請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94154完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳達仁 | zh_TW |
| dc.contributor.advisor | Dar-Zen Chen | en |
| dc.contributor.author | 林祐萱 | zh_TW |
| dc.contributor.author | Yu-Hsuan Lin | en |
| dc.date.accessioned | 2024-08-14T16:59:02Z | - |
| dc.date.available | 2024-08-20 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | Woo, J., Seo, J.-T. and Yi, B.-J., 2019, “A Static Balancing Method for Variable Payloads by Combination of a Counterweight and Spring and Its Application as a Surgical Platform,” Applied Sciences, 9(19), pp. 3955. DOI 10.3390/app9193955.
Lessard, S., Bigras, P., Bonev, I.A, 2007, “A new medical parallel robot and its static balancing optimization,” ASME J Med. Devices, 1, pp. 272–278. DOI 10.1115/1.2815329. Kuo, C.-H., and Lai, S.-J., 2016, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders With Decoupled Positioning and Orientating Manipulation,” ASME J Mech. Rob., 8(1), p. 015001. DOI 10.1115/1.4029789. Plooij, M., Wisse, M., and Vallery, H., 2016, “Reducing the Energy Consumption of Robots Using the Bidirectional Clutched Parallel Elastic Actuator,” IEEE Trans. Rob., 32(6), pp. 1512–1523. DOI 10.1109/TRO.2016.2604496. Arakelian, V., 2016, “Gravity Compensation in Robotics,” Adv. Rob., 30(2), pp. 79–96. DOI 10.1080/01691864.2015.1090334. Boisclair, J., Richard, P.-L., Laliberté, T., and Gosselin, C., 2017, “Gravity Compensation of Robotic Manipulators Using Cylindrical Halbach Arrays,” IEEE/ASME Trans. Mechatronics, 22(1), pp. 457–464. DOI 10.1109/TMECH.2016.2614386. Kolarski M., Vukobratovi M., and Borovac B., 1994, “Dynamic analysis of balanced robot mechanisms,” Mechanism Mach. Theory, 29(3), pp. 427-454. DOI 10.1016/0094-114X(94)90128-7. Lacasse M.-A., Lachance G., Boisclair J., Ouellet J., and Gosselin C., 2013, “On the design of a statically balanced serial robot using remote counterweights,” Proc. 2013 IEEE Int. Conf. Robot. Autom., May 2013, pp. 4189-4194. Zhou, L., Chen, W., Chen, W., Bai, S., Zhang, J. and Wang, J., 2020, “Design of a passive lower limb exoskeleton for walking assistance with gravity compensation,” Mechanism and Machine Theory, 150, pp. 103840. DOI 10.1016/j.mechmachtheory.2020.103840. Agrawal, S. K. and Fattah, A., 2004, “Theory and design of an orthotic device for full or partial gravity-balancing of a human leg during motion,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2), pp. 157-165. DOI 10.1109/TNSRE.2004.827221. Fattah, A., Agrawal, S.K., Catlin, G., Hamnett, J., 2006, “Design of a passive gravity-balanced assistive device for sit-to-stand tasks,” ASME. J Mech. Des., 128(5), pp. 1122-1129. DOI 10.1115/1.2216732. Banala, S.K., Agrawal, S.K., Fattah, A., Krishnamoorthy, V., Hsu, W.L., Scholz, J., Rudolph, K., 2006, “Gravity-balancing leg orthosis and its performance evaluation,” IEEE Transactions on Robotics, 22(6), pp. 1228-1239. DOI 10.1109/TRO.2006.882928. Alamdari, A., Haghighi, R., Krovi, V., 2019, “Gravity-balancing of elastic articulated-cable leg-orthosis emulator,” Mechanism and Machine Theory, 131, pp. 351-370. DOI 10.1016/j.mechmachtheory.2018.09.019. Agrawal, S. K., Banala, S. K., Fattah, A., Sangwan, V., Krishnamoorthy, V., Scholz, J. P., and Hsu, W. L., 2007, “Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), pp.410-420. DOI 10.1109/TNSRE.2007.903930. Fattah, A., and Agrawal, S. K., 2007, “Gravity balancing of a human leg using an external orthosis,” Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, Apr. 2007, pp. 3755-3760. DOI 10.1109/ROBOT.2007.364054. Shieh, W. B., Chen, D. Z., and Wu, C. C., 2012, “Design of an Orthosis for the Weight Balance of Human Lower Limbs,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, USA. Aug. 2012, vol. 4, pp. 117-124. Yan, Z., Han, B., Du, Z., Huang, T., Bai, O., and Peng, A., 2021, “Development and testing of a wearable passive lower-limb support exoskeleton to support industrial workers,” Biocybernetics and Biomedical Engineering, 41(1), pp.221-238. DOI 10.1016/j.bbe.2020.12.010. Tseng, T.-Y., Lin, Y.-J., Hsu, W.-C., Lin, L.-F., and Kuo, C.-H., 2017, “A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise,” ASME J Mech. Rob., 9(4), pp. 041002. DOI 10.1115/1.4036218. Arakelian V., Ghazaryan S., 2008, “Improvement of balancing accuracy of robotic systems: application to leg orthosis for rehabilitation devices,” Mech. Mach. Theory, 43(5), pp. 565-575. DOI 10.1016/j.mechmachtheory.2007.05.002. Russo, A., Sinatra, R. and Xi, F., 2005, “Static balancing of parallel robots,” Mechanism and Machine Theory, 40(2), pp. 191-202. DOI 10.1016/j.mechmachtheory.2004.06.011. Kamenskii, V.A., 1968, “On the problem of the number of counterweights in the balancing of plane linkages,” Journal of Mechanisms, 3(4), pp. 323-333. DOI 10.1016/0022-2569(68)90007-4. Arakelian, V.H., Smith, M.R., 1999, “Complete shaking force and shaking moment balancing of linkages,” Mechanisms and Machine Theory, 34(8), pp. 1141-1153 DOI 10.1016/S0094-114X(98)00067-6. Wang, J., Gosselin, C.M., 2000, “Static balancing of spatial four-degree-of-freedom parallel mechanisms,” Mechanisms and Machine Theory, 35(4), pp. 563-592 DOI 10.1016/S0094-114X(99)00029-4. Carricato, M., and Gosselin, C., 2009, “A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation,” ASME J Mech. Rob., 1(3), pp. 031005. DOI 10.1115/1.3147192. Van der Wijk, V., 2017, “Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance With a New Method for Mass Equivalent Modeling,” Mech. Mach. Theory, 107, pp. 283–304. DOI 10.1016/j.mechmachtheory.2016.09.010. Jhuang, C.-S., Kao, Y.-Y. and Chen, D.-Z., 2018, “Design of one DOF closed-loop statically balanced planar linkage with link-collinear spring arrangement,” Mechanism and Machine Theory,130, pp. 301-312. DOI 10.1016/j.mechmachtheory.2018.07.021. Lin, P.-Y., Shieh, W.-B. and Chen, D.-Z., 2009, “Design of Perfectly Statically Balanced One-DOF Planar Linkages With Revolute Joints Only,” ASME. J Mech. Des., 131(5), pp. 051004. DOI 10.1115/1.3087548. Lin, P.-Y., Shieh, W.-B. and Chen, D.-Z., 2012, “Design of Statically Balanced Planar Articulated Manipulators With Spring Suspension,” IEEE Transactions on Robotics, 28, pp. 12-21. DOI 10.1109/TRO.2011.2169633. Lee, Y.-Y. and Chen, D.-Z., 2014, “Determination of spring installation configuration on statically balanced planar articulated manipulators,” Mechanism and Machine Theory, 74, pp. 319-336. DOI 10.1016/j.mechmachtheory.2013.12.019. Lin, P.-Y., Shieh, W.-B. and Chen, D.-Z., 2010, “Design of a Gravity-Balanced General Spatial Serial-Type Manipulator,” ASME. J Mech. Rob., 2(3), pp. 031003. DOI 10.1115/1.4001816. Arsenault, M., and Gosselin, C. M., 2007, “Static Balancing of Tensegrity Mechanisms,” ASME. J Mech. Des., 129(3), pp. 295–300. DOI 10.1115/1.2406100. Agrawal, S. K., and Fattah, A., 2004, “Gravity-Balancing of Spatial Robotic Manipulator,” Mechanism and Machine Theory, 39(12) pp. 1331–1344. DOI 10.1016/j.mechmachtheory.2004.05.019. Simionescu I., and Ciupitu L., 2000, “The static balancing of the industrial robot arms: Part I: Discrete balancing,” Mechanism Mach. Theory, 35(9), pp. 1287-1298. DOI 10.1016/S0094-114X(99)00067-1. Deepak S.R., and Ananthasuresh G.K., 2012, “Perfect static balance of linkages by addition of springs but not auxiliary bodies,” ASME J Mech. Rob., 4(2), pp. 021014. DOI 10.1115/1.4006521. Barents R., Schenk M., van Dorsser W.D., Wisse B.M., and Herder J.L., 2011, “Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators,” ASME J Mech. Des., 133(6), pp. 061010. DOI 10.1115/1.4004101. Koser, K., 2009, “A cam mechanism for gravity-balancing,” Mechanics Research Communications, 36(4), pp. 523-530. DOI 10.1016/j.mechrescom.2008.12.005. Kuo, C.-H. and Wu, Y.-X., 2023, “Perfect static balancing using Cardan-gear spring mechanisms,” Mechanism and Machine Theory, 181, pp. 105229. DOI 10.1016/j.mechmachtheory.2023.105229. Nguyen, V. L., Lin, C.-Y. and Kuo, C.-H., 2020, “Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules,” ASME. J Mech. Rob., 12(3), pp. 031014. DOI 10.1115/1.4045650. Lee, W.-B., Kim, D.-W., Song, J.-B., 2022, “Novel 3-DOF counterbalance mechanism based on spring balancer for mobile robot arms,” Mechatronics, 82, pp. 102734. DOI 10.1016/j.mechatronics.2021.102734. Shieh, W.-B. and Chou, B.-Sh., 2015, “A Novel Spring Balancing Device on the Basis of a Scotch Yoke Mechanism,” Proceedings of the 14th IFToMM World Congress pp. 206-212. Taipei, Taiwan, October 25-30, 2015. DOI 10.6567/IFToMM.14TH.WC.OS8.004. Nguyen, V. L., 2023, “Realization of a Gear-Spring Balancer With Variable Payloads and Its Application to Serial Robots,” ASME. J Mech. Rob., 15(4), pp. 041013. DOI 10.1115/1.4055739. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94154 | - |
| dc.description.abstract | 本文提出了一種新穎的雙曲柄彈簧重力平衡機構(DSGB),該機構具有特殊的彈簧配置,用以解決其他旋轉型重力平衡器研究中觀察到的彈簧力對準與彈簧自由長度限制等問題。DSGB 可以連接到旋轉桿件或機械手臂上,以抵消其重力效應,從而實現完美的靜態平衡。
一個未平衡的接地旋轉桿件,其重力位能以二次正弦形式表示。DSGB採用雙曲柄機構,包括兩個接地的曲柄和一條穿過其端點,繞過其中一個曲柄轉軸並連接到接地彈簧的鋼纜。彈簧的伸長量為曲柄兩端之間的距離,且為一正弦函數,透過角度和幾何約束確保與重力位能的相容性。本文提出了兩種DSGB,分別為受約束中心距和無約束中心距的DSGB。為了保持重力位能和彈性位能的總和恆定,推導出彈簧的彈性常數以及與旋轉桿件之間的運動約束。將DSGB 雙曲柄的中心向量x_d軸與旋轉連桿對齊,並利用齒輪組滿足其運動約束,從而形成一個接地DSGB 模組。 本文比較了多自由度串聯式機械手臂的非接地桿件與接地桿件的重力位能,說明了接地DSGB 模組用於平衡機械手臂的可行性。更進一步提出了使用延伸地桿來確保運動約束並修改彈性常數以達到靜平衡。單自由度和二自由度範例的數值模型和軟體分析展示了 DSGB 實現完美重力平衡的可能性。 本文開發了安裝DSGB 的單自由度旋轉桿件和二自由度機械手臂的原型機,並進行了實驗研究以驗證 DSGB 的可行性和靜平衡性能。透過測量移動各關節所需的馬達扭矩,得到安裝和不安裝DSGB的單自由度旋轉桿件和二自由度機械手臂的實驗結果。結果顯示,負載0.15公斤和0.25公斤的單自由度旋轉桿件,分別安裝受約束和無約束中心距的DSGB,其平均扭矩降低百分比高達95.7%。二自由度機械手臂在相同負載和DSGB的情況下,其平均扭矩降低百分比高達95.5%。 由實驗結果得知,本文提出的重力平衡器機構DSGB可以抵銷單自由度及多自由度的旋轉桿件重力影響,並大幅降低旋轉桿件時馬達須提供的扭矩。若將此重力平衡器機構用於工業機械手臂,將會對於減少馬達輸出的功率有顯著的效果。 | zh_TW |
| dc.description.abstract | This paper introduces a pioneering double-crank spring gravity balancer (DSGB) with a specialized spring arrangement designed to address issues of spring force misalignment and free length constraint observed in previous studies on rotating-type gravity balancers. The DSGB can be attached to rotary links or manipulators to cancel out their gravity effects to achieve perfect static balancing.
The gravitational energy associated with a ground-connected rotary link to be balanced is represented in quadratic sine form. The DSGB employs a double-crank mechanism comprising two ground-connected cranks and a cable passing through their ends, encircling one crank's pivot, and connected to a ground-connected spring. The elongation of the spring, reflecting the distance between the ends of the cranks, is formulated as a sine function, ensuring compatibility with gravitational energy through angular and geometric constraints. Two variants of the DSGB, namely constrained and unconstrained central distance DSGB, are introduced. By maintaining a constant total of gravitational and elastic energy, constraints including spring stiffness and motion compatibility with the rotary link are established. Aligning the central distance axis (x_d-axis) of the DSGB with the rotary link and ensuring motion compatibility by gear train result in a ground-connected in-line DSGB module. The paper delineates the gravitational potential energy of remote links within a multi-degree-of-freedom (multi-DOF) serial manipulator compared with that of a ground-connected link, and illustrates the viability of ground-connected in-line DSGB modules in balancing the manipulator. Modifications to spring stiffness constraints and the maintenance of motion-compatible constraints using pseudo bases for static balancing are proposed. Numerical models and software analysis for both single and double degree-of-freedom examples showcase the DSGB's capacity for perfect gravity balancing. Prototypes of both 1-DOF rotary link and 2-DOF manipulator with DSGBs has been developed, and experimental studies are held to verify the feasibility and static balancing performance of the DSGB. By measuring the required motor torque to move each joint, the experimental results of 1-DOF rotary link and 2-DOF manipulator with and without the DSGB attached is obtained. It is shown that the 1-DOF rotary link with payload 0.15kg and 0.25kg balanced by the constrained and unconstrained central distance DSGB has an average torque reduction rate up to 95.7%. The 2-DOF manipulator with the same payload and DSGBs has an average torque reduction rate up to 95.5%. From the experimental results, it is evident that the proposed DSGB gravity balancer mechanism can counteract the gravitational effects on both single-degree-of-freedom (1-DOF) and multi-degree-of-freedom (multi-DOF) rotary linkages, significantly reducing the torque required from the motor during rotation. Implementing the DSGBs in industrial robotic arms could substantially decrease the power output needed from motors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:59:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:59:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iv TABLE OF CONTENTS vii LIST OF FIGURES ix LIST OF TABLES xi LIST OF SYMBOLS xii Chapter 1 Introduction 1 1.1 Gravity Balancer 1 1.2 Aim of the work 4 Chapter 2 Configuration constraints of a double-crank device for static balancing 6 2.1 Quadratic form of gravitational energy of a ground-connected rotary link 6 2.2 Spring arrangement of the double-crank device 7 2.3 Configuration constraints of double-crank device for compatibility 9 Chapter 3 Ground-connected double-crank gravity balancing module 12 3.1 The total potential energy of a rotary link with the double-crank device 12 3.2 Constrained central distance DSGB 13 3.3 Unconstrained central distance DSGB 16 3.4 Ground-connected in-line DSGB module 20 3.5 Numerical analysis of an in-line DSGB module 24 Chapter 4 Extension of Ground-Connected DSDB Module to Multi-DOF Serial Manipulator 26 4.1 The gravitational energy of a remote link in a n-DOF serial manipulator 26 4.2 Modularize the multi-DOF serial link into in-line DSGB modules 28 4.3 Numerical analysis of KUKA robot with in-line DSGB modules 31 Chapter 5 Experimental Verification 34 5.1 Modified models and prototypes for experimental verification 34 5.2 Experimental setup and procedure 37 5.3 Experimental results 41 Chapter 6 Discussion 47 Chapter 7 Conclusion 49 References 51 Appendix Experimental data 56 | - |
| dc.language.iso | en | - |
| dc.subject | 機構設計 | zh_TW |
| dc.subject | 多自由度 | zh_TW |
| dc.subject | 靜平衡 | zh_TW |
| dc.subject | 重力平衡機構 | zh_TW |
| dc.subject | 平面機構 | zh_TW |
| dc.subject | gravity balancer | en |
| dc.subject | static balance | en |
| dc.subject | planar mechanism | en |
| dc.subject | multi-degree-of-freedom | en |
| dc.subject | mechanical design | en |
| dc.title | 可拓展至多自由度機械手臂之雙曲柄彈簧重力平衡機構 | zh_TW |
| dc.title | A Double-crank Spring Gravity Balancer Module and Its Extension to Multi-DOF Serial Manipulator | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳羽薰;徐冠倫 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsun Chen;Kuan-Lun Hsu | en |
| dc.subject.keyword | 重力平衡機構,靜平衡,平面機構,多自由度,機構設計, | zh_TW |
| dc.subject.keyword | gravity balancer,static balance,planar mechanism,multi-degree-of-freedom,mechanical design, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202403163 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-06-30 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
