies of H. walsbyi, particularly through inward Mg2+ transportation mechanisms.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:09:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T17:09:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract iii
Abbreviations and Acronyms v
Table of Contents vii
List of Figures xii
List of Tables xv
Chapter 1 Introduction 1
1.1 Microbial rhodopsin 1
1.1.1 The basic structure of microbial rhodopsin 3
1.1.2 Determine the optical properties of microbial rhodopsin 4
1.1.2.1 UV-Vis spectrophotometry 4
1.1.2.2 Light-induced photocycle measurements 4
1.2 mRhos exhibit features reminiscent of sensors 5
1.2.1 Middle rhodopsin 5
1.2.2 Krokinobacter eikastus rhodopsin 2 8
1.2.3 TAT rhodopsin 11
1.2.4 BRI and II from Haloarcula marismortui 13
1.2.5 Sensory rhodopsin 15
1.2.6 A membrane potential change transducer from H. salinarum 17
1.3 What are the physiological significances of the function of mRhos 18
1.4 Specific aims 19
Chapter 2 Materials and Methods 21
2.1 Experimental materials and chemicals 21
2.1.1 Bacterial strains 21
2.1.2 Plasmids 21
2.1.3 Chemical reagents 21
2.2 Experimental instruments and equipment 23
2.2.1 DNA electrophoresis 23
2.2.2 Protein electrophoresis 23
2.2.3 Centrifugation 23
2.2.4 UV-Vis spectrophotometer 23
2.2.5 Photocurrent device 23
2.2.6 Photocycle device 24
2.2.7 Others 24
2.3 Methods 25
2.3.1 Bioinformatic analyses 25
2.3.1.1 Sequence alignment 25
2.3.1.2 Structure simulation 25
2.3.2 Plasmid construction 25
2.3.2.1 Site-directed mutagenesis and fragment truncated of HwMR 25
2.3.2.2 BR-HwMR chimeric protein 26
2.3.3 Protein overexpression and purification 28
2.3.3.1 Overexpression of target protein 28
2.3.3.2 Cell lysis and membrane extraction 28
2.3.3.3 Affinity chromatography 28
2.3.3.4 Size-exclusion chromatography 29
2.3.4 Optical property characteristics of target proteins 29
2.3.4.1 UV-Vis spectrum scanning 29
2.3.4.2 Magnesium ion titration assay 29
2.3.4.3 Photocurrent measurements 30
2.3.4.4 Flash-laser-induced photocycle measurements 30
2.3.5 Growth curve 31
2.3.6 X-ray crystallography 32
2.3.6.1 Lipid cubic phase reconstitution and protein crystallization 32
2.3.6.2 X-ray data collection and processing 32
2.3.7 Protein quantitative analysis: SDS-PAGE 33
2.3.8 Conductivity measurements 34
2.3.9 ATP measurements 34
Chapter 3 Results 35
3.1 HwMR exhibited magnesium ion association properties 35
3.1.1 Haloarchaea were difficult to thrive under a high magnesium ion environment 35
3.1.2 The sensitivity of HwMR towards magnesium ions was revealed through Abs-max shifts under varying cation solutions 37
3.1.3 Magnesium ions affected on photocycle kinetics of HwMR 41
3.2 Several critical residues associated with magnesium ions within HwMR were identified by bioinformatic analyses 45
3.3 Optical properties of HwMR variants were changed in magnesium ion environments 49
3.3.1 HwMR variants possessed varying Abs-max shifts in different cationic solutions 49
3.3.2 HwMR variants displayed the specific time sequence of intermediate states 52
3.4 The magnesium transporting potential of HwMR was demonstrated by structural and biophysical analyses 55
3.4.1 HwMR protein was reconstituted in lipid cubic phase 55
3.4.2 Three Mg2+ binding sites were identified in HwMR atomic structure 58
3.4.3 D84 residue within HwMR functioned as an ion selectivity filter 61
3.4.4 HwMR had exceptionally flexibility BC-loop 67
3.4.5 T216 and D95 each served as Mg2+ stabilizers and associators in HwMR 70
3.5 Conductivity assay implied the inward magnesium transporting capability of HwMR 72
3.6 Functional assays revealed the potential physiological functions of HwMR 75
3.6.1 HwMR helped the proton pumping of BR under high Mg2+ concentrations 75
3.6.2 HwMR assisted the capability of BR to produce energy for cellular use 80
Chapter 4 Discussion 82
4.1 HwMR is inferred as an inward Mg2+ transporter 82
4.2 What roles do the specific residues within HwMR each play 83
4.3 What physiological purpose does the inward Mg2+ transport of HwMR serve 87
Chapter 5 Future Perspectives 91
5.1 Precise validation of magnesium ion binding sites and the dynamics of ion movement 91
5.2 To verify whether the outward-facing binding site facilitates oligomeric structure formation 92
5.3 To clarify the significance of the C-terminus of HwMR 93
5.4 To clarify physiological functions of HwMR 97
References 100
Appendices 111
List of Supplementary Figures 112
List of Supplementary Tables 113
Supplementary Data 114
Publications during doctoral training 136
Reprints of publications 138
-
dc.language.isoen-
dc.subject能量ATP生產zh_TW
dc.subject離子選擇性zh_TW
dc.subjectBR-MR融合蛋白zh_TW
dc.subject鎂離子運輸zh_TW
dc.subjectMiddle rhodopsinzh_TW
dc.subject鎂離子結合位點zh_TW
dc.subjectATP productionen
dc.subjectMiddle rhodopsinen
dc.subjectMg2+ transportationen
dc.subjectMg2+ binding siteen
dc.subjection filtrationen
dc.subjectBR-MR chimeric proteinen
dc.title運輸鎂離子的視紫紅質之結構與光學特性研究zh_TW
dc.titleStructural and Optical Properties Perspectives on a Magnesium Transporting Middle Rhodopsinen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee吳韋訥;鄭貽生;吳亘承;林宥成zh_TW
dc.contributor.oralexamcommitteeWailap Victor Ng;Yi-Sheng Cheng;Hsuan-Chen Wu;Yu-Cheng Linen
dc.subject.keywordMiddle rhodopsin,鎂離子運輸,鎂離子結合位點,離子選擇性,BR-MR融合蛋白,能量ATP生產,zh_TW
dc.subject.keywordMiddle rhodopsin,Mg2+ transportation,Mg2+ binding site,ion filtration,BR-MR chimeric protein,ATP production,en
dc.relation.page138-
dc.identifier.doi10.6342/NTU202402713-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2025-07-30-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf51.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved