Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94150
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松zh_TW
dc.contributor.advisorChao-Sung Linen
dc.contributor.author林怡君zh_TW
dc.contributor.authorYi-Chun Linen
dc.date.accessioned2024-08-14T16:57:53Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-04-
dc.identifier.citation1. Esmaily, M., et al., Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017. 89: p. 92-193.
2. Polmear, I.J., Magnesium alloys and applications. Materials Science and Technology, 1994. 10(1): p. 1-16.
3. Mordike, B.L. and T. Ebert, Magnesium: Properties — applications — potential. Materials Science and Engineering: A, 2001. 302(1): p. 37-45.
4. Tsakiris, V., C. Tardei, and F.M. Clicinschi, Biodegradable Mg alloys for orthopedic implants – A review. Journal of Magnesium and Alloys, 2021. 9(6): p. 1884-1905.
5. Witte, F., Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 2015. 23: p. S28-S40.
6. Makar, G.L. and J. Kruger, Corrosion of magnesium. International Materials Reviews, 1993. 38(3): p. 138-153.
7. Hollstein, F., R. Wiedemann, and J. Scholz, Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surface and Coatings Technology, 2003. 162(2): p. 261-268.
8. Gray, J.E. and B. Luan, Protective coatings on magnesium and its alloys — a critical review. Journal of Alloys and Compounds, 2002. 336(1): p. 88-113.
9. Avedesian, M.M. and H. Baker, ASM specialty handbook: magnesium and magnesium alloys. Vol. 274. 1999: ASM international Materials Park, OH.
10. Esmaily, M., et al., Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017. 89: p. 92-193.
11. Kumar, D.S., et al., Magnesium and its alloys in automotive applications–a review. Am. J. Mater. Sci. Technol, 2015. 4(1): p. 12-30.
12. Fleming, S. An Overview of Magnesium based Alloys for Aerospace and Automotive Applications. 2012.
13. Esmaily, M., et al., New insights into the corrosion of magnesium alloys — The role of aluminum. Scripta Materialia, 2016. 115: p. 91-95.
14. Mishra, A., Friction Stir Welding of Dissimilar Metal: A Review. International Journal for Research in Applied Science & Engineering Technology, 2018. 887.
15. Pawar, S., et al., Investigation of the microstructure and the influence of iron on the formation of Al8Mn5 particles in twin roll cast AZ31 magnesium alloy. Journal of Alloys and Compounds, 2015. 628: p. 195-198.
16. Pawar, S., et al., The Role of Intermetallics on the Corrosion Initiation of Twin Roll Cast AZ31 Mg Alloy. Journal of The Electrochemical Society, 2015. 162(9): p. C442.
17. Suman, C., The Effects of Direct Aging on Mechanical Properties and Corrosion Resistance of Diecast Magnesium Alloys AZ91D and AM60B. SAE Transactions, 1990. 99: p. 849-859.
18. Song, G., et al., Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science, 1998. 40(10): p. 1769-1791.
19. Song, G., A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, 1998. 41(2): p. 249-273.
20. Ambat, R., N.N. Aung, and W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 2000. 42(8): p. 1433-1455.
21. StJohn, D.H., et al., Grain refinement of magnesium alloys. Metallurgical and Materials Transactions A, 2005. 36: p. 1669-1679.
22. Qian, M., D.H. StJohn, and M.T. Frost, Heterogeneous nuclei size in magnesium–zirconium alloys. Scripta Materialia, 2004. 50(8): p. 1115-1119.
23. Sun, M., et al., Grain refinement of magnesium alloys by Mg–Zr master alloys: the role of alloy chemistry and Zr particle number density. Advanced Engineering Materials, 2013. 15(5): p. 373-378.
24. Ben-Hamu, G., et al., The relation between microstructure and corrosion behavior of Mg–Y–RE–Zr alloys. Journal of Alloys and Compounds, 2007. 431(1-2): p. 269-276.
25. Chu, P.-W. and E.A. Marquis, Linking the microstructure of a heat-treated WE43 Mg alloy with its corrosion behavior. Corrosion Science, 2015. 101: p. 94-104.
26. Coy, A.E., et al., Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion. Corrosion Science, 2010. 52(12): p. 3896-3906.
27. Mordike, B.L., Creep-resistant magnesium alloys. Materials Science and Engineering: A, 2002. 324(1): p. 103-112.
28. Wang, J., et al., Effect of Y for enhanced age hardening response and mechanical properties of Mg–Gd–Y–Zr alloys. Materials Science and Engineering: A, 2007. 456(1): p. 78-84.
29. Xie, J., et al., Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. Journal of Magnesium and Alloys, 2021. 9(1): p. 41-56.
30. Takenaka, T., et al., Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochimica Acta, 2007. 53(1): p. 117-121.
31. Yao, H.B., Y. Li, and A.T.S. Wee, Passivity behavior of melt-spun Mg–Y Alloys. Electrochimica Acta, 2003. 48(28): p. 4197-4204.
32. Zhang, X., et al., Corrosion and electrochemical behavior of Mg–Y alloys in 3.5% NaCl solution. Transactions of Nonferrous Metals Society of China, 2013. 23(5): p. 1226-1236.
33. Guo, L., T.M. Yue, and H.C. Man, Excimer laser surface treatment of magnesium alloy WE43 for corrosion resistance improvement. Journal of materials science, 2005. 40(13): p. 3531-3533.
34. Okamoto, H., Mg-Y (Magnesium-Yttrium). Journal of Phase Equilibria and Diffusion, 2010. 31(2): p. 199-199.
35. Kang, Y.H., et al., Effect of initial temper on the creep behavior of precipitation–hardened WE43 alloy. Materials Science and Engineering: A, 2017. 689: p. 419-426.
36. Wang, J.G., et al., Creep of a heat treated Mg–4Y–3RE alloy. Materials Science and Engineering: A, 2001. 315(1): p. 81-88.
37. Antion, C., et al., Hardening precipitation in a Mg–4Y–3RE alloy. Acta Materialia, 2003. 51(18): p. 5335-5348.
38. Polmear, I., Light alloys: from traditional alloys to nanocrystals. 2005: Elsevier.
39. Davenport, A.J., et al., Synchrotron X-Ray Microtomography Study of the Role of Y in Corrosion of Magnesium Alloy WE43. Electrochemical and Solid-State Letters, 2007. 10(2): p. C5.
40. Ardelean, H., et al., Corrosion processes of Mg–Y–Nd–Zr alloys in Na2SO4 electrolyte. Corrosion Science, 2013. 73: p. 196-207.
41. He, W., E. Zhang, and K. Yang, Effect of Y on the bio-corrosion behavior of extruded Mg–Zn–Mn alloy in Hank's solution. Materials Science and Engineering: C, 2010. 30(1): p. 167-174.
42. Liu, M., et al., The influence of yttrium (Y) on the corrosion of Mg–Y binary alloys. Corrosion Science, 2010. 52(11): p. 3687-3701.
43. Okamoto, H., Mg-Nd. Journal of Phase Equilibria and Diffusion, 2007. 28(4): p. 405-405.
44. Natarajan, A.R., et al., On the early stages of precipitation in dilute Mg–Nd alloys. Acta Materialia, 2016. 108: p. 367-379.
45. Nie, J.-F., Precipitation and hardening in magnesium alloys. Metallurgical and Materials Transactions A, 2012. 43: p. 3891-3939.
46. Yu, K., et al., Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy. Materials transactions, 2008. 49(8): p. 1818-1821.
47. Penghuai, F., et al., Fracture behavior and mechanical properties of Mg–4Y–2Nd–1Gd–0.4 Zr (wt.%) alloy at room temperature. Materials Science and Engineering: A, 2008. 486(1-2): p. 572-579.
48. Zhu, S.M., et al., The relationship between microstructure and creep resistance in die-cast magnesium–rare earth alloys. Scripta Materialia, 2010. 63(7): p. 698-703.
49. Zhang, T., et al., Corrosion of hot extrusion AZ91 magnesium alloy. Part II: Effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy. Corrosion Science, 2011. 53(9): p. 2934-2942.
50. Song, Y., et al., Effect of neodymium on microstructure and corrosion resistance of AZ91 magnesium alloy. Journal of materials science, 2007. 42: p. 4435-4440.
51. Bütev Öcal, E., et al., Comparison of the short and long-term degradation behaviors of as-cast pure Mg, AZ91 and WE43 alloys. Materials Chemistry and Physics, 2020. 241: p. 122350.
52. Emley, E.F., Principles of magnesium technology. (No Title), 1966.
53. Song, G.L., 1 - Corrosion electrochemistry of magnesium (Mg) and its alloys, in Corrosion of Magnesium Alloys, G.-l. Song, Editor. 2011, Woodhead Publishing. p. 3-65.
54. Nordlien, J.H., et al., A TEM investigation of naturally formed oxide films on pure magnesium. Corrosion Science, 1997. 39(8): p. 1397-1414.
55. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions. National Association of Corrosion Engineers, 1966.
56. Hamdy Makhlouf, A.S., Chapter 15 - Intelligent Stannate-Based Coatings of Self-Healing Functionality for Magnesium Alloys, in Intelligent Coatings for Corrosion Control, A. Tiwari, J. Rawlins, and L.H. Hihara, Editors. 2015, Butterworth-Heinemann: Boston. p. 537-555.
57. Wu, T. and K. Zhang, Corrosion and protection of magnesium alloys: Recent advances and future perspectives. Coatings, 2023. 13(9): p. 1533.
58. Ghali, E., W. Dietzel, and K.-U. Kainer, General and localized corrosion of magnesium alloys: a critical review. Journal of materials engineering and performance, 2004. 13: p. 7-23.
59. Han, G., et al., Preferred crystallographic pitting corrosion of pure magnesium in Hanks’ solution. Corrosion Science, 2012. 63: p. 316-322.
60. Patel, V., et al., Enhancing grain refinement and corrosion behavior in AZ31B magnesium alloy via stationary shoulder friction stir processing. journal of materials research and technology, 2022. 17: p. 3150-3156.
61. Mitchell, J., N. Crow, and A. Nieto, Effect of surface roughness on pitting corrosion of AZ31 Mg alloy. Metals, 2020. 10(5): p. 651.
62. Williams, G. and R. Grace, Chloride-induced filiform corrosion of organic-coated magnesium. Electrochimica Acta, 2011. 56(4): p. 1894-1903.
63. Song, Y., et al., Corrosion characterization of Mg–8Li alloy in NaCl solution. Corrosion Science, 2009. 51(5): p. 1087-1094.
64. Zeng, R.-C., et al., Corrosion types of magnesium alloys. Magnesium Alloys-Selected Issue, 2018: p. 29-53.
65. Li, Z., et al., Microstructure and corrosion of cast magnesium alloy ZK60 in NaCl solution. Materials, 2020. 13(17): p. 3833.
66. Schmutz, P., et al., Influence of dichromate ions on corrosion processes on pure magnesium. Journal of The Electrochemical Society, 2003. 150(4): p. B99.
67. Atrens, A., M. Liu, and N.I.Z. Abidin, Corrosion mechanism applicable to biodegradable magnesium implants. Materials Science and Engineering: B, 2011. 176(20): p. 1609-1636.
68. Kalb, H., A. Rzany, and B. Hensel, Impact of microgalvanic corrosion on the degradation morphology of WE43 and pure magnesium under exposure to simulated body fluid. Corrosion Science, 2012. 57: p. 122-130.
69. Neil, W.C., et al., Corrosion of heat treated magnesium alloy ZE41. Corrosion Science, 2011. 53(10): p. 3299-3308.
70. Song, G., et al., The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion Science, 1997. 39(10): p. 1981-2004.
71. Atrens, A. and W. Dietzel, The negative difference effect and unipositive Mg+. Advanced Engineering Materials, 2007. 9(4): p. 292-297.
72. Petty, R.L., A.W. Davidson, and J. Kleinberg, The Anodic Oxidation of Magnesium Metal: Evidence for the Existence of Unipositive Magnesium1,2. Journal of the American Chemical Society, 1954. 76(2): p. 363-366.
73. Samaniego, A., B.L. Hurley, and G.S. Frankel, On the evidence for univalent Mg. Journal of Electroanalytical Chemistry, 2015. 737: p. 123-128.
74. Światowska, J., P. Volovitch, and K. Ogle, The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry. Corrosion Science, 2010. 52(7): p. 2372-2378.
75. Souto, R.M., et al., Spatially-resolved imaging of concentration distributions on corroding magnesium-based materials exposed to aqueous environments by SECM. Electrochemistry Communications, 2013. 26: p. 25-28.
76. Williams, G. and H. Neil McMurray, Localized Corrosion of Magnesium in Chloride-Containing Electrolyte Studied by a Scanning Vibrating Electrode Technique. Journal of The Electrochemical Society, 2008. 155(7): p. C340.
77. McNulty, R.E. and J.D. Hanawalt, Some Corrosion Characteristics of High Purity Magnesium Alloys. Transactions of The Electrochemical Society, 1942. 81(1): p. 423.
78. Salleh, S.H., et al., Enhanced hydrogen evolution on Mg (OH)2 covered Mg surfaces. Electrochimica Acta, 2015. 161: p. 144-152.
79. Cain, T., et al., Evidence of the Enrichment of Transition Metal Elements on Corroding Magnesium Surfaces Using Rutherford Backscattering Spectrometry. Journal of The Electrochemical Society, 2015. 162(6): p. C228.
80. Cain, T.W., et al., The Role of Surface Films and Dissolution Products on the Negative Difference Effect for Magnesium: Comparison of Cl− versus Cl− Free Solutions. Journal of The Electrochemical Society, 2017. 164(6): p. C300.
81. Fajardo, S. and G.S. Frankel, Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magnesium. Electrochimica Acta, 2015. 165: p. 255-267.
82. Taheri, M., et al., Towards a Physical Description for the Origin of Enhanced Catalytic Activity of Corroding Magnesium Surfaces. Electrochimica Acta, 2014. 116: p. 396-403.
83. Song, G.-L. and K.A. Unocic, The anodic surface film and hydrogen evolution on Mg. Corrosion Science, 2015. 98: p. 758-765.
84. Curioni, M., The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging. Electrochimica Acta, 2014. 120: p. 284-292.
85. Yang, Y., F. Scenini, and M. Curioni, A study on magnesium corrosion by real-time imaging and electrochemical methods: relationship between local processes and hydrogen evolution. Electrochimica Acta, 2016. 198: p. 174-184.
86. Zeng, R.-c., et al., Review of studies on corrosion of magnesium alloys. Transactions of nonferrous metals society of China, 2006. 16: p. s763-s771.
87. Wang, L., et al., Characterization of surface products on AZ31 magnesium alloy in dilute NaCl solution. Journal of Alloys and Compounds, 2009. 485(1): p. 747-752.
88. Wang, L., T. Shinohara, and B.-P. Zhang, XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution. Applied Surface Science, 2010. 256(20): p. 5807-5812.
89. Wang, L., T. Shinohara, and B.-P. Zhang, Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010. 496(1-2): p. 500-507.
90. Cao, F., et al., The inhibitive effect of artificial seawater on magnesium corrosion. Advanced Engineering Materials, 2019. 21(8): p. 1900363.
91. Chen, H.-W., et al., The Initial Corrosion Behavior of AZ31B Magnesium Alloy in Chloride and Sulfate Solutions. Journal of The Electrochemical Society, 2022. 169(8): p. 081504.
92. Feng, B., et al., Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution. Journal of Magnesium and Alloys, 2022. 10(6): p. 1598-1608.
93. Pommiers, S., et al., Alternative conversion coatings to chromate for the protection of magnesium alloys. Corrosion Science, 2014. 84: p. 135-146.
94. Zhao, J., et al., Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3. Surface and Coatings Technology, 2001. 140(1): p. 51-57.
95. Kendig, M., et al., Role of hexavalent chromium in the inhibition of corrosion of aluminum alloys. Surface and Coatings Technology, 2001. 140(1): p. 58-66.
96. Zhao, J., G. Frankel, and R.L. McCreery, Corrosion Protection of Untreated AA‐2024‐T3 in Chloride Solution by a Chromate Conversion Coating Monitored with Raman Spectroscopy. Journal of The Electrochemical Society, 1998. 145(7): p. 2258.
97. Saji, V.S., T.S. Narayanan, and X. Chen, Conversion coatings for magnesium and its alloys. 2022: Springer.
98. Zhang, X., et al., Comparison of the morphology and corrosion performance of Cr(VI)- and Cr(III)-based conversion coatings on zinc. Surface and Coatings Technology, 2005. 199(1): p. 92-104.
99. Sankara Narayanan, T., Surface pretretament by phosphate conversion coatings-A review. Reviews in Advanced Materials Science, 2005. 9: p. 130-177.
100. Lee, Y.L., et al., Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corrosion Science, 2013. 70: p. 74-81.
101. Lin, C.S., et al., Formation of Phosphate/Permanganate Conversion Coating on AZ31 Magnesium Alloy. Journal of The Electrochemical Society, 2006. 153(3): p. B90.
102. Duan, G., et al., Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy. Corrosion Science, 2018. 135: p. 197-206.
103. Tompkins, F., The kinetics of the reaction between manganous and permanganate ions. Transactions of the Faraday Society, 1942. 38: p. 131-139.
104. Chong, K.Z. and T.S. Shih, Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution. Materials Chemistry and Physics, 2003. 80(1): p. 191-200.
105. Jian, S.-Y., Y.-R. Chu, and C.-S. Lin, Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance. Corrosion Science, 2015. 93: p. 301-309.
106. Umehara, H., M. Takaya, and S. Terauchi, Chrome-free surface treatments for magnesium alloy. Surface and Coatings Technology, 2003. 169: p. 666-669.
107. Arenas, L., An electrochemical engineering approach to improvements in the zinc-cerium redox flow battery. 2017.
108. Davenport, A.J., H.S. Isaacs, and M.W. Kendig, XANES investigation of the role of cerium compounds as corrosion inhibitors for aluminum. Corrosion Science, 1991. 32(5): p. 653-663.
109. Böhm, S., et al., Kinetic and Mechanistic Studies of Rare Earth‐Rich Protective Film Formation Using In Situ Ellipsometry. Journal of the Electrochemical Society, 2000. 147(9): p. 3286.
110. Li, L., et al., In situ ellipsometric studies of formation kinetics of rare earth metal conversion coatings on magnesium alloy. physica status solidi c, 2008. 5(5): p. 1308-1311.
111. Lin, C.-S. and W.-J. Li, Corrosion resistance of cerium-conversion coated AZ31 magnesium alloys in cerium nitrate solutions. Materials transactions, 2006. 47(4): p. 1020-1025.
112. Montemor, M.F., A.M. Simões, and M.J. Carmezim, Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Applied Surface Science, 2007. 253(16): p. 6922-6931.
113. Rudd, A.L., C.B. Breslin, and F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science, 2000. 42(2): p. 275-288.
114. Reck, J., Y.-M. Wang, and H.-H.H. Kuo, Development of Zirconium-based Conversion Coatings for the Pretreatment of AZ91D Magnesium Alloy Prior to Electrocoating. Magnesium Technology 2011, 2016: p. 523-529.
115. Schamm, S., et al., The K 2 ZrF 6 wetting process: Effect of surface chemistry on the ability of a SiC-Fiber preform to be impregnated by aluminum. Metallurgical Transactions A, 1991. 22: p. 2133-2139.
116. Chidambaram, D., C.R. Clayton, and G.P. Halada, The role of hexafluorozirconate in the formation of chromate conversion coatings on aluminum alloys. Electrochimica Acta, 2006. 51(14): p. 2862-2871.
117. Chen, T.Y., et al., Synthesis and characterization of chrom-free dark coating on AA6063 aluminium alloy with K2ZrF6. Advanced Materials Research, 2014. 1053: p. 421-428.
