Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明汝zh_TW
dc.contributor.advisorMing-Ju Chenen
dc.contributor.author王心妤zh_TW
dc.contributor.authorXin-Yu Wangen
dc.date.accessioned2024-08-14T16:59:20Z-
dc.date.available2024-08-20-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-04-
dc.identifier.citation季培元。2018。家畜解剖生理學。新北市:合記圖書出版社。
楊价民。1997。瘤胃生態系統與反芻動物對養分的利用。臺北市:藝軒圖書出版社。
楊錫坤。2018。動物解剖生理學。臺北市:藝軒圖書出版社。
劉世穩 (2023)。利用體外及小鼠試驗篩選促進乳牛健康之潛力益生菌組合 [碩士論文,國立臺灣大學]。doi: 10.6342/NTU202304094
顏宏達。2008。動物營養學。臺北市:華香園出版社。
Abd El-Tawab, M. M., I. M. Youssef, H. A. Bakr, G. C. Fthenakis, and N. D. Giadinis. 2016. Role of probiotics in nutrition and health of small ruminants. Pol. J. Vet. Sci. 19:893–906. doi: 10.1515/pjvs-2016-0114
Agazzi, A., E. Tirloni, S. Stella, S. Maroccolo, B. Ripamonti, C. Bersani, J. M. Caputo, V. Dell'Orto, N. Rota, and G. ni Savoini. 2014. Effects of species-specific probiotic addition to milk replacer on calf health and performance during the first month of life. Ann. Anim. Sci. 14:101. doi: 10.2478/aoas-2013-0089
Ahmadzadeh, A., F. Frago, B. Shafii, J. C. Dalton, W. J. Price, and M. A. McGuire. 2009. Effect of clinical mastitis and other diseases on reproductive performance of Holstein cows. Anim. Reprod. Sci. 112:273–282. doi: 10.1016/j.anireprosci.2008.04.024
Alberghina, D., C. Giannetto, I. Vazzana, V. Ferrantelli, and G. Piccione. 2011. Reference intervals for total protein concentration, serum protein fractions, and albumin/globulin ratios in clinically healthy dairy cows. J. Vet. Diagn. Invest. 23:111–114. doi: 10.1177/104063871102300119
Aleman, M. M., D. R. Stein, D. T. Allen, E. Perry, K. V. Lehloenya, T. G. Rehberger, K. J. Mertz, D. A. Jones, and L. J. Spicer. 2007. Effects of feeding two levels of propionibacteria to dairy cows on plasma hormones and metabolites. J. Dairy. Res. 74:146–153. doi: 10.1017/s0022029906002275
Allegretti, J. R., B. H. Mullish, C. Kelly, and M. Fischer. 2019. The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet 394:420–431. doi: 10.1016/s0140-6736(19)31266-8
Alshaikh, M., M. Alsiadi, S. Zahran, H. Mogawer, and T. Aalshowime. 2002. Effect of feeding yeast culture from different sources on the performance of lactating Holstein cows in Saudi Arabia. Asian Austral. J. Anim. 15:352–356. doi: 10.5713/ajas.2002.352
AlZahal, O., L. Dionissopoulos, A. H. Laarman, N. Walker, and B. W. McBride. 2014. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. J. Dairy Sci. 97:7751–7763. doi: 10.3168/jds.2014-8212
Ambriz-Vilchis, V., N. S. Jessop, R. H. Fawcett, M. Webster, D. J. Shaw, N. Walker, and A. I. Macrae. 2017. Effect of yeast supplementation on performance, rumination time, and rumen pH of dairy cows in commercial farm environments. J. Dairy Sci. 100:5449–5461. doi: 10.3168/jds.2016-12346
Amin, N., and J. Seifert. 2021. Dynamic progression of the calf's microbiome and its influence on host health. Comput. Struct. Biotechnol. J. 19:989–1001. doi: 10.1016/j.csbj.2021.01.035
Anderson, K. L., T. G. Nagaraja, J. L. Morrill, T. B. Avery, S. J. Galitzer, and J. E. Boyer. 1987. Ruminal microbial development in conventionally or early-weaned calves. J. Anim. Sci. 64:1215–1226. doi: 10.2527/jas1987.6441215x
Andries, J., F. Buysse, D. De Brabander, and B. Cottyn. 1987. Isoacids in ruminant nutrition: Their role in ruminal and intermediary metabolism and possible influences on performances. Anim. Feed Sci. Tech. 18:169–180. doi: doi.org/10.1016/0377-8401(87)90069-1
AOAC. 1984. Official methods of analysis 14th ed. Assoc. Off. Anal. Chem., Arlington, VA.
Arik, H. D., N. Gulsen, A. Hayirli, and M. S. Alatas. 2019. Efficacy of Megasphaera elsdenii inoculation in subacute ruminal acidosis in cattle. J. Anim. Physiol. Anim. Nutr. (Berl) 103:416–426. doi: 10.1111/jpn.13034
Arowolo, M. A., and J. He. 2018. Use of probiotics and botanical extracts to improve ruminant production in the tropics: a review. Anim. Nutr. 4:241–249. doi: 10.1016/j.aninu.2018.04.010
Artegoitia, V. M., A. P. Foote, R. M. Lewis, and H. C. Freetly. 2017. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers. Sci. Rep. 7:2864. doi: 10.1038/s41598-017-02856-0
Aschenbach, J. R., N. B. Kristensen, S. S. Donkin, H. M. Hammon, and G. B. Penner. 2010. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 62:869–877. doi: 10.1002/iub.400
Ayad, M., B. Benallou, M. Saim, M. Smadi, and T. Meziane. 2013. Impact of feeding yeast culture on milk yield, milk components, and blood components in Algerian dairy herds. J. Veterinar. Sci. Technolo. 4:135. doi: 10.4172/2157-7579.1000135
Ayyat, M. S., H. A. El-Nagar, W. M. Wafa, K. M. Abd El-Latif, S. Mahgoub, and A. A. Al-Sagheer. 2023. Comparable evaluation of nutritional benefits of Lactobacillus plantarum and Bacillus toyonensis probiotic supplementation on growth, feed utilization, health, and fecal microbiota in pre-weaning male calves. Animals (Basel) 13:3422. doi: 10.3390/ani13213422
Azad, M. A. K., M. Sarker, and D. Wan. 2018. Immunomodulatory effects of probiotics on cytokine profiles. Biomed. Res. Int. 2018:8063647. doi: 10.1155/2018/8063647
Bach, A., A. López-García, O. González-Recio, G. Elcoso, F. Fàbregas, F. Chaucheyras-Durand, and M. Castex. 2019. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J. Dairy Sci. 102:6180–6198. doi: 10.3168/jds.2018-16105
Baldwin, R., K. McLeod, J. Klotz, and R. Heitmann. 2004. Rumen development, intestinal growth and hepatic metabolism in the pre-and post-weaning ruminant. J. Dairy Sci. 87:55–56. doi: 10.3168/jds.S0022-0302(04)70061-2
Ban, Y., and L. L. Guan. 2021. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 12:109. doi: 10.1186/s40104-021-00630-x
Baumrucker, C. R., D. L. Hadsell, and J. W. Blum. 1994. Effects of dietary insulin-like growth factor I on growth and insulin-like growth factor receptors in neonatal calf intestine. J. Anim. Sci. 72:428–433. doi: 10.2527/1994.722428x
Bayat, A. R., P. Kairenius, T. Stefański, H. Leskinen, S. Comtet-Marre, E. Forano, F. Chaucheyras-Durand, and K. J. Shingfield. 2015. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets. J. Dairy Sci. 98:3166–3181. doi: 10.3168/jds.2014-7976
Bi, Y., C. Yang, Q. Diao, and Y. Tu. 2017. Effects of dietary supplementation with two alternatives to antibiotics on intestinal microbiota of preweaned calves challenged with Escherichia coli K99. Sci. Rep. 7:5439. doi: 10.1038/s41598-017-05376-z
Biavati, B., and P. Mattarelli. 2006. The family Bifidobacteriaceae. In: M. Dworkin, editor, The Prokaryotes: Vol. 3: Archaea. Bacteria: Firmicutes, Actinomycetes. Springer Press, New York, NY. p. 322–382.
Bitencourt, L. L., J. R. M. Silva, B. M. L. d. Oliveira, G. S. Dias Júnior, F. Lopes, S. Siécola Júnior, O. d. F. Zacaroni, and M. N. Pereira. 2011. Diet digestibility and performance of dairy cows supplemented with live yeast. Scientia. Agricola. 68:301–307. doi: 10.1590/S0103-90162011000300005
Bobbo, T., E. Fiore, M. Gianesella, M. Morgante, L. Gallo, P. L. Ruegg, G. Bittante, and A. Cecchinato. 2017. Variation in blood serum proteins and association with somatic cell count in dairy cattle from multi-breed herds. Animal 11:2309–2319. doi: 10.1017/s1751731117001227
Borda-Molina, D., M. Vital, V. Sommerfeld, M. Rodehutscord, and A. Camarinha-Silva. 2016. Insights into broilers' gut microbiota fed with phosphorus, calcium, and phytase supplemented diets. Front. Microbiol. 7:2033. doi: 10.3389/fmicb.2016.02033
Brag, S., and H. Hansen. 1994. Treatment of ruminal indigestion according to popular belief in Sweden. Rev. Sci. Tech. 13:529–535. doi: 10.20506/rst.13.2.782
Broadway, P. R., J. A. Carroll, N. C. Burdick Sanchez, T. R. Callaway, S. D. Lawhon, E. V. Gart, L. K. Bryan, D. J. Nisbet, H. D. Hughes, J. F. Legako, D. L. O'Connor, J. E. Hergenreder, and P. W. Rounds. 2020. Bacillus subtilis PB6 supplementation in weaned holstein steers during an experimental Salmonella challenge. Foodborne Pathog. Dis. 17:521–528. doi: 10.1089/fpd.2019.2757
Buffie, C. G., and E. G. Pamer. 2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13:790-801. doi: 10.1038/nri3535
Casper, D. P., K. M. Hultquist, and I. P. Acharya. 2021. Lactobacillus plantarum GB LP-1 as a direct-fed microbial for neonatal calves. J. Dairy Sci. 104:5557–5568. doi: 10.3168/jds.2020-19438
Castillo-Umaña, M. Á., A. Alpizar-Naranjo, J. Padilla-Fallas, and J. P. Keim-San Martin. 2017. Efecto de la edad a primer servicio, número y época de parto sobre el comportamiento de la curva de lactancia en vacas Jersey. [Spanish]. Nutr. Anim. Trop. 11:1–22. doi: 10.15517/nat.v11i2.31306
Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130–132. doi: 10.1093/clinchem/8.2.130
Chang, C. J., T. L. Lin, Y. L. Tsai, T. R. Wu, W. F. Lai, C. C. Lu, and H. C. Lai. 2019. Next generation probiotics in disease amelioration. J. Food. Drug. Anal. 27:615–622. doi: 10.1016/j.jfda.2018.12.011
Chaucheyras-Durand, F., and H. Durand. 2010. Probiotics in animal nutrition and health. Benef. Microbes. 1:3–9. doi: 10.3920/BM2008.1002
Cho, Y. I., and K. J. Yoon. 2014. An overview of calf diarrhea–infectious etiology, diagnosis, and intervention. J. Vet. Sci. 15:1–17. doi: 10.4142/jvs.2014.15.1.1
Chong, C. Y. L., T. Vatanen, M. Oliver, F. H. Bloomfield, and J. M. O’Sullivan. 2020. The microbial biogeography of the gastrointestinal tract of preterm and term lambs. Sci. Rep. 10:9113. doi: 10.1038/s41598-020-66056-z
Chuang, S. T., C. T. Chen, J. C. Hsieh, K. Y. Li, S. T. Ho, and M. J. Chen. 2022. Development of next-generation probiotics by investigating the interrelationships between gastrointestinal microbiota and diarrhea in preruminant Holstein calves. Animals (Basel) 12:695. doi: 10.3390/ani12060695
Chuang, S. T., K. Y. Li, P. W. Tu, S. T. Ho, C. C. Hsu, J. C. Hsieh, and M. J. Chen. 2021. Investigating the reciprocal interrelationships among the ruminal microbiota, metabolome, and mastitis in early lactating Holstein dairy cows. Animals (Basel) 11:3108. doi: 10.3390/ani11113108
Church, D. C. 1993. The ruminant animal: digestive physiology and nutrition. Waveland press, Long Grove, IL.
Craven, M., C. E. Egan, S. E. Dowd, S. P. McDonough, B. Dogan, E. Y. Denkers, D. Bowman, E. J. Scherl, and K. W. Simpson. 2012. Inflammation drives dysbiosis and bacterial invasion in murine models of ileal Crohn’s disease. PLoS One 7:e41594. doi: 10.1371/journal.pone.0041594
Cray, W. C. J., T. A. Casey, B. T. Bosworth, and M. A. Rasmussen. 1998. Effect of dietary stress on fecal shedding of Escherichia coli O157:H7 in calves. Appl. Environ. Microbiol. 64:1975–1979. doi: 10.1128/aem.64.5.1975-1979.1998
Cummins, K., and A. Papas. 1985. Effect of isocarbon-4 and isocarbon-5 volatile fatty acids on microbial protein synthesis and dry matter digestibility in vitro. J. Dairy Sci. 68:2588–2595. doi: 10.3168/jds.S0022-0302(85)81141-3
Davis, C. L., and J. K. Drackley. 1998. The development, nutrition, and management of the young calf. Wiley-Blackwell Press, Urbana, IL.
Den Besten, G., K. van Eunen, A. K. Groen, K. Venema, D. J. Reijngoud, and B. M. Bakker. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54:2325–2340. doi: 10.1194/jlr.R036012
DePeters, E. J., and L. W. George. 2014. Rumen transfaunation. Immunol. Lett. 162:69–76. doi: 10.1016/j.imlet.2014.05.009
Desnoyers, M., S. Giger-Reverdin, G. Bertin, C. Duvaux-Ponter, and D. Sauvant. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 92:1620–1632. doi: 10.3168/jds.2008-1414
DeVries, T. J., and E. Chevaux. 2014. Modification of the feeding behavior of dairy cows through live yeast supplementation. J. Dairy Sci. 97:6499–6510. doi: 10.3168/jds.2014-8226
Dias, A. L. G., J. A. Freitas, B. Micai, R. A. Azevedo, L. F. Greco, and J. E. P. Santos. 2018. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J. Dairy Sci. 101:201–221. doi: 10.3168/jds.2017-13241
Díaz Carrasco, J. M., C. Cabral, L. M. Redondo, N. D. Pin Viso, D. Colombatto, M. D. Farber, and M. E. Fernández Miyakawa. 2017. Impact of chestnut and quebracho tannins on rumen microbiota of bovines. Biomed. Res. Int. 2017:9610810. doi: 10.1155/2017/9610810
Dodd, D., R. I. Mackie, and I. K. Cann. 2011. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol. Microbiol. 79:292–304. doi: 10.1111/j.1365-2958.2010.07473.x
Eckersall, P. D. 2008. Proteins, proteomics, and the dysproteinemias. In: J. J. Kaneko, editor, Clinical biochemistry of domestic animals No. 6. Academic Press, Cambridge, MA. p. 117–155.
Ehrlich, J. L. 2013. Quantifying inter-group variability in lactation curve shape and magnitude with the MilkBot(®) lactation model. PeerJ. 1:54. doi: 10.7717/peerj.54
Elanco. 1997. Body Condition Scoring in Dairy Cattle. Elanco Animal Health Inc. Press, Greenfield, IN.
Elaref, M., H. Hamdon, U. Nayel, A. Salem, and U. Anele. 2020. Influence of dietary supplementation of yeast on milk composition and lactation curve behavior of Sohagi ewes, and the growth performance of their newborn lambs. Small Rumin. Res. 191:106176. doi: 10.1016/j.smallrumres.2020.106176
Falentin, H., L. Rault, A. Nicolas, D. S. Bouchard, J. Lassalas, P. Lamberton, J. M. Aubry, P. G. Marnet, Y. Le Loir, and S. Even. 2016. Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. Front. Microbiol. 7:480. doi: 10.3389/fmicb.2016.00480
Fanaro, S., R. Chierici, P. Guerrini, and V. Vigi. 2003. Intestinal microflora in early infancy: composition and development. Acta. Paediatr. Suppl. 91:48–55. doi: 10.1111/j.1651-2227.2003.tb00646.x
Ferguson, J. D., D. T. Galligan, and N. Thomsen. 1994. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 77:2695–2703. doi: 10.3168/jds.S0022-0302(94)77212-X
Ferreira, G. 2019. Short communication: Production performance and nutrient digestibility of lactating dairy cows fed diets with and without addition of a live-yeast supplement. J. Dairy Sci. 102:11057–11060. doi: 10.3168/jds.2019-17265
Fleck, A. 1989. Clinical and nutritional aspects of changes in acute-phase proteins during inflammation. Proc. Nutr. Soc. 48:347–354. doi: 10.1079/pns19890050
Fomenky, B. E., D. N. Do, G. Talbot, J. Chiquette, N. Bissonnette, Y. P. Chouinard, M. Lessard, and E. M. Ibeagha-Awemu. 2018. Direct-fed microbial supplementation influences the bacteria community composition of the gastrointestinal tract of pre- and post-weaned calves. Sci. Rep. 8:14147. doi: 10.1038/s41598-018-32375-5
Frizzo, L., L. Soto, M. Zbrun, E. Bertozzi, G. Sequeira, R. R. Armesto, and M. Rosmini. 2010. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Tech. 157:159–167. doi: 10.1016/j.anifeedsci.2010.03.005
Galvão, K. N., J. E. Santos, A. Coscioni, M. Villaseñor, W. M. Sischo, and A. C. Berge. 2005. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 45:427–440. doi: 10.1051/rnd:2005040
Gao, J., Y. C. Liu, Y. Wang, H. Li, X. M. Wang, Y. Wu, D. R. Zhang, S. Gao, and Z. L. Qi. 2020. Impact of yeast and lactic acid bacteria on mastitis and milk microbiota composition of dairy cows. AMB Express 10:22. doi: 10.1186/s13568-020-0953-8
Gasparich, G. E. 2010. Spiroplasmas and Phytoplasmas: microbes associated with plant hosts. Biologicals 38:193–203. doi: 10.1016/j.biologicals.2009.11.007
Goering, H. K., and P. J. Van Soest. 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). U.S. ARS. Press, Washington, DC.
Goff, J. P., and R. L. Horst. 1997. Physiological changes at parturition and their relationship to metabolic disorders. J. Dairy Sci. 80:1260–1268. doi: 10.3168/jds.S0022-0302(97)76055-7
Gomez, D. E., L. G. Arroyo, M. C. Costa, L. Viel, and J. S. Weese. 2017. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J. Vet. Intern. Med. 31:928–939. doi: 10.1111/jvim.14695
Harfoot, C. 1981. Anatomy, physiology and microbiology of the ruminant digestive tract. Prog. Lipid Res. 17:1–19. doi: 10.1016/0079-6832(78)90003-4
Hartemink, R., K. M. Van Laere, and F. M. Rombouts. 1997. Growth of enterobacteria on fructo-oligosaccharides. J. Appl. Microbiol. 83:367–374. doi: 10.1046/j.1365-2672.1997.00239.x
Henderson, G., F. Cox, S. Ganesh, A. Jonker, W. Young, and P. H. Janssen. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567. doi: 10.1038/srep14567
Herdt, T. H. 2000. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. North Am. Food. Anim. Pract. 16:215–230, v. doi: 10.1016/s0749-0720(15)30102-x
Hodgson, J. 1971. The development of solid food intake in calves. 4. The effect of the addition of material to the rumen, or its removal from the rumen, on voluntary food intake. Agr. Food Sci. 13:581–592. doi: 10.1017/S0003356100000040
Hooper, L. V., D. R. Littman, and A. J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science 336:1268–1273. doi: 10.1126/science.1223490
Horst, R. L., J. P. Goff, and T. A. Reinhardt. 1994. Calcium and vitamin D metabolism in the dairy cow. J. Dairy Sci. 77:1936–1951. doi: 10.3168/jds.S0022-0302(94)77140-X
Hossein-Zadeh, N. G. 2024. Milk urea nitrogen is genetically associated with production and reproduction performance of dairy cows: a meta-analysis. Livest. Sci. 283:105461. doi: 10.1016/j.livsci.2024.105461
Hsieh, J. C., S. T. Chuang, Y. T. Hsu, S. T. Ho, K. Y. Li, S. H. Chou, and M. J. Chen. 2023. In vitro ruminal fermentation and cow-to-mouse fecal transplantations verify the inter-relationship of microbiome and metabolome biomarkers: potential to promote health in dairy cows. Front. Vet. Sci. 10:1228086. doi: 10.3389/fvets.2023.1228086
Huang, M. Z., D. A. Cui, X. H. Wu, W. Hui, Z. T. Yan, X. Z. Ding, and S. Y. Wang. 2020. Serum metabolomics revealed the differential metabolic pathway in calves with severe clinical diarrhea symptoms. Animals (Basel) 10:769. doi: 10.3390/ani10050769
Huntington, G. B. 1990. Energy metabolism in the digestive tract and liver of cattle: influence of physiological state and nutrition. Reprod. Nutr. Dev. 30:35–47. doi: 10.1051/rnd:19900103
Ibtisham, F., A. Nawab, G. Li, M. Xiao, L. An, and G. Naseer. 2018. Effect of nutrition on reproductive efficiency of dairy animals. Med. Weter. 74:356–361. doi: 10.21521/mw.6025
Ingvartsen, K. L. 2006. Feeding-and management-related diseases in the transition cow: physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 126:175–213. doi: 10.1016/j.anifeedsci.2005.08.003
Islam, M., S. H. Kim, S. C. Ramos, L. L. Mamuad, A. R. Son, Z. Yu, S. S. Lee, Y. I. Cho, and S. S. Lee. 2021. Holstein and Jersey steers differ in rumen microbiota and enteric methane emissions even fed the same total mixed ration. Front. Microbiol. 12:601061. doi: 10.3389/fmicb.2021.601061
Jami, E., A. Israel, A. Kotser, and I. Mizrahi. 2013. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7:1069–1079. doi: 10.1038/ismej.2013.2
Jami, E., B. A. White, and I. Mizrahi. 2014. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 9:85423. doi: 10.1371/journal.pone.0085423
Jiang, Y., I. M. Ogunade, K. G. Arriola, M. Qi, D. Vyas, C. R. Staples, and A. T. Adesogan. 2017. Effects of the dose and viability of Saccharomyces cerevisiae. 2. Ruminal fermentation, performance of lactating dairy cows, and correlations between ruminal bacteria abundance and performance measures. J. Dairy Sci. 100:8102–8118. doi: 10.3168/jds.2016-12371
Jost, T., C. Lacroix, C. P. Braegger, and C. Chassard. 2012. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS One 7:e44595. doi: 10.1371/journal.pone.0044595
Julien, C., Desmaris L., Dubois P., Vagneur M., Marden J. P., and Alves de Oliveira L. 2017. High dosage of live yeast for transition dairy cows: nutrition and health benefits. J. Anim. Sci. 95:318–319. doi: 10.2527/asasann.2017.650
Kelly, W. J., S. C. Leahy, E. Altermann, C. J. Yeoman, J. C. Dunne, Z. Kong, D. M. Pacheco, D. Li, S. J. Noel, C. D. Moon, A. L. Cookson, and G. T. Attwood. 2010. The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316T highlights adaptation to a polysaccharide-rich environment. PLoS One 5:e11942. doi: 10.1371/journal.pone.0011942
Keren, N., F. M. Konikoff, Y. Paitan, G. Gabay, L. Reshef, T. Naftali, and U. Gophna. 2015. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ. Microbiol. Rep. 7:874–880. doi: 10.1111/1758-2229.12319
Kim, H. S., T. W. Whon, H. Sung, Y. S. Jeong, E. S. Jung, N. R. Shin, D. W. Hyun, P. S. Kim, J. Y. Lee, C. H. Lee, and J. W. Bae. 2021. Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance. Nat. Commun. 12:161. doi: 10.1038/s41467-020-20389-5
Kipp, S., D. Segelke, S. Schierenbeck, F. Reinhardt, R. Reents, C. Wurmser, H. Pausch, R. Fries, G. Thaller, J. Tetens, J. Pott, D. Haas, B. B. Raddatz, M. Hewicker-Trautwein, I. Proios, M. Schmicke, and W. Grünberg. 2016. Identification of a haplotype associated with cholesterol deficiency and increased juvenile mortality in Holstein cattle. J. Dairy Sci. 99:8915–8931. doi: 10.3168/jds.2016-11118
Kitching, M., H. Mathur, J. Flynn, N. Byrne, P. Dillon, R. Sayers, M. C. Rea, C. Hill, and R. P. Ross. 2019. A live bio-therapeutic for mastitis, containing Lactococcus lactis DPC3147 with comparable efficacy to antibiotic treatment. Front. Microbiol. 10:2220. doi: 10.3389/fmicb.2019.02220
Kleen, J., O. AlZahal, and M. Ghaffari. 2016. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed Sci. Tech. 213:29–43. doi: 10.1016/j.anifeedsci.2015.12.018
Klieve, A. V., D. Hennessy, D. Ouwerkerk, R. J. Forster, R. I. Mackie, and G. T. Attwood. 2003. Establishing populations of Megasphaera elsdenii YE 34 and Butyrivibrio fibrisolvens YE 44 in the rumen of cattle fed high grain diets. J. Appl. Microbiol. 95:621–630. doi: 10.1046/j.1365-2672.2003.02024.x
Klostermann, K., F. Crispie, J. Flynn, R. P. Ross, C. Hill, and W. Meaney. 2008. Intramammary infusion of a live culture of Lactococcus lactis for treatment of bovine mastitis: comparison with antibiotic treatment in field trials. J. Dairy Res. 75:365–373. doi: 10.1017/s0022029908003373
Kuhn, K. A., and T. S. Stappenbeck. 2013. Peripheral education of the immune system by the colonic microbiota. Semin. Immunol. 25:364–369. doi: 10.1016/j.smim.2013.10.002
Kumar, S., B. Kumar, R. Chouraddi, M. Bhatia, H. Rashmi, P. V. Behare, and N. Tyagi. 2022. In vitro screening for potential probiotic properties of Ligilactobacillus salivarius isolated from cattle calves. Curr. Res. Biotechnol. 4:275–289. doi: 10.1016/j.crbiot.2022.06.001
Kumprechtová, D., J. Illek, C. Julien, P. Homolka, F. Jančík, and E. Auclair. 2019. Effect of live yeast (Saccharomyces cerevisiae) supplementation on rumen fermentation and metabolic profile of dairy cows in early lactation. J. Anim. Physiol. Anim. Nutr. (Berl) 103:447–455. doi: 10.1111/jpn.13048
Lascano, G., and A. Heinrichs. 2009. Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livest. Sci. 124:48–57. doi: 10.1016/j.livsci.2008.12.007
Lee, J. Y., and I. H. Kim. 2006. Advancing parity is associated with high milk production at the cost of body condition and increased periparturient disorders in dairy herds. J. Vet. Sci. 7:161–166. doi: 10.4142/jvs.2006.7.2.161
Lehloenya, K. V., C. R. Krehbiel, K. J. Mertz, T. G. Rehberger, and L. J. Spicer. 2008. Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. J. Dairy Sci. 91:653–662. doi: 10.3168/jds.2007-0474
Lemon, K. P., G. C. Armitage, D. A. Relman, and M. A. Fischbach. 2012. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4:137. doi: 10.1126/scitranslmed.3004183
Ley, R. E., M. Hamady, C. Lozupone, P. J. Turnbaugh, R. R. Ramey, J. S. Bircher, M. L. Schlegel, T. A. Tucker, M. D. Schrenzel, and R. Knight. 2008. Evolution of mammals and their gut microbes. Science 320:1647–1651. doi: 10.1126/science.1155725
Li, R. W., E. E. Connor, C. Li, R. L. Baldwin Vi, and M. E. Sparks. 2012. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 14:129–139. doi: 10.1111/j.1462-2920.2011.02543.x
Li, S. S., A. Zhu, V. Benes, P. I. Costea, R. Hercog, F. Hildebrand, J. Huerta-Cepas, M. Nieuwdorp, J. Salojärvi, A. Y. Voigt, G. Zeller, S. Sunagawa, W. M. de Vos, and P. Bork. 2016. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352:586–589. doi: 10.1126/science.aad8852
Li, Y., X. Hu, S. Yang, J. Zhou, L. Qi, X. Sun, M. Fan, S. Xu, M. Cha, and M. Zhang. 2018. Comparison between the fecal bacterial microbiota of healthy and diarrheic captive musk deer. Front. Microbiol. 9:300. doi: 10.3389/fmicb.2018.00300
Lin, T.-L., C.-C. Shu, W.-F. Lai, C.-M. Tzeng, H.-C. Lai, and C.-C. Lu. 2019. Investiture of next generation probiotics on amelioration of diseases–Strains do matter. Med. Microecol. 1:100002. doi: 10.1016/j.medmic.2019.100002
Liu, Q., C. Wang, Y. X. Huang, K. H. Dong, W. Z. Yang, S. L. Zhang, and H. Wang. 2009. Effects of isovalerate on ruminal fermentation, urinary excretion of purine derivatives and digestibility in steers. J. Anim. Physiol. Anim. Nutr. (Berl) 93:716–725. doi: 10.1111/j.1439-0396.2008.00861.x
Liu, Q., C. Wang, C. Pei, H. Li, Y. Wang, S. Zhang, Y. Zhang, J. He, H. Wang, and W. Yang. 2014. Effects of isovalerate supplementation on microbial status and rumen enzyme profile in steers fed on corn stover based diet. Livest. Sci. 161:60–68. doi: 10.1016/j.livsci.2013.12.034
Lohakare, J., A. Pattanaik, and S. Khan. 2006. Effect of dietary protein levels on the performance, nutrient balances, metabolic profile and thyroid hormones of crossbred calves. Asian Austral. J. Anim. 19:1588–1596. doi: 10.5713/ajas.2006.1588
Longuski, R. A., Y. Ying, and M. S. Allen. 2009. Yeast culture supplementation prevented milk fat depression by a short-term dietary challenge with fermentable starch. J. Dairy Sci. 92:160–167. doi: 10.3168/jds.2008-0990
Lopreiato, V., M. Mezzetti, L. Cattaneo, G. Ferronato, A. Minuti, and E. Trevisi. 2020. Role of nutraceuticals during the transition period of dairy cows: a review. J. Anim. Sci. Biotechnol. 11:96. doi: 10.1186/s40104-020-00501-x
Ma, T., C. Villot, D. Renaud, A. Skidmore, E. Chevaux, M. Steele, and L. L. Guan. 2020. Linking perturbations to temporal changes in diversity, stability, and compositions of neonatal calf gut microbiota: prediction of diarrhea. ISME J. 14:2223–2235. doi: 10.1038/s41396-020-0678-3
Maamouri, O., H. Selmi, and N. M’hamdi. 2014. Effects of yeast (Saccharomyces cerevisiae) feed supplement on milk production and its composition in Tunisian Holstein Friesian cows. Sci. Agric. Bohem. 45:170–174. doi: 10.2478/sab-2014-0104
Makkar, H. P., O. P. Sharma, R. K. Dawra, and S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170–2173. doi: 10.3168/jds.S0022-0302(82)82477-6
Makras, L., and L. De Vuyst. 2006. The in vitro inhibition of Gram-negative pathogenic bacteria by Bifidobacteria is caused by the production of organic acids. Int. Dairy J. 16:1049–1057. doi: 10.1016/j.idairyj.2005.09.006
Mallard, B., J. Dekkers, M. J. Ireland, K. Leslie, S. Sharif, C. L. Vankampen, L. Wagter, and B. Wilkie. 1998. Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J. Dairy Sci. 81:585–595. doi: 10.3168/jds.S0022-0302(98)75612-7
Malmuthuge, N., P. J. Griebel, and L. Guan le. 2014. Taxonomic identification of commensal bacteria associated with the mucosa and digesta throughout the gastrointestinal tracts of preweaned calves. Appl. Environ. Microbiol. 80:2021–2028. doi: 10.1128/aem.03864-13
Malmuthuge, N., P. J. Griebel, and L. Guan le. 2015. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Front. Vet. Sci. 2:36. doi: 10.3389/fvets.2015.00036
Manichanh, C., J. Reeder, P. Gibert, E. Varela, M. Llopis, M. Antolin, R. Guigo, R. Knight, and F. Guarner. 2010. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res. 20:1411–1419. doi: 10.1101/gr.107987.110
Markowiak, P., and K. Śliżewska. 2018. The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog. 10:1–20. doi: 10.1186/s13099-018-0250-0
McEwen, S. A., W. D. Black, and A. H. Meek. 1991. Antibiotic residue prevention methods, farm management, and occurrence of antibiotic residues in milk. J. Dairy Sci. 74:2128–2137. doi: 10.3168/jds.S0022-0302(91)78385-9
McGuirk, S. M., and S. F. Peek. 2014. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system. Anim. Health Res. Rev. 15:145–147. doi: 10.1017/s1466252314000267
Meale, S. J., F. Chaucheyras-Durand, H. Berends, and M. A. Steele. 2017. From pre-to postweaning: Transformation of the young calf's gastrointestinal tract. J. Dairy Sci. 100:5984–5995. doi: 10.3168/jds.2016-12474
Meale, S. J., S. Li, P. Azevedo, H. Derakhshani, J. C. Plaizier, E. Khafipour, and M. A. Steele. 2016. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front Microbiol. 7:582. doi: 10.3389/fmicb.2016.00582
Menke, K. H., and H. Steingass. 1988. Estimation of the energy of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7–55.
Mentschel, J., R. Leiser, C. Mülling, C. Pfarrer, and R. Claus. 2001. Butyric acid stimulates rumen mucosa development in the calf mainly by a reduction of apoptosis. Arch. Tierernahr. 55:85–102. doi: 10.1080/17450390109386185
Mosoni, P., F. Chaucheyras-Durand, C. Béra-Maillet, and E. Forano. 2007. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. J. Appl. Microbiol. 103:2676–2685. doi: 10.1111/j.1365-2672.2007.03517.x
Nagahata, H., M. Kine, H. Watanabe, A. Tanaka, A. Takahashi, S. Gondaira, and H. Higuchi. 2021. Somatic cell and innate immune responses in mammary glands of lactating cows to intramammary infusion of Bifidobacterium breve at pre-drying off period. J. Vet. Med. Sci. 83:1845–1851. doi: 10.1292/jvms.21-0306
Nasiri, A., A. Towhidi, M. Shakeri, M. Zhandi, M. Dehghan-Banadaky, H. Pooyan, F. Sehati, F. Rostami, A. Karamzadeh, and M. Khani. 2019. Effects of Saccharomyces cerevisiae supplementation on milk production, insulin sensitivity and immune response in transition dairy cows during hot season. Anim. Feed Sci. Technol. 251:112–123. doi: 10.1016/j.anifeedsci.2019.03.007
Newbold, C., R. Wallace, X. Chen, and F. McIntosh. 1995. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J. Anim. Sci. 73:1811–1818. doi: 10.2527/1995.7361811x
Nocek, J. E., W. P. Kautz, J. A. Leedle, and E. Block. 2003. Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. J. Dairy Sci. 86:331–335. doi: 10.3168/jds.S0022-0302(03)73610-8
Novak, K. N., E. Davis, C. A. Wehnes, D. R. Shields, J. A. Coalson, A. H. Smith, and T. G. Rehberger. 2012. Effect of supplementation with an electrolyte containing a Bacillus-based direct-fed microbial on immune development in dairy calves. Res. Vet. Sci. 92:427–434. doi: 10.1016/j.rvsc.2011.04.008
NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed, Natl. Acad. Press, Washington, DC.
Oetzel, G. R., K. M. Emery, W. P. Kautz, and J. E. Nocek. 2007. Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: a field trial. J. Dairy Sci. 90:2058–2068. doi: 10.3168/jds.2006-484
Oikonomou, G., A. G. Teixeira, C. Foditsch, M. L. Bicalho, V. S. Machado, and R. C. Bicalho. 2013. Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PLoS One 8:e63157. doi: 10.1371/journal.pone.0063157
Ørskov, E. R. 1994. Recent advances in understanding of microbial transformation in ruminants. Livest. Prod. Sci. 39:53–60. doi: 10.1016/0301-6226(94)90153-8
Ottman, N., H. Smidt, W. M. De Vos, and C. Belzer. 2012. The function of our microbiota: who is out there and what do they do? Front. Cell. Infect. Microbiol. 2:31601. doi: 10.3389/fcimb.2012.00104
Palma-Hidalgo, J. M., E. Jiménez, M. Popova, D. P. Morgavi, A. I. Martín-García, D. R. Yáñez-Ruiz, and A. Belanche. 2021. Inoculation with rumen fluid in early life accelerates the rumen microbial development and favours the weaning process in goats. Anim. Microbiome 3:1–21. doi: 10.1186/s42523-021-00073-9
Perino, L. J., R. L. Sutherland, and N. E. Woollen. 1993. Serum gamma-glutamyltransferase activity and protein concentration at birth and after suckling in calves with adequate and inadequate passive transfer of immunoglobulin G. Am. J. Vet. Res. 54:56–59.
Petri, R. M., T. Schwaiger, G. B. Penner, K. A. Beauchemin, R. J. Forster, J. J. McKinnon, and T. A. McAllister. 2013. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS One 8:e83424. doi: 10.1371/journal.pone.0083424
Philippeau, C., A. Lettat, C. Martin, M. Silberberg, D. P. Morgavi, A. Ferlay, C. Berger, and P. Nozière. 2017. Effects of bacterial direct-fed microbials on ruminal characteristics, methane emission, and milk fatty acid composition in cows fed high- or low-starch diets. J. Dairy Sci. 100:2637–2650. doi: 10.3168/jds.2016-11663
Piva, G., S. Belladonna, G. Fusconi, and F. Sicbaldi. 1993. Effects of yeast on dairy cow performance, ruminal fermentation, blood components, and milk manufacturing properties. J. Dairy Sci. 76:2717–2722. doi: 10.3168/jds.S0022-0302(93)77608-0
Pupa, P., P. Apiwatsiri, W. Sirichokchatchawan, N. Pirarat, N. Muangsin, A. A. Shah, and N. Prapasarakul. 2021. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci. Rep. 11:13753. doi: 10.1038/s41598-021-93263-z
Putnam, D. E., C. G. Schwab, M. T. Socha, N. L. Whitehouse, N. A. Kierstead, and B. D. Garthwaite. 1997. Effect of yeast culture in the diets of early lactation dairy cows on ruminal fermentation and passage of nitrogen fractions and amino acids to the small intestine. J. Dairy Sci. 80:374–384. doi: 10.3168/jds.S0022-0302(97)75947-2
Quigley, J. D., A. Lago, C. Chapman, P. Erickson, and J. Polo. 2013. Evaluation of the Brix refractometer to estimate immunoglobulin G concentration in bovine colostrum. J. Dairy Sci. 96:1148–1155. doi: 10.3168/jds.2012-5823
Rager, K. D., L. W. George, J. K. House, and E. J. DePeters. 2004. Evaluation of rumen transfaunation after surgical correction of left-sided displacement of the abomasum in cows. J. Am. Vet. Med. Assoc. 225:915–920. doi: 10.2460/javma.2004.225.915
Ramírez, J., S. Medina, N. Garcê, and T. Cifuentes. 2007. Effects of the supplementation with yeast (Saccharomyces cerevisiae) on milk yield, and milk components of water buffalo cows from northeast of Colombia. Ital. J. Anim. Sci. 6:502–503. doi: 10.4081/ijas.2007.s2.502
Ramsing, E., J. Davidson, P. French, I. Yoon, M. Keller, and H. Peters-Fleckenstein. 2009. Effects of yeast culture on peripartum intake and milk production of primiparous and multiparous Holstein cows. Prof. Anim. Sci. 25:487–495. doi: 10.15232/S1080–7446(15)30739-7
Russell, J. B., and R. B. Hespell. 1981. Microbial rumen fermentation. J. Dairy Sci. 64:1153–1169. doi: 10.3168/jds.S0022-0302(81)82694-X
Ruth, M. R., and C. J. Field. 2013. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J. Anim. Sci. Biotechnol. 4:27. doi: 10.1186/2049-1891-4-27
Saha, S., S. Singha, S. Ahmed, H. Toledo-Alvarado, and M. M. Khan. 2018. Effects of yeast (Saccharomyces cerevisiae type boulardii CNCM I-1079) supplementation on growth performance and blood metabolites in Black Bengal goat kids. Vet. Arh. 88:661–672. doi: 10.24099/vet.arhiv.0018
Sander, E., R. Warner, H. Harrison, and J. Loosli. 1959. The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf. J. Dairy Sci. 42:1600–1605. doi: 10.3168/jds.S0022-0302(59)90772-6
Sevınc, M., A. Basoglu, F. Bırdane, and M. Boydak. 2001. Liver function in dairy cows with fatty liver. Rev. Med. Vet. 152:297–300.
Shabat, S. K., G. Sasson, A. Doron-Faigenboim, T. Durman, S. Yaacoby, M. E. Berg Miller, B. A. White, N. Shterzer, and I. Mizrahi. 2016. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10:2958–2972. doi: 10.1038/ismej.2016.62
Signorini, M. L., L. P. Soto, M. V. Zbrun, G. J. Sequeira, M. R. Rosmini, and L. S. Frizzo. 2012. Impact of probiotic administration on the health and fecal microbiota of young calves: a meta-analysis of randomized controlled trials of lactic acid bacteria. Res. Vet. Sci. 93:250–258. doi: 10.1016/j.rvsc.2011.05.001
Singh, K. M., P. R. Pandya, A. K. Tripathi, G. R. Patel, S. Parnerkar, R. K. Kothari, and C. G. Joshi. 2014. Study of rumen metagenome community using qPCR under different diets. Meta. Gene 2:191–199. doi: 10.1016/j.mgene.2014.01.001
Smillie, C. S., J. Sauk, D. Gevers, J. Friedman, J. Sung, I. Youngster, E. L. Hohmann, C. Staley, A. Khoruts, M. J. Sadowsky, J. R. Allegretti, M. B. Smith, R. J. Xavier, and E. J. Alm. 2018. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 23:229–240. doi: 10.1016/j.chom.2018.01.003
Soberon, F., E. Raffrenato, R. W. Everett, and M. E. Van Amburgh. 2012. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. J. Dairy Sci. 95:783–793. doi: 10.3168/jds.2011-4391
Soberon, F., and M. E. Van Amburgh. 2013. The effect of nutrient intake from milk or milk replacer of preweaned dairy calves on lactation milk yield as adults: a meta-analysis of current data. J. Anim. Sci. 91:706–712. doi: 10.2527/jas.2012-5834
Soo, R. M., B. J. Woodcroft, D. H. Parks, G. W. Tyson, and P. Hugenholtz. 2015. Back from the dead; the curious tale of the predatory cyanobacterium Vampirovibrio chlorellavorus. PeerJ. 3:e968. doi: 10.7717/peerj.968
Steele, M. A., G. B. Penner, F. Chaucheyras-Durand, and L. L. Guan. 2016. Development and physiology of the rumen and the lower gut: targets for improving gut health. J. Dairy Sci. 99:4955–4966. doi: 10.3168/jds.2015-10351
Stein, D. R., D. T. Allen, E. B. Perry, J. C. Bruner, K. W. Gates, T. G. Rehberger, K. Mertz, D. Jones, and L. J. Spicer. 2006. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci. 89:111–125. doi: 10.3168/jds.S0022-0302(06)72074-4
Steiner, S., N. Linhart, A. Neidl, W. Baumgartner, A. Tichy, and T. Wittek. 2020. Evaluation of the therapeutic efficacy of rumen transfaunation. J. Anim. Physiol. Anim. Nutr. (Berl) 104:56–63. doi: 10.1111/jpn.13232
Stevenson, D. M., and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75:165–174. doi: 10.1007/s00253-006-0802-y
Stobo, I. J., J. H. Roy, and H. J. Gaston. 1966. Rumen development in the calf. 1. The effect of diets containing different proportions of concentrates to hay on rumen development. Br. J. Nutr. 20:171–188. doi: 10.1079/bjn19660021
Suárez, B. J., C. G. Van Reenen, W. J. Gerrits, N. Stockhofe, A. M. van Vuuren, and J. Dijkstra. 2006. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: II. Rumen development. J. Dairy Sci. 89:4376–4386. doi: 10.3168/jds.S0022-0302(06)72484-5
Suhartati, F., and W. Suryapratama. 2002. The effects of branched chain volatile fatty acids on reduced sugar and branched chain amino acid concentration of substrates that fermented by Aspergillus oryzae. Anim. Prod. 4:2. doi: 10.20884/1.jap.2002.4.2.50
Tamate, H., A. McGilliard, N. Jacobson, and R. Getty. 1962. Effect of various dietaries on the anatomical development of the stomach in the calf. J. Dairy Sci. 45:408–420. doi: 10.3168/jds.S0022-0302(62)89406-5
Tegtmeier, D., C. Riese, O. Geissinger, R. Radek, and A. Brune. 2016. Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., two fermenting bacteria isolated from insect guts, and emended description of the family Erysipelotrichaceae. Syst. Appl. Microbiol. 39:319–329. doi: 10.1016/j.syapm.2016.05.003
Thrune, M., A. Bach, M. Ruiz-Moreno, M. Stern, and J. Linn. 2009. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: yeast supplementation on rumen fermentation. Livest. Sci. 124:261–265. doi: 10.1016/j.livsci.2009.02.007
Tremaroli, V., and F. Bäckhed. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. doi: 10.1038/nature11552
Tyler, J. W., S. M. Parish, T. E. Besser, D. C. Van Metre, G. M. Barrington, and J. R. Middleton. 1999. Detection of low serum immunoglobulin concentrations in clinically ill calves. J. Vet. Intern. Med. 13:40–43. doi: 10.1111/j.1939-1676.1999.tb02163.x
Urakawa, M., T. Zhuang, H. Sato, S. Takanashi, K. Yoshimura, Y. Endo, T. Katsura, T. Umino, K. Tanaka, H. Watanabe, H. Kobayashi, N. Takada, T. Kozutsumi, H. Kumagai, T. Asano, K. Sazawa, N. Ashida, G. Zhao, M. T. Rose, H. Kitazawa, H. Shirakawa, K. Watanabe, T. Nochi, T. Nakamura, and H. Aso. 2022. Prevention of mastitis in multiparous dairy cows with a previous history of mastitis by oral feeding with probiotic Bacillus subtilis. Anim. Sci. J. 93:e13764. doi: 10.1111/asj.13764
Uyeno, Y., K. Akiyama, T. Hasunuma, H. Yamamoto, H. Yokokawa, T. Yamaguchi, K. Kawashima, M. Itoh, S. Kushibiki, and M. Hirako. 2017. Effects of supplementing an active dry yeast product on rumen microbial community composition and on subsequent rumen fermentation of lactating cows in the mid‐to‐late lactation period. Anim. Sci. J. 88:119–124. doi: 10.1111/asj.12612
Uyeno, Y., S. Shigemori, and T. Shimosato. 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 30:126–132. doi: 10.1264/jsme2.ME14176
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2
Villot, C., T. Ma, D. L. Renaud, M. H. Ghaffari, D. J. Gibson, A. Skidmore, E. Chevaux, L. L. Guan, and M. A. Steele. 2019. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J. Dairy Sci. 102:7011–7025. doi: 10.3168/jds.2018-16149
Wallace, R., and F. McIntosh. 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249–261. doi: 10.1079/BJN19960029
Wang, C., Q. Liu, Y. Zhang, C. Pei, S. Zhang, Y. Wang, W. Yang, Y. Bai, Z. Shi, and X. Liu. 2015. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers. J. Anim. Physiol. Anim. Nutr. (Berl) 99:123–131. doi: 10.1111/jpn.12191
Wang, Y., M. Ouyang, X. Gao, S. Wang, C. Fu, J. Zeng, and X. He. 2020. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: three potential biomarkers of gut microbiota that affect progression and complications of obesity-induced type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 13:835–850. doi: 10.2147/dmso.S240728
Warner, R., W. Flatt, and J. Loosli. 1956. Ruminant nutrition, dietary factors influencing development of ruminant stomach. J. agric. food chem. 4:788–792. doi: 10.1021/jf60067a003
Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microb. Biot. 24:1313–1325. doi: 10.1007/s11274-007-9604-3
Weaver, D. M., J. W. Tyler, D. C. VanMetre, D. E. Hostetler, and G. M. Barrington. 2000. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 14:569–577. doi: 10.1111/j.1939-1676.2000.tb02278.x
Wegh, C. A. M., S. Y. Geerlings, J. Knol, G. Roeselers, and C. Belzer. 2019. Postbiotics and their potential applications in early life nutrition and beyond. Int. J. Mol. Sci. 20:4673. doi: 10.3390/ijms20194673
Willems, A., and M. D. Collins. 1996. Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 46:1083–1087. doi: 10.1099/00207713-46-4-1083
Willing, B. P., A. Vacharaksa, M. Croxen, T. Thanachayanont, and B. B. Finlay. 2011. Altering host resistance to infections through microbial transplantation. PLoS One 6:e26988. doi: 10.1371/journal.pone.0026988
Wiryawan, K. G., and J. D. Brooker. 1995. Probiotic control of lactate accumulation in acutely grain-fed sheep. Aust. J. Agric. Res. 46:1555–1568. doi: 10.1071/AR9951555
Wood, K. M., S. I. Palmer, M. A. Steele, J. A. Metcalf, and G. B. Penner. 2015. The influence of age and weaning on permeability of the gastrointestinal tract in Holstein bull calves. J. Dairy Sci. 98:7226–7237. doi: 10.3168/jds.2015-9393
Woollett, L. A. 2005. Maternal cholesterol in fetal development: transport of cholesterol from the maternal to the fetal circulation. Am. J. Clin. Nutr. 82:1155–1161. doi: 10.1093/ajcn/82.6.1155
Wu, Y., L. Wang, R. Luo, H. Chen, C. Nie, J. Niu, C. Chen, Y. Xu, X. Li, and W. Zhang. 2021. Effect of a multispecies probiotic mixture on the growth and incidence of diarrhea, immune function, and fecal microbiota of pre-weaning dairy calves. Front. Microbiol. 12:681014. doi: 10.3389/fmicb.2021.681014
Wylensek, D., T. C. A. Hitch, T. Riedel, A. Afrizal, N. Kumar, E. Wortmann, T. Liu, S. Devendran, T. R. Lesker, S. B. Hernández, V. Heine, E. M. Buhl, M. D. A. P, F. Cumbo, T. Fischöder, M. Wyschkon, T. Looft, V. R. Parreira, B. Abt, H. L. Doden, L. Ly, J. M. P. Alves, M. Reichlin, K. Flisikowski, L. N. Suarez, A. P. Neumann, G. Suen, T. de Wouters, S. Rohn, I. Lagkouvardos, E. Allen-Vercoe, C. Spröer, B. Bunk, A. J. Taverne-Thiele, M. Giesbers, J. M. Wells, K. Neuhaus, A. Schnieke, F. Cava, N. Segata, L. Elling, T. Strowig, J. M. Ridlon, T. A. M. Gulder, J. Overmann, and T. Clavel. 2020. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 11:6389. doi: 10.1038/s41467-020-19929-w
Xiao, Y., M. T. Angulo, S. Lao, S. T. Weiss, and Y. Y. Liu. 2020. An ecological framework to understand the efficacy of fecal microbiota transplantation. Nat. Commun. 11:3329. doi: 10.1038/s41467-020-17180-x
Xu, H., W. Huang, Q. Hou, L.-y. Kwok, Z. Sun, H. Ma, F. Zhao, Y.-K. Lee, and H. Zhang. 2017. The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Sci. Bull. 62:767–774. doi: 10.1016/j.scib.2017.04.019
Yáñez-Ruiz, D. R., L. Abecia, and C. J. Newbold. 2015. Manipulating rumen microbiome and fermentation through interventions during early life: a review. Front. Microbiol. 6:1133. doi: 10.3389/fmicb.2015.01133
Yang, J., Y. Li, Z. Wen, W. Liu, L. Meng, and H. Huang. 2021. Oscillospira–a candidate for the next-generation probiotics. Gut Microbes 13:1987783. doi: 10.1080/19490976.2021.1987783
Yang, L., Q. Yang, M. Yi, Z. H. Pang, and B. H. Xiong. 2013. Effects of seasonal change and parity on raw milk composition and related indices in Chinese Holstein cows in northern China. J. Dairy Sci. 96:6863–6869. doi: 10.3168/jds.2013-6846
Yap, G. C., P. Y. Hong, and B.W. Lee. 2015. The Natural Microflora of Humans. In: M. Schaechter, editor, Encyclopedia of microbiology. Academic Press, San Diego, CA. p. 634–638.
Yonekura, S., K. Kitade, G. Furukawa, K. Takahashi, N. Katsumata, K. Katoh, and Y. Obara. 2002. Effects of aging and weaning on mRNA expression of leptin and CCK receptors in the calf rumen and abomasum. Domest. Anim. Endocrinol. 22:25–35. doi: 10.1016/s0739-7240(01)00114-x
Yoshida, S., and Y. Wada. 2005. Transfer of maternal cholesterol to embryo and fetus in pregnant mice. J. Lipid. Res. 46:2168–2174. doi: 10.1194/jlr.M500096-JLR200
Yu, S., G. Zhang, Z. Liu, P. Wu, Z. Yu, and J. Wang. 2020. Repeated inoculation with fresh rumen fluid before or during weaning modulates the microbiota composition and co-occurrence of the rumen and colon of lambs. BMC Microbiol. 20:29. doi: 10.1186/s12866-020-1716-z
Yu, Y., W. Wang, and F. Zhang. 2023. The next generation fecal microbiota transplantation: to transplant bacteria or virome. Adv. Sci. (Weinh) 10:e2301097. doi: 10.1002/advs.202301097
Yuan, K., L. G. Mendonça, L. E. Hulbert, L. K. Mamedova, M. B. Muckey, Y. Shen, C. C. Elrod, and B. J. Bradford. 2015. Yeast product supplementation modulated humoral and mucosal immunity and uterine inflammatory signals in transition dairy cows. J. Dairy Sci. 98:3236–3246. doi: 10.3168/jds.2014-8469
Zaman, S., M. Gohar, H. Kanwal, A. Chaudhary, and M. Imran. 2022. Impact of probiotic Geotrichum candidum QAUGC01 on health, productivity, and gut Microbial diversity of dairy cattle. Curr. Microbiol. 79:376. doi: 10.1007/s00284-022-03074-2
Zeineldin, M., B. Aldridge, and J. Lowe. 2019. Antimicrobial effects on swine gastrointestinal microbiota and their accompanying antibiotic resistome. Front. Microbiol. 10:1035. doi: 10.3389/fmicb.2019.01035
Zhang, R., M. Zhou, Y. Tu, N. F. Zhang, K. D. Deng, T. Ma, and Q. Y. Diao. 2016. Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves. J. Anim. Physiol. Anim. Nutr. 100:33–38. doi: 10.1111/jpn.12338
Zhang, Y., S. H. Choi, K. M. Nogoy, and S. Liang. 2021. The development of the gastrointestinal tract microbiota and intervention in neonatal ruminants. Animal 15:100316. doi: 10.1016/j.animal.2021.100316
Zhang, Y., Q. Liu, C. Wang, C. Pei, H. Li, Y. Wang, W. Yang, Y. Bai, Z. Shi, and X. Liu. 2015. Effects of supplementation of Simmental steers with 2-methylbutyrate on rumen microflora, enzyme activities and methane production. Anim. Feed Sci. Technol. 199:84–92. doi: 10.1016/j.anifeedsci.2014.11.003
Zhong, R., H. Sun, G. Li, H. Liu, and D. Zhou. 2014. Effects of inoculation with rumen fluid on nutrient digestibility, growth performance and rumen fermentation of early weaned lambs. Livest. Sci. 162:154–158. doi: 10.1016/j.livsci.2013.12.021
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94155-
dc.description.abstract在畜牧業中,益生菌的使用已有多年的歷史,隨著精準醫療的快速發展,次世代益生菌的應用潛力日益受到重視,開發適用於乳牛的高效益生菌產品已成為一項重要的研究議題,然而,目前對乳牛新一代益生菌的研究仍然相當有限且菌株多半非源自乳牛,而且多數研究僅進行了短期的評估,有鑑於此,本研究旨在探討一種由三種菌株組成的新型益生菌配方,包括B. longum APL30、L. salivarius K108 和 S. cerevisiae T15,對於荷蘭乳牛和仔牛的健康狀況和生產性能的影響,這項牛隻試驗在台北和台南兩個不同的牧場進行。
在台北牧場的試驗中,我們餵飼18頭泌乳牛益生菌180天,並在試驗第0天 (T0)、試驗第60天 (T1) 和試驗第180天 (T2),收集了血液、糞便和瘤胃液等樣品進行分析。在台南牧場試驗中,50頭懷孕乳牛被隨機分為對照組 (C組) 和益生菌組 (P組),試驗總共進行240天直到母牛分娩後2個月,以評估益生菌長期補充對牛隻健康的影響,整個試驗過程會收集每個月疾病用藥紀錄與乳量與乳品質報告,並在試驗第0天 (S0)、試驗第60天 (S1)、乾乳期 (S2)、分娩期 (S3) 和產後2個月 (S4) 收集血液、糞便和瘤胃液等樣品進行分析,同時,牠們所產下的仔牛也進一步納入仔牛試驗直到2個月齡。仔牛共83頭分為3個組別,包括了母牛與仔牛皆未使用益生菌的C組,母牛未使用仔牛使用益生菌的N組,與母牛和仔牛皆使用益生菌的P組,並會在仔牛出生0天、30天和60天測量體重,並收集血液和糞便。
結果在台南牧場的試驗中,P組牛隻的疾病和乳房炎發生率顯著低於對照組,尤其是初產牛表現更為突出; 牛乳中體細胞數 (somatic cell count, SCC) 方面,台北牧場大多數牛隻維持在理想範圍,且經產牛與前一胎次SCC相比也具有較低數量,台南牧場益生菌組牛隻SCC值亦顯著低於對照組,在泌乳初期 (泌乳天數 0-150天),補充益生菌後牛隻體態評分 (body condition score) 也有所提升,另外,在分娩後餵飼益生菌可提升牛隻乳量,乳蛋白率和酪蛋白率的含量。透過瘤胃發酵代謝和菌相方面進行了探討本益生菌可能的作用途徑,在瘤胃總揮發性脂肪酸 (volatile fatty acids, VFA) 含量方面,台北牧場T1階段顯著升高,而台南牧場S4階段則顯著降低,各類VFA的比例變化也不太一致,但兩牧場觀察到異丁酸以及微生物體蛋白 (microbial crude protein, MCP) 含量升高,其增加可能是因益生菌能夠促進瘤胃內胺基酸的有效代謝和利用。在菌相方面,補充益生菌顯著提升了瘤胃內微生物的多樣性。我們觀察到益生菌能夠增加健康泌乳牛生物指標菌種Ruminococcus與Bifidobacterium的相對豐度, 此外,我們還發現補充益生菌能夠增加與MCP合成呈正相關的Breznakia pachnodae和Sodaliphilus pleomorphus的含量,功能預測分析顯示補充益生菌的牛隻瘤胃菌相在胺基酸和碳水化合物代謝路徑方面有顯著增加,這表明益生菌能夠藉由影響瘤胃微生物群與其代謝活動,促進牛隻對營養物質的消化和吸收,從而提高健康與生產性能。
在仔牛方面,在補充益生菌後仔牛的腹瀉發生率也明顯降低,菌相的部分發現到與糞便評分呈負相關的Pseudoramibacter、Pseudoramibacter porci 與Solibacillus isronensis B3W22增加,並在基因功能性的預測觀察到胺基酸代謝路徑與訊息傳遞路徑的增加,說明益生菌可能藉由調節腸道菌相,改善消化吸收和免疫功能,從而提高仔牛的疾病抵抗力。
綜上所述,本研究證實了新穎益生菌組合在不同牧場環境下對荷蘭母牛和仔牛的健康狀況及生產性能均存在正面影響,並具有減少抗生素使用、增加經濟效益和提升乳牛福祉在畜牧業中的實際應用潛力。
zh_TW
dc.description.abstractProbiotics have been used in ruminant production for many years. With the rapid development of precision medicine, the application potential of next-generation probiotics is increasingly gaining attention. The development of highly effective probiotic products for dairy cows has become an important research topic. However, research on next-generation probiotics for dairy cows is still quite limited. It is worth noting that many previous dairy cow probiotic trials used strains not derived from dairy cows, and most studies only conducted short-term evaluations. In view of this, the present study aims to investigate the effects of a new probiotic formula composed of three strains, including Bifidobacterium longum subsp. longum APL30, Ligilactobacillus salivarius K108, and Saccharomyces cerevisiae T15 on the health status and production performance of Holstein cows and calves. This cattle trial was conducted on two different farms in Taipei and Tainan.
In the trial at the Taipei farm, we fed 18 lactating cows probiotics for 180 days and collected samples such as blood, feces, and rumen fluid for analysis on day 0 (T0), day 60 (T1), and day 180 (T2) of the trial. In the trial at the Tainan farm, 50 pregnant dairy cows were randomly divided into a control group (C group) and a probiotic group (P group). The trial lasted a total of 240 days until the cows calved and continued for 2 months post-calving to assess the long-term effects of probiotic supplementation on cow health. Throughout the trial, records of disease medication, milk production, and milk quality reports were collected monthly. Blood, feces, and rumen fluid samples were collected for analysis on day 0 (S0), day 60 (S1), dry period (S2), calving period (S3), and 2 months post-calving (S4). Additionally, the calves produced were further included in a calf trial until they reached 2 months of age. A total of 83 calves were divided into 3 groups: the control group (C group) where neither the cows nor calves received probiotics, the N group where the cows did not receive probiotics but the calves did, and the P group where both the cows and calves received probiotics. We measured the calves' weights at birth, 30 days, and 60 days, and collected blood and feces samples.
For cows, the trial conducted at the Tainan farm showed that the incidence of diseases and mastitis in the P group was significantly lower than in the control group, especially in primiparous cows. Regarding somatic cell counts (SCC), most cows at the Taipei farm maintained an ideal range. At the Tainan farm, the SCC values of cows in the probiotic group were significantly lower than those in the control group. In the early lactation period (days in milk 0-150), the body condition score of cows improved after supplementing with probiotics. Additionally, milk yield and lactation persistency increased post-partum, with significant increases in milk protein and casein content.
Regarding the possible mechanisms, we explored rumen fermentation and microbiota. In terms of total volatile fatty acids (VFA) content, there was a significant increase in the T1 stage at the Taipei farm, while a significant decrease was observed in the S4 stage at the Tainan farm. The changes in the proportions of various VFAs were not consistent, but both farms observed a increase in isobutyric acid and microbial crude protein (MCP) content following probiotic supplementation. This increase may indicate that probiotics promote effective metabolism and utilization of amino acids in the rumen. In terms of microbiota, probiotic supplementation significantly increased microbial diversity in the rumen. We observed that probiotics increased the relative abundance of Ruminococcus and Bifidobacterium, which are biomarkers for healthy lactating cows. Additionally, we found that probiotic supplementation increased the content of Breznakia pachnodae and Sodaliphilus pleomorphus, which are positively correlated with MCP synthesis. Functional prediction analysis showed a significant increase in amino acid and carbohydrate metabolism pathways in the rumen microbiota of cows supplemented with probiotics, suggesting that probiotics can improve digestion and absorption of nutrients by influencing the rumen microbiota and its metabolic activities, thereby enhancing health and production performance.
For calves, the incidence of diarrhea significantly decreased after probiotic supplementation. In terms of microbiota, we found an increase in Pseudoramibacter, Pseudoramibacter porci, and Solibacillus isronensis B3W22, which are negatively correlated with fecal scores. Gene function prediction observed an increase in amino acid metabolism and signal transduction pathways, indicating that probiotics may improve digestion, absorption, and immune function by modulating the gut microbiota, thereby enhancing disease resistance in calves.
In summary, this study confirms that the novel probiotic combination has a positive impact on the health status and production performance of dairy cows and calves in different farm environments, and it has practical application potential in the livestock industry for reducing antibiotic use, increasing economic benefits and enhancing the welfare of dairy cows.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:59:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:59:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract iii
目次 vi
表次 iv
壹、文獻探討 1
一、荷蘭牛(Holstein-Friesian)胃腸道系統 1
(一) 幼年荷蘭牛的胃腸道 1
(二) 成年荷蘭牛的胃腸道 5
(三) 牛隻胃腸道菌相與健康的關聯性 8
二、改善胃腸道菌相的方法 10
(一) 瘤胃微生物移植 (rumen microbiota transplant, RMT) 10
(二) 糞便微生物移植 (fecal microbiota transplant, FMT) 11
(三) 益生元、益生菌和合生元 13
三、益生菌在荷蘭牛的應用 15
(一) 益生菌在仔牛時期的應用 15
(二) 益生菌在轉換期和泌乳期的應用 19
(三) 傳統益生菌與次世代益生菌 (next generation probiotics, NGP) 23
貳、研究動機與目的 25
參、材料與方法 26
一、實驗設計與試驗流程 26
二、益生菌製備 27
(一) 試驗材料 27
(二) 研究方法 27
1. 益生菌保存性試驗之微生物儲存安定性檢測 27
三、益生菌應用於荷蘭乳牛之促進健康與生產功效探討 29
(一) 試驗動物 29
(二) 試驗材料 29
(三) 研究方法 31
1. 益生菌劑量計算 36
2. 飼糧近似分析 36
3. 牛隻體態和體重測定 39
4. 血液代謝物測定 42
5. 乳成分分析 43
6. 瘤胃液代謝物分析 45
7. 仔牛糞便評分 46
8. 微生物體學分析 48
9. 統計分析 51
肆、結果 53
一、益生菌儲存安定性檢測 53
二、益生菌應用於荷蘭乳牛之促進健康與生產功效探討 56
(一) 牛隻飼糧近似分析 56
(二) 台北牧場母牛結果探討 58
1. 添加益生菌對牛隻健康狀況的影響 58
2. 添加益生菌對牛隻瘤胃發酵代謝的影響 63
3. 添加益生菌對牛乳生產的影響 66
(三) 台南牧場母牛結果探討 70
1. 添加益生菌對牛隻健康狀況的影響 70
2. 添加益生菌對牛隻瘤胃發酵代謝的影響 80
3. 添加益生菌對牛乳生產的影響 87
4. 添加益生菌對瘤胃微生物組成的影響 93
(四) 台南牧場仔牛結果探討 108
1. 添加益生菌對仔牛健康狀況的影響 108
2. 添加益生菌對仔牛體重與體增重的影響 111
3. 添加益生菌對糞便微生物組成的影響 113
伍、討論 124
一、益生菌粉在牧場應用的保存挑戰 124
二、荷蘭母牛益生菌添加的跨區域比較研究 124
三、新穎益生菌組合在不同牧場對荷蘭母牛的影響 125
(一) 健康狀態 125
(二) 瘤胃發酵與代謝 128
(三) 牛乳產量與品質 131
四、新穎益生菌組合對母牛瘤胃菌相的影響 132
五、新穎益生菌組合對仔牛的影響 136
(一) 健康與生長 136
(二) 胃腸道菌相 137
陸、結論 142
柒、參考資料 143
捌、附錄 173
-
dc.language.isozh_TW-
dc.subject益生菌zh_TW
dc.subject微生物相zh_TW
dc.subject健康zh_TW
dc.subject生產表現zh_TW
dc.subject乳牛zh_TW
dc.subjectDairy cattleen
dc.subjectHealthen
dc.subjectProbioticsen
dc.subjectMicrobiotaen
dc.subjectProduction performanceen
dc.title餵飼新穎益生菌組合對荷蘭乳牛和仔牛生產表現和健康的影響zh_TW
dc.titleEffects of supplementing novel probiotic combinations on Holstein cows and calves: production and healthen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊士德;廖啓成;楊三連;謝睿純zh_TW
dc.contributor.oralexamcommitteeShih-Te Chuang;Chi-Cheng Liau;San-Land Young;Jui-Chun Hsiehen
dc.subject.keyword益生菌,乳牛,生產表現,健康,微生物相,zh_TW
dc.subject.keywordProbiotics,Dairy cattle,Production performance,Health,Microbiota,en
dc.relation.page179-
dc.identifier.doi10.6342/NTU202402517-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
dc.date.embargo-lift2029-08-01-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-01
9.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved