請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94166完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧南佑 | zh_TW |
| dc.contributor.advisor | Nan-You Lu | en |
| dc.contributor.author | 馬祥偉 | zh_TW |
| dc.contributor.author | Xiang-Wei Ma | en |
| dc.date.accessioned | 2024-08-14T17:02:38Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | Mark Hutchinson, F. Z. (2023). Global Wind Report 2023.
4C Offshore. (2023). Global Offshore Wind Speeds Rankings. from https://www.4coffshore.com/windfarms/windspeeds.aspx 中央氣象局. (2023). 颱風資料庫. from https://rdc28.cwb.gov.tw/TDB/public/typhoon_list/ Chinese National Standards. (2018). Wind Turbines − Part 1: Design Requirements. CNS 15176-1. Georgiou, P., et al. (1983). Design Wind Speeds in Regions Dominated by Tropical Cyclones. Journal of Wind Engineering and Industrial Aerodynamics, 13(1-3), 139-152. Holland, G. J. (1980). An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Skamarock, W. C., et al. (2019). A Description of the Advanced Research Wrf Version 4. NCAR tech. note ncar/tn-556+ str, 145. 柯旻佑. (2023). 應用 Wrf 與 Les 耦合模型分析真實颱風邊界層中之風場特性. 國立臺灣大學機械工程學系學位論文, 2023, 1-77. 林韋伶. (2018). 初探大氣紊流模式與風機性能之評估. 臺灣大學應用力學研究所學位論文, 2018, 1-92. Kaimal, J. C., et al. (1972). Spectral Characteristics of Surface‐Layer Turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589. Diederich, F. W., & Drischler, J. A. (1957). Effect of Spanwise Variations in Gust Intensity on the Lift Due to Atmospheric Turbulence. 王翊碩、羅元隆. (2023). 探討本土颱風風況與iec-Ewm風況對風力機受風反應之差異性. Journal of Taiwan Energy, 10(1), 69-88. 廖尚諄. (2023). 應用中尺度到微尺度極端風模型於風機之負載分析. 國立臺灣大學機械工程學系學位論文, 2023, 1-86. 王義竣. (2021). 以深度學習方式預測振顫速度之生成. 淡江大學航空太空工程學系碩士班學位論文, 2021, 1-84. 王尹. (2023). 以人工智慧方法預測風場功率輸出. 國立台灣大學工程科學及海洋工程學系學士班學生論文, 1-33. Tsai, C.-C., et al. (2018). Artificial Neural Network for Forecasting Wave Heights Along a Ship’s Route During Hurricanes. Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(2), 04017042. Wei, C.-C., et al. (2018). Regional Forecasting of Wind Speeds During Typhoon Landfall in Taiwan: A Case Study of Westward-Moving Typhoons. Atmosphere, 9(4), 141. Wei, C.-C. (2019). Study on Wind Simulations Using Deep Learning Techniques During Typhoons: A Case Study of Northern Taiwan. Atmosphere, 10(11), 684. Hansen, M. (2015). Aerodynamics of Wind Turbines: Routledge. Wiener, N. (1930). Generalized Harmonic Analysis. Acta mathematica, 55(1), 117-258. Khintchine, A. (1934). Korrelationstheorie Der Stationären Stochastischen Prozesse. Mathematische Annalen, 109(1), 604-615. Jonkman, B. (2014). Turbsim User’s Guide V2. 00.00. Natl. Renew. Energy Lab. Jonkman, J. (2013). The New Modularization Framework for the Fast Wind Turbine Cae Tool. Paper presented at the 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. Guntur, S., et al. (2017). A Validation and Code-to-Code Verification of Fast for a Megawatt-Scale Wind Turbine with Aeroelastically Tailored Blades. Wind Energy Science, 2(2), 443-468. Gasmi, A., et al. (2013). Numerical Stability and Accuracy of Temporally Coupled Multi-Physics Modules in Wind Turbine Cae Tools. Paper presented at the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Sprague, M. A., & Jonkman, J. M. (2014). Fast Modular Wind Turbine Cae Tool: Nonmatching Spatial and Temporal Meshes. Paper presented at the 32nd ASME Wind Energy Symposium. Sprague, M. A., et al. (2015). Fast Modular Framework for Wind Turbine Simulation: New Algorithms and Numerical Examples. Paper presented at the 33rd Wind Energy Symposium. Jonkman, J., et al. (2009). Definition of a 5-Mw Reference Wind Turbine for Offshore System Development: National Renewable Energy Lab.(NREL), Golden, CO (United States). Robertson, A., et al. (2014). Definition of the Semisubmersible Floating System for Phase Ii of Oc4: National Renewable Energy Lab.(NREL), Golden, CO (United States). Hinton, G. E. (2009). Deep Belief Networks. Scholarpedia, 4(5), 5947. Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural computation, 9(8), 1735-1780. Liu, J., et al. (2019). Design Loads for a Large Wind Turbine Supported by a Semi-Submersible Floating Platform. Renewable energy, 138, 923-936. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94166 | - |
| dc.description.abstract | 台灣海峽在秋冬季節有穩定的東北季風,而夏季則受到西南氣流影響,加上狹窄的地形效應,台灣在開發離岸風能方面具有很大的潛力。然而,由於台灣緊鄰太平洋且位於中緯度地區,使得台灣容易受到颱風侵擾,颱風所造成的極端負載往往是風機結構損壞的主因。因此,如何在颱風侵襲下即時評估風機的極端負載顯得至關重要。
本研究使用中尺度天氣研究預報模式(Weather Research and Forecasting, WRF)進行歷年颱風的風場模擬,並結合風機尺度隨機全場紊流模擬器Turbsim,模擬出目標點之颱風下風機尺度紊流風場。將此紊流風場輸入至OpenFAST的入流風模組中,以模擬颱風造成風機的極端負載。為了達成颱風侵襲時即時評估風機的極端負載,將WRF模擬的颱風相關數據加上鄰近目標點之氣象測站數據,訓練兩種深度學習模型,分別為深度神經網路(deep neural networks, DNN)及長短期記憶(long short-term memory, LSTM),以計算目標點風速及風機極端負載。 將OpenFAST模擬之極端負載結合WRF模擬風場進行觀察與分析,以瞭解颱風侵襲的極端負載變化特性及類型。本研究依照極端負載變化特性將颱風分為三種,分別為偏向颱風、穿越颱風、低風速颱風。偏向颱風及穿越颱風的取名方式是根據颱風中心經過目標點的方式,偏向颱風為颱風中心無經過觀測塔,僅暴風圈碰觸到觀測塔,而穿越颱風為颱風中心經過觀測塔上方。此兩種颱風造成目標點風速達到切出風速(cut-out wind speed),導致風機停機負載突降,以及風速低於切出風速,風機重新運轉負載突增等的負載變化特性。低風速颱風造成目標點風速未達到切出風速,無負載變化特性呈現,而有此名稱。藉由此觀察之特性、趨勢以評估DNN及LSTM兩種模型計算極端負載的效果。 訓練完成的兩種模型用以計算目標點之風速,並與WRF模擬結果及實際量測資料進行比對、驗證,結果顯示三種模型計算結果與量測值的趨勢相符,WRF模擬結果表現較佳,而深度學習模型中LSTM表現優於DNN。將DNN及LSTM模型進行颱風侵襲下風機負載評估,與OpenFAST模擬結果比較負載特性及趨勢,結果顯示DNN及LSTM模型計算結果與OpenFAST模擬結果趨勢相近,但DNN 無法表現穿越颱風的負載特性,LSTM在特性表現大致上較DNN佳。另外,若將僅有負載特性的偏向颱風及穿越颱風作為數據集給DNN及LSTM模型訓練,也無法改善負載特性的計算效果,原始數據訓練的LSTM依然表現較佳。 總結,本研究建立一完整的模擬流程,得到能在颱風侵襲時即時評估風機極端負載的深度學習模型,且在風速計算結果中,與實際量測值比較後顯示模型具有一定的準確度及可行性,期許本研究之模擬流程及模型,能實際應用於颱風侵襲時即時評估風機極端負載。 | zh_TW |
| dc.description.abstract | The Taiwan Strait experiences stable northeast monsoon during the autumn and winter seasons, while in summer it is influenced by southwesterly flow. Coupled with the narrow terrain effect, Taiwan holds significant potential for developing offshore wind energy. However, due to Taiwan's proximity to the Pacific Ocean and its location in the mid-latitude region, it is frequently affected by typhoons. The extreme loads caused by typhoons are often the main reason for structural damage to wind turbines. Consequently, it is of paramount importance to conduct real-time assessments of the extreme loads on wind turbines during typhoon invasions.
In this study, the Weather Research and Forecasting (WRF) model was used to simulate the wind fields of historical typhoons. In addition, the full-field stochastic turbulence simulator Turbsim was used to simulate the turbulent wind field at the target point under typhoon conditions. This turbulent wind field was then fed into the OpenFAST inflow wind module to simulate the extreme loads on wind turbines caused by typhoons. In order to achieve a real-time assessment of the extreme loads on wind turbines during typhoon events, the typhoon-related data from the WRF simulations, together with meteorological station data near the target point, were used to train two deep learning models: deep neural networks (DNN) and long short-term memory (LSTM). These models were used to calculate the wind speeds at the target point and the extreme loads on the wind turbines. By integrating the extreme load simulations from OpenFAST with wind fields simulated by WRF, this study aims to observe and analyze the characteristics and types of extreme loads during typhoon events. Based on the characteristics of extreme load variations, typhoons are classified into three categories: deflected typhoons, crossing typhoons, and low wind speed typhoons. The names of deflected and crossing typhoons are based on the wind direction at the target point as the typhoon center passes. Each of these two types of typhoons has different load variation characteristics. In contrast, low wind speed typhoons do not cause the wind speed at the target point to reach the cut-off wind speed, resulting in no load variation characteristics. By observing these characteristics and trends, the effectiveness of using DNN and LSTM models to calculate extreme loads is evaluated. The trained models, DNN and LSTM, were used to calculate the wind speed at the target point and compared with WRF simulation results and actual measurement data for validation. The results showed that the trends of the calculated values from all three models matched the measured values, with the WRF simulation performing best and the LSTM outperforming the DNN. The DNN and LSTM models were then used to evaluate wind turbine loads under typhoon conditions, and their load characteristics and trends were compared with the OpenFAST simulation results. The results showed that while the load trends calculated by the DNN and LSTM models were similar to those from OpenFAST simulations, the DNN failed to capture the load characteristics of crossing typhoons, while the LSTM generally performed better in characterizing these characteristics. Furthermore, even when only the deflected and crossing typhoons, which have load characteristics, were used as the data set for training the DNN and LSTM models, the calculation of the load characteristics did not improve. The LSTM trained on the original dataset still showed the best performance. In conclusion, this study establishes a comprehensive simulation process and develops deep learning models capable of real-time assessment of wind turbine extreme loads during typhoon invasions. A comparison of the wind speed calculations with actual measurements indicates that the models have a certain degree of accuracy and feasibility. It is anticipated that the simulation process and models developed in this study will be practically applied for real-time assessment of wind turbine extreme loads during typhoon invasions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:02:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T17:02:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii ABSTRACT v 目次 vii 圖次 ix 表次 xi 1 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 3 1.3 論文架構 5 2 第二章 模擬方法與流程 8 2.1 WRF模式 8 2.1.1 WRF背景概述 8 2.1.2 WRF參數設定 9 2.2 Turbsim 9 2.2.1 Turbsim背景概述 9 2.2.2 Turbsim方程式概述 10 2.2.3 Turbsim參數設定 12 2.3 OpenFAST 13 2.3.1 OpenFAST背景概述 13 2.3.2 OpenFAST參數設定 14 2.4 深度學習 15 2.4.1 深度學習背景概述 15 2.4.2 深度學習模型方程式概述 16 2.4.3 深度學習模型參數設定 18 2.5 整體研究方法與流程 19 3 第三章 風機負載模擬結果與分析 36 3.1 颱風侵襲下風機負載結果 36 3.2 極端負載變化特性 36 4 第四章 深度學習模型建立及負載評估結果 43 4.1 數據集與模型構建 43 4.2 觀測塔處風速評估及驗證 44 4.3 風機負載評估 46 4.3.1 整體颱風訓練下之計算結果 46 4.3.2 負載變化特性之颱風訓練下計算結果 48 5 第五章 結論與建議 70 5.1 結果與討論 70 5.2 未來展望 71 參考文獻 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 離岸風機 | zh_TW |
| dc.subject | 極端負載 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | Extreme Load | en |
| dc.subject | Offshore Wind Turbine | en |
| dc.subject | Typhoon | en |
| dc.title | 應用深度學習即時評估極端風況下的風機負載 | zh_TW |
| dc.title | Deep Learning Modeling of Real-time Evaluation for Wind Turbine Loads under Extreme Wind Condition | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林宗岳;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Yueh Lin;Yi-Chuang Wu | en |
| dc.subject.keyword | 颱風,離岸風機,極端負載,深度學習, | zh_TW |
| dc.subject.keyword | Typhoon,Offshore Wind Turbine,Extreme Load,Deep Learning, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202402722 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-07-30 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