118. Cai, C., et al., A Zr‐and Cr (III)‐containing conversion coating on Al alloy 2024‐T3 and its self‐repairing behavior. Materials and Corrosion, 2017. 68(3): p. 338-346.
119. Standard, A., B117-11, Standard Practice for Operating Salt Spray (Fog) Apparatus. American Society of Testing and Materials, ASTM International, Philadelphia, USA, 2003.
120. Lee, Y., et al., Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy. Corrosion Science, 2013. 70: p. 74-81.
121. Shih, C.-H., et al., The effect of the secondary phases on the corrosion of AZ31B and WE43-T5 Mg alloys. Corrosion Science, 2023. 211: p. 110920.
122. Cai, Y., et al., High-temperature oxidation behavior and corrosion behavior of high strength Mg-xGd alloys with high Gd content. Corrosion Science, 2021. 193: p. 109872.
123. Song, G. and D. StJohn, The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. Journal of Light Metals, 2002. 2(1): p. 1-16.
124. Shannon, R.T. and C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1969. 25(5): p. 925-946.
125. Linstrom, P.J. and W.G. Mallard, The NIST Chemistry WebBook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 2001. 46(5): p. 1059-1063.
126. Liang, C. and R. Zheng, Conversion coating treatment for AZ91 magnesium alloys by a permanganate‐REMS bath. Materials and corrosion, 2007. 58(3): p. 193-197.
127. Xin, R., et al., Structural examination of aging precipitation in a Mg–Y–Nd alloy at different temperatures. Materials characterization, 2011. 62(5): p. 535-539.
128. Yang, C., et al., Effect of microstructure on corrosion behavior of we43 magnesium alloy in as cast and heat-treated conditions. Metals, 2020. 10(11): p. 1552.
129. Hung, S.-M., S.-Y. Chen, and C.-S. Lin, Effect of bath temperature on the growth kinetics and characteristics of permanganate conversion coating on LZ91 magnesium alloy. Journal of Materials Research and Technology, 2024. 28: p. 4567-4576.
130. Morrow, J.I. and S. Perlman, Kinetic study of the permanganate-manganous ion reaction to form manganic ion in sulfuric acid media. Inorganic Chemistry, 1973. 12(10): p. 2453-2455.
131. Hawke, D. and D. Albright, A phosphate-permanganate conversion coating for magnesium. Metal Finishing, 1995. 93(10): p. 34-39.
132. 10289:1999, I., Methods for corrosion testing of metallic and other inorganic coatings on metallic substrates. Rating of test specimens and manufactured articles subjected to corrosion tests, ICS: 25.220.20, 25.220.40.
133. Pereira, G.S., et al., Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Materials Chemistry and Physics, 2021. 272: p. 124930.
134. Verdier, S., et al., The surface reactivity of a magnesium–aluminium alloy in acidic fluoride solutions studied by electrochemical techniques and XPS. Applied Surface Science, 2004. 235(4): p. 513-524.
135. Williams, M.L., CRC Handbook of Chemistry and Physics, 76th edition. Occupational and Environmental Medicine, 1996. 53(7): p. 504.
136. Chiu, K., et al., Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surface and Coatings Technology, 2007. 202(3): p. 590-598.
137. Zucchi, F., et al., Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy. Surface and coatings technology, 2006. 200(12-13): p. 4136-4143.
138. Gong, F., et al., Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg (OH) 2 layer. Applied Surface Science, 2016. 365: p. 268-274.
139. Liu, X., et al., Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta biomaterialia, 2013. 9(10): p. 8671-8677.
140. Murillo-Gutiérrez, N.V., et al., Protection against corrosion of magnesium alloys with both conversion layer and sol–gel coating. Surface and Coatings Technology, 2013. 232: p. 606-615.
141. Yoganandan, G., K. Pradeep Premkumar, and J.N. Balaraju, Evaluation of corrosion resistance and self-healing behavior of zirconium–cerium conversion coating developed on AA2024 alloy. Surface and Coatings Technology, 2015. 270: p. 249-258.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94150-
dc.description.abstract鎂合金有低密度及高比強度等特性,被廣泛應用在各個領域,包括生醫、航太、汽車、電子等領域。其中添加稀土元素的鎂合金因其能提高強度、高溫抗潛變能力、耐燃性,以及抗蝕性,因此近年來有許多研究。而鎂合金具高活性,故為了進一步提高應用時的抗蝕性,對其做化成處理。
WE43中有兩種兩種微米級二次相,分別是富Y和富Zr二次相,其中富Zr二次相會造成WE43的伽凡尼腐蝕,故研究此兩種二次相對化成膜成膜的影響為一重要課題。
本研究使用過錳酸鹽化成進行第一道化成處理,由電子顯微鏡分析得知膜層的主要組成為 MnO2/Mg(OH)2/MgO,並觀察到在晶界處未成膜,以及當浸泡時間較長,膜層上會有脫水裂紋,這些缺陷造成抗蝕性提升有限。為填補這些缺陷,在第一道膜層上,再進行第二道六氟鋯酸鹽化成處理,由電子顯微鏡觀察到經第二道 化成後,晶界未成膜處被 ZrO2 所填補。電化學量測結果顯示,相較於只有一道次處理的,兩道次化成處理的腐蝕電流小了一個數量級,且大幅提升了交流阻抗測試中等效電路的總阻抗值。而鹽霧測試結果符合電化學量測,在24h測試後,經兩道次化成處理的腐蝕面積僅有2%。經 KMnO4/K2ZrF6 兩步驟化成處理的式樣呈金黃色,同時達到美觀及抗蝕性提高的效果。
根據微結構分析,化成處理過的式樣,在鹽霧後的巨觀腐蝕白點源自於富Zr顆粒,因 Cl-會攻擊富 Zr顆粒周圍的缺陷處,引起Zr顆粒與鎂基材間的伽凡尼腐蝕。而富Y顆粒對成膜並未有顯著的影響,在經過錳酸鹽化成處理後會被原位氧化為Y2O3。
zh_TW
dc.description.abstractMagnesium and its alloys, characterized by low density and high specific strength, are widely utilized in various fields, including biomedical, aerospace, automotive, and electronics. In recent years, there has been significant research interest in magnesium alloys containing rare earth elements due to their ability to enhance strength, high-temperature creep resistance, flammability, and corrosion resistance. Magnesium alloys are highly reactive, thus requiring surface treatments such as conversion coatings to further improve their corrosion resistance for practical applications.
In the case of WE43, two types of micron-scale secondary phases exist Y-rich and Zr-rich phases. Among them, the Zr-rich phase is known to cause galvanic corrosion in WE43. Therefore, studying the effects of these two secondary phases on the formation of conversion coatings is an important research topic.
This study employed permanganate-based conversion coating as the first step treatment. Electron microscopy analysis revealed that the main composition of the coating layer is MnO2/Mg(OH)2/MgO. It was observed that no conversion film forms at grain boundaries, and prolonged immersion led to dehydration cracks on the coating. These defects resulted in a limited enhancement of corrosion resistance. To address these defects, the second K2ZrF6 conversion treatment was applied on top of the first coating. Electron microscopy observations revealed that after the second treatment, the areas where the film doesn’t form at grain boundaries are sealed with ZrO2. Electrochemical measurements showed that compared to the single-step treatment, the corrosion current decreased by an order of magnitude with the two-step treatment. Additionally, EIS results show a significant increase in the total impedance of the film. The salt spray test results were consistent with the electrochemical measurements. After a 24-hour test, the corrosion area of the samples treated with the two-step conversion process was only 2 %. Samples treated with the KMnO4/K2ZrF6 conversion process exhibited a golden color, achieving both aesthetic appeal and improved corrosion resistance.
According to microstructural analysis, macroscopic corrosion spots observed after salt spray testing originated from Zr-rich particles. Cl attacked the defects around these particles, leading to galvanic corrosion between Zr particles and the Mg matrix. Y-rich particles do not significantly affect the formation of the coating and are oxidized in situ to Y2O3 after permanganate-based conversion treatment.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:57:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:57:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENT v
LIST OF FIGURES ix
LIST OF TABLE xv
Chapter 1 Introduction 1
Chapter 2 Paper Review 2
2.1 Introduction of magnesium alloys 2
2.1.1 Properties of pure magnesium 2
2.1.2 Classification of magnesium alloys 3
2.1.3 The effect of aluminum on Mg alloys 4
2.1.4 The effect of zirconium on Mg alloys 6
2.1.5 Magnesium-rare earth alloys 9
2.1.5.1 The effect of yttrium on Mg alloys 10
2.1.5.2 The effect of neodymium on magnesium alloys 12
2.2 Corrosion behavior of magnesium 15
2.2.1 Corrosion of pure magnesium 15
2.2.2 Corrosion type 17
2.2.2.1 General corrosion 17
2.2.2.2 Local corrosion 18
2.2.2.3 Galvanic corrosion 20
2.2.3 Negative Difference Effect 21
2.2.3.1 Monovalent magnesium model 22
2.2.3.2 Enhanced catalytic model 25
2.2.3.3 Film rupture model 26
2.2.4 Effect of corrosion environment on Mg 28
2.2.4.1 Effect of chloride on corrosion 28
2.2.4.2 Effect of sulfate on corrosion 29
2.3 Conversion coatings 31
2.3.1 Chromate conversion coatings 31
2.3.2 Phosphate conversion coatings 33
2.3.3 Permanganate conversion coatings 34
2.3.4 Rare earth conversion coatings 35
2.3.5 ZrF62--containing conversion coatings 36
Chapter 3 Experiments 39
3.1 Sample preparation 39
3.2 Conversion bath 39
3.3 Surface Analysis 41
3.3.1 OM 41
3.3.2 SEM 42
3.3.3 TEM 42
3.4 Electrochemical Measurements 43
3.4.1 PDP 43
3.4.2 EIS 44
3.5 Salt spraying test 45
Chapter 4 Results and Discussion 46
4.1 Microstructure of as-polished WE43-T5 substrate 46
4.2 OCP of conversion process 47
4.3 OM observation 48
4.4 SEM observation 50
4.5 Cross-sectional analysis by TEM 57
4.6 Electrochemical analysis 67
4.6.1 Potentiodynamic polarization 67
4.6.2 Electrochemical impedance spectroscopy 69
4.7 Salt spraying test 72
4.7.1 Optical observation after salt spraying 72
4.7.2 SEM observation after salt spraying 76
4.8 Mechanism of conversion coatings 78
4.8.1 KMnO4 CC 78
4.8.2 K2ZrF6 CC 80
4.9 The effect of second phase on corrosion resistance 82
Chapter 5 Conclusions 83
Chapter 6 Future Works 84
Reference 86
-
dc.language.isoen-
dc.subjectWE43 鎂合金zh_TW
dc.subject稀土元素zh_TW
dc.subject過錳酸鹽zh_TW
dc.subject六氟鋯酸鹽zh_TW
dc.subject化成皮膜zh_TW
dc.subject電化學zh_TW
dc.subject抗蝕性zh_TW
dc.subjectCorrosion resistanceen
dc.subjectWE43 magnesium alloyen
dc.subjectRare earth elementsen
dc.subjectPermanganateen
dc.subjectPotassium hexafluorozirconateen
dc.subjectConversion coatingen
dc.subjectElectro-chemistryen
dc.titleWE43-T5鎂合金二次相對pH值驅動化成皮膜的影響zh_TW
dc.titleThe Effect of the second phase on the pH-assisted conversion coating on WE43-T5 magnesium alloyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蔡文達;汪俊延;林景崎;侯文星zh_TW
dc.contributor.oralexamcommitteeWen-Ta Tsai;Jun-Yen Uan;Jing-Chie Lin;Wen-Hsing Houen
dc.subject.keywordWE43 鎂合金,稀土元素,過錳酸鹽,六氟鋯酸鹽,化成皮膜,電化學,抗蝕性,zh_TW
dc.subject.keywordWE43 magnesium alloy,Rare earth elements,Permanganate,Potassium hexafluorozirconate,Conversion coating,Electro-chemistry,Corrosion resistance,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202402799-
dc.rights.note未授權-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved