Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李篤中zh_TW
dc.contributor.advisorDuu-Jong Leeen
dc.contributor.author王蔚zh_TW
dc.contributor.authorWei Wangen
dc.date.accessioned2024-08-14T16:54:19Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citationAbdo, A.I. 2021. Changes in sandy soil hydro‐physical properties as function of biochar and biogas slurry amendments. Soil Use and Management, 37(4), 762-771.
Abomohra, A.E.-F., Elsayed, M., Qin, Z., Ji, H., Liu, Z. 2021. Biogas: Recent Advances and Integrated Approaches.
Adjuik, T., Rodjom, A.M., Miller, K.E., Reza, M.T.M., Davis, S.C. 2020. Application of hydrochar, digestate, and synthetic fertilizer to a miscanthus X giganteus crop: Implications for biomass and greenhouse gas emissions. Applied Sciences, 10(24), 8953.
Ahmed, M., Andreottola, G., Elagroudy, S., Negm, M.S., Fiori, L. 2021a. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and bio-methane production. Journal of environmental management, 281, 111910.
Ahmed, M., Sartori, F., Merzari, F., Fiori, L., Elagroudy, S., Negm, M.S., Andreottola, G. 2021b. Anaerobic degradation of digestate based hydrothermal carbonization products in a continuous hybrid fixed bed anaerobic filter. Bioresource Technology, 330, 124971.
Ai, P., Chen, M., Ran, Y., Jin, K., Peng, J., Abomohra, A.E.-F. 2020. Digestate recirculation through co-digestion with rice straw: Towards high biogas production and efficient waste recycling. Journal of cleaner production, 263, 121441.
Akarsu, K., Duman, G., Yilmazer, A., Keskin, T., Azbar, N., Yanik, J. 2019. Sustainable valorization of food wastes into solid fuel by hydrothermal carbonization. Bioresource technology, 292, 121959.
Al-Naqeb, G., Sidarovich, V., Scrinzi, D., Mazzeo, I., Robbiati, S., Pancher, M., Fiori, L., Adami, V. 2022. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 3. Toxicological evaluation. Journal of Environmental Management, 320, 115910.
Al Ramahi, M., Keszthelyi-Szabó, G., Beszédes, S. 2021. Coupling hydrothermal carbonization with anaerobic digestion: an evaluation based on energy recovery and hydrochar utilization. Biofuel Research Journal, 8(3), 1444-1453.
Alabdrabalnabi, A., Gautam, R., Sarathy, S.M. 2022. Machine learning to predict biochar and bio-oil yields from co-pyrolysis of biomass and plastics. Fuel, 328, 125303.
Alberto, D.R., Repa, K.S., Hegde, S., Miller, C.W., Trabold, T.A. 2019. Novel production of magnetite particles via thermochemical processing of digestate from manure and food waste. IEEE magnetics letters, 10, 1-5.
Alhashimi, H.A., Aktas, C.B. 2017. Life cycle environmental and economic performance of biochar compared with activated carbon: a meta-analysis. Resources, Conservation and Recycling, 118, 13-26.
Altikat, A., Alma, M. 2023. Prediction carbonization yields and the sensitivity analyses using deep learning neural networks and support vector machines. International Journal of Environmental Science and Technology, 20(5), 5071-5080.
Altun, M. 2019. Polyhydroxyalkanoate production using waste vegetable oil and filtered digestate liquor of chicken manure. Preparative Biochemistry & Biotechnology, 49(5), 493-500.
Alwosheel, A., van Cranenburgh, S., Chorus, C.G. 2018. Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. Journal of choice modelling, 28, 167-182.
Ambaye, T.G., Rene, E.R., Dupont, C., Wongrod, S., Van Hullebusch, E.D. 2020. Anaerobic digestion of fruit waste mixed with sewage sludge digestate biochar: influence on biomethane production. Frontiers in Energy Research, 8, 31.
Ang, J.C., Tang, J.Y., Chung, B.Y.H., Chong, J.W., Tan, R.R., Aviso, K.B., Chemmangattuvalappil, N.G., Thangalazhy-Gopakumar, S. 2023. Development of predictive model for biochar surface properties based on biomass attributes and pyrolysis conditions using rough set machine learning. Biomass and Bioenergy, 174, 106820.
Antoniou, N., Monlau, F., Sambusiti, C., Ficara, E., Barakat, A., Zabaniotou, A. 2019. Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery. Journal of cleaner production, 209, 505-514.
Aragón-Briceño, C., Ross, A.B., Camargo-Valero, M.A. 2017. Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Applied Energy, 208, 1357-1369.
Aragón-Briceño, C., Grasham, O., Ross, A., Dupont, V., Camargo-Valero, M. 2020. Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renewable energy, 157, 959-973.
Aragon-Briceño, C., Pożarlik, A., Bramer, E., Brem, G., Wang, S., Wen, Y., Yang, W., Pawlak-Kruczek, H., Niedźwiecki, Ł., Urbanowska, A. 2022. Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate. Renewable energy, 184, 577-591.
Aragon-Briceno, C.I., Ross, A.B., Camargo-Valero, M.A. 2023. Strategies for the Revalorization of Sewage Sludge in a Waste Water Treatment Plant Through the Integration of Hydrothermal Processing. Waste and Biomass Valorization, 14(1), 105-126.
Arutselvy, B., Rajeswari, G., Jacob, S. 2021. Sequential valorization strategies for dairy wastewater and water hyacinth to produce fuel and fertilizer. Journal of Food Process Engineering, 44(2), e13585.
Ascher, S., Watson, I., Wang, X., You, S. 2019. Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: Techno-economic and environmental feasibility. Energy, 181, 455-467.
Ascher, S., Watson, I., You, S. 2022. Machine learning methods for modelling the gasification and pyrolysis of biomass and waste. Renewable and Sustainable Energy Reviews, 155, 111902.
Ashraf, A., Ramamurthy, R., Sayavedra, S.M., Bhatt, P., Gangola, S., Noor, T., Desmarais, M., Rabbani, A., Rene, E.R. 2021. Integrating photobioreactor with conventional activated sludge treatment for nitrogen removal from sidestream digestate: Current challenges and opportunities. Journal of Environmental Chemical Engineering, 9(6), 106171.
Atelge, M., Atabani, A., Banu, J.R., Krisa, D., Kaya, M., Eskicioglu, C., Kumar, G., Lee, C., Yildiz, Y., Unalan, S. 2020. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270, 117494.
Atelge, M., Muratcobanoglu, H., Krisa, D., Atabani, A. 2022. Anaerobic digestate for polyhydroxyalkanoates (bioplastics precursors) production. Aboudi, K., Eskicioglu, C., Tyagi, VK, Anaerobic Digestate Management.
Ayaz, M., Stulpinaite, U., Feiziene, D., Tilvikiene, V., Akthar, K., Baltrėnaitė‐Gedienė, E., Striugas, N., Rehmani, U., Alam, S., Iqbal, R. 2022. Pig manure digestate‐derived biochar for soil management and crop cultivation in heavy metals contaminated soil. Soil Use and Management, 38(2), 1307-1321.
Baker, R.E., Pena, J.-M., Jayamohan, J., Jérusalem, A. 2018. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biology letters, 14(5), 20170660.
Bao, Y., Fu, Y., Wang, C., Wang, H. 2021. An effective integrated system used in separating for anaerobic digestate and concentrating for biogas slurry. Environmental Technology, 42(28), 4434-4443.
Baral, K.R., McIlroy, J., Lyons, G., Johnston, C. 2023. The effect of biochar and acid activated biochar on ammonia emissions during manure storage. Environmental Pollution, 317, 120815.
Barbanera, M., Pelosi, C., Taddei, A.R., Cotana, F. 2018. Optimization of bio-oil production from solid digestate by microwave-assisted liquefaction. Energy conversion and management, 171, 1263-1272.
Barbera, E., Bertucco, A., Nigam, K.D., Kumar, S. 2022. Techno-economic analysis of a micro-scale biogas plant integrated with microalgae cultivation for the treatment of organic municipal waste. Chemical Engineering Journal, 450, 138323.
Bauboeck, R., Karpenstein-Machan, M. 2021. Bioenergy Villages in Transition Considerations of the use of residual materials as well as the addition of a pyrolysis plant to existing biogas plants from the point of view of local heating supply and economic efficiency.
Bauer, L., Ranglová, K., Masojídek, J., Drosg, B., Meixner, K. 2021. Digestate as sustainable nutrient source for microalgae—challenges and prospects. Applied Sciences, 11(3), 1056.
Behera, B., Supraja, K.V., Paramasivan, B. 2021. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. Bioresource Technology, 339, 125588.
Bekiaris, G., Peltre, C., Jensen, L.S., Bruun, S. 2016. Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 168, 29-36.
Belete, Y.Z., Mau, V., Spitzer, R.Y., Posmanik, R., Jassby, D., Iddya, A., Kassem, N., Tester, J.W., Gross, A. 2021. Hydrothermal carbonization of anaerobic digestate and manure from a dairy farm on energy recovery and the fate of nutrients. Bioresource technology, 333, 125164.
Bernardo, M., Correa, C.R., Ringelspacher, Y., Becker, G.C., Lapa, N., Fonseca, I., Esteves, I.A., Kruse, A. 2020. Porous carbons derived from hydrothermally treated biogas digestate. Waste management, 105, 170-179.
Bhatt, A.H., Tao, L. 2020. Economic perspectives of biogas production via anaerobic digestion. Bioengineering, 7(3), 74.
Bishir, M., Tariq, M., Wüst, D., Schleicher, L., Steuber, J., Kruse, A. 2021. Comparative Electricity Generation by Two Locally Produced Corncob Pyrochar Electrodes and Graphite using Microbial Fuel Cell Technology. International Journal of Renewable Energy Research (IJRER), 11(4), 1684-1699.
Biswas, R., Ahring, B.K., Uellendahl, H. 2012. Improving biogas yields using an innovative concept for conversion of the fiber fraction of manure. Water science and technology, 66(8), 1751-1758.
Brienza, C., Sigurnjak, I., Meier, T., Michels, E., Adani, F., Schoumans, O., Vaneeckhaute, C., Meers, E. 2021. Techno-economic assessment at full scale of a biogas refinery plant receiving nitrogen rich feedstock and producing renewable energy and biobased fertilisers. Journal of Cleaner Production, 308, 127408.
Brown, A.E., Adams, J.M., Grasham, O.R., Camargo-Valero, M.A., Ross, A.B. 2020. An assessment of different integration strategies of hydrothermal carbonisation and anaerobic digestion of water hyacinth. Energies, 13(22), 5983.
Brown, T.R., Wright, M.M., Brown, R.C. 2011. Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioproducts and Biorefining, 5(1), 54-68.
Bruun, S., Harmer, S.L., Bekiaris, G., Christel, W., Zuin, L., Hu, Y., Jensen, L.S., Lombi, E. 2017. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere, 169, 377-386.
Buss, W., Graham, M.C., Shepherd, J.G., Mašek, O. 2016. Suitability of marginal biomass-derived biochars for soil amendment. Science of the Total Environment, 547, 314-322.
Buss, W., Jansson, S., Wurzer, C., Mašek, O.e. 2019. Synergies between BECCS and biochar—maximizing carbon sequestration potential by recycling wood ash. ACS sustainable chemistry & engineering, 7(4), 4204-4209.
Cai, M., Zhang, H., Zhang, Y., Wu, H. 2022. Bioelectrochemical assisted landfill technology for the stabilization and valorization of food waste anaerobic digestate. Bioresource Technology, 351, 126935.
Calamai, A., Chiaramonti, D., Casini, D., Masoni, A., Palchetti, E. 2020. Short-term effects of organic amendments on soil properties and maize (Zea maize L.) growth. Agriculture, 10(5), 158.
Calamai, A., Palchetti, E., Masoni, A., Marini, L., Chiaramonti, D., Dibari, C., Brilli, L. 2019. The influence of biochar and solid digestate on rose-scented geranium (Pelargonium graveolens L’Hér.) productivity and essential oil quality. Agronomy, 9(5), 260.
Cao, L., Wang, J., Xiang, S., Huang, Z., Ruan, R., Liu, Y. 2019a. Nutrient removal from digested swine wastewater by combining ammonia stripping with struvite precipitation. Environmental Science and Pollution Research, 26, 6725-6734.
Cao, T.N.-D., Bui, X.-T., Le, L.-T., Dang, B.-T., Tran, D.P.-H., Tran, H.-T., Nguyen, T.-B., Mukhtar, H., Pan, S.-Y., Varjani, S. 2022. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. Bioresource technology, 363, 127831.
Cao, Z., Hülsemann, B., Wüst, D., Illi, L., Oechsner, H., Kruse, A. 2020a. Valorization of maize silage digestate from two-stage anaerobic digestion by hydrothermal carbonization. Energy conversion and management, 222, 113218.
Cao, Z., Hülsemann, B., Wüst, D., Oechsner, H., Lautenbach, A., Kruse, A. 2021a. Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource Technology, 333, 125110.
Cao, Z., Jung, D., Olszewski, M.P., Arauzo, P.J., Kruse, A. 2019b. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Management, 100, 138-150.
Cao, Z.B., Hülsemann, B., Wüst, D., Illi, L., Oechsner, H., Kruse, A. 2020b. Valorization of maize silage digestate from two-stage anaerobic digestion by hydrothermal carbonization. Energy Conversion and Management, 222, 113218.
Cao, Z.B., Hülsemann, B., Wüst, D., Oechsner, H., Lautenbach, A., Kruse, A. 2021b. Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresource Technology, 333, 125110.
Cao, Z.B., Jung, D., Olszewski, M.P., Arauzo, P.J., Kruse, A. 2019c. Hydrothermal carbonization of biogas digestate: Effect of digestate origin and process conditions. Waste Management, 100, 138-150.
Cardelli, R., Giussani, G., Marchini, F., Saviozzi, A. 2018. Short-term effects on soil of biogas digestate, biochar and their combinations. Soil Research, 56(6), 623-631.
Carucci, A., Erby, G., Puggioni, G., Spiga, D., Frugoni, F., Milia, S. 2022. Ammonium recovery from agro-industrial digestate using bioelectrochemical systems. Water Science and Technology, 85(8), 2432-2441.
Catenacci, A., Boniardi, G., Mainardis, M., Gievers, F., Farru, G., Asunis, F., Malpei, F., Goi, D., Cappai, G., Canziani, R. 2022. Processes, applications and legislative framework for carbonized anaerobic digestate: Opportunities and bottlenecks. A critical review. Energy Conversion and Management, 263, 115691.
Cavali, M., Junior, N.L., de Almeida Mohedano, R., Belli Filho, P., da Costa, R.H.R., de Castilhos Junior, A.B. 2022. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. Science of The Total Environment, 822, 153614.
Celletti, S., Bergamo, A., Benedetti, V., Pecchi, M., Patuzzi, F., Basso, D., Baratieri, M., Cesco, S., Mimmo, T. 2021. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate. Journal of Environmental Management, 280, 111635.
Chang, S., Zhang, Z., Cao, L., Ma, L., You, S., Li, W. 2020. Co-gasification of digestate and lignite in a downdraft fixed bed gasifier: Effect of temperature. Energy conversion and management, 213, 112798.
Channiwala, S., Parikh, P. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81(8), 1051-1063.
Chaturvedi, V., Usangonvkar, S., Shelke, M.V. 2019. Synthesis of high surface area porous carbon from anaerobic digestate and it's electrochemical study as an electrode material for ultracapacitors. RSC advances, 9(62), 36343-36350.
Chen, C., Wang, Z., Ge, Y.D., Liang, R., Hou, D.H., Tao, J.Y., Yan, B.B., Zheng, W.D., Velichkova, R., Chen, G.Y. 2023a. Characteristics prediction of hydrothermal biochar using data enhanced interpretable machine learning. Bioresource Technology, 377, 128893.
Chen, G., Guo, X., Cheng, Z., Yan, B., Dan, Z., Ma, W. 2017. Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier. Waste management, 69, 162-169.
Chen, J., Ding, L., Wang, P., Zhang, W., Li, J., Mohamed, B.A., Chen, J., Leng, S., Liu, T., Leng, L. 2022a. The estimation of the higher heating value of biochar by data-driven modeling. J. Renew. Mater, 10, 1555-1574.
Chen, M.-W., Chang, M.-S., Mao, Y., Hu, S., Kung, C.-C. 2023b. Machine learning in the evaluation and prediction models of biochar application: A review. Science Progress, 106(1), 00368504221148842.
Chen, W.-H., Aniza, R., Arpia, A.A., Lo, H.-J., Hoang, A.T., Goodarzi, V., Gao, J. 2022b. A comparative analysis of biomass torrefaction severity index prediction from machine learning. Applied Energy, 324, 119689.
Chen, W.-H., Lo, H.-J., Aniza, R., Lin, B.-J., Park, Y.-K., Kwon, E.E., Sheen, H.-K., Grafilo, L.A.D.R. 2022c. Forecast of glucose production from biomass wet torrefaction using statistical approach along with multivariate adaptive regression splines, neural network and decision tree. Applied Energy, 324, 119775.
Cheng, F., Luo, H., Colosi, L.M. 2020. Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis. Energy Conversion and Management, 223, 113258.
Chong, C.C., Cheng, Y.W., Ishak, S., Lam, M.K., Lim, J.W., Tan, I.S., Show, P.L., Lee, K.T. 2022. Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: A way forward through waste valorization approach. Science of The Total Environment, 803, 150070.
Chuka-ogwude, D., Ogbonna, J., Moheimani, N.R. 2020. A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Research, 47, 101841.
Conti, R., Jäger, N., Neumann, J., Apfelbacher, A., Daschner, R., Hornung, A. 2017. Thermocatalytic reforming of biomass waste streams. Energy Technology, 5(1), 104-110.
Cordell, D., Rosemarin, A., Schröder, J.J., Smit, A. 2011. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 84(6), 747-758.
Correa, C.R., Bernardo, M., Ribeiro, R.P., Esteves, I.A., Kruse, A. 2017. Evaluation of hydrothermal carbonization as a preliminary step for the production of functional materials from biogas digestate. Journal of Analytical and Applied Pyrolysis, 124, 461-474.
Cristiani, L., Zeppilli, M., Porcu, C., Majone, M. 2020. Ammonium recovery and biogas upgrading in a tubular micro-pilot microbial electrolysis cell (MEC). Molecules, 25(12), 2723.
Cruz, I.A., Chuenchart, W., Long, F., Surendra, K., Andrade, L.R.S., Bilal, M., Liu, H., Figueiredo, R.T., Khanal, S.K., Ferreira, L.F.R. 2022. Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresource Technology, 345, 126433.
Cui, Z., Shah, A. 2024. Energy and element fate of hydrochar from hydrothermal carbonization of dairy manure digestate. BioEnergy Research, 17(2), 1167-1178.
da Silva Medeiros, D.C.C., Nzediegwu, C., Benally, C., Messele, S.A., Kwak, J.-H., Naeth, M.A., Ok, Y.S., Chang, S.X., El-Din, M.G. 2022. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: A critical review. Science of The Total Environment, 809, 151120.
de Jager, M., Giani, L. 2021. An investigation of the effects of hydrochar application rate on soil amelioration and plant growth in three diverse soils. Biochar, 3(3), 349-365.
de Jager, M., Röhrdanz, M., Giani, L. 2020. The influence of hydrochar from biogas digestate on soil improvement and plant growth aspects. Biochar, 2(2), 177-194.
Deng, C., Kang, X., Lin, R., Murphy, J.D. 2020. Microwave assisted low-temperature hydrothermal treatment of solid anaerobic digestate for optimising hydrochar and energy recovery. Chemical Engineering Journal, 395, 124999.
Diao, R., Lu, H., Yang, Y., Bai, J., Zhu, X. 2022. Strategic valorization of bio-oil distillation sludge via gasification: a comparative study for reactivities, kinetics, prediction and ash deposition. Chemical Engineering Journal, 433, 134334.
Diao, R., Yang, Y., Chen, T., Zhu, X. 2023. Comparative investigation on gasification performances of co-pyrolytic char from bio-oil distillation sludge and rapeseed cake: Decomposition, kinetic, structural and prediction characteristics. Fuel, 332, 125884.
Dieguez-Alonso, A., Funke, A., Anca-Couce, A., Rombolà, A.G., Ojeda, G., Bachmann, J., Behrendt, F. 2018. Towards biochar and hydrochar engineering—Influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies, 11(3), 496.
Dietrich, C.C., Rahaman, M.A., Robles-Aguilar, A.A., Latif, S., Intani, K., Müller, J., Jablonowski, N.D. 2020. Nutrient loaded biochar doubled biomass production in juvenile maize plants (Zea mays L.). Agronomy, 10(4), 567.
Dietterich, T.G. 2000. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine learning, 40, 139-157.
Ding, J., Shen, Y., Ma, Y., Meng, H., Cheng, H., Zhang, X., Wang, J., Zhang, P. 2020. Study on dynamic sorption characteristics of modified biochars for ammonium in biogas slurry. International Journal of Agricultural and Biological Engineering, 13(1), 234-240.
Djandja, O.S., Duan, P.G., Yin, L.X., Wang, Z.C., Duo, J. 2021. A novel machine learning-based approach for prediction of nitrogen content in hydrochar from hydrothermal carbonization of sewage. Energy, 232, 121010.
Djandja, O.S., Kang, S.M., Huang, Z.Z., Li, J.Q., Feng, J.Q., Tan, Z.M., Salami, A.A., Lougou, B.G. 2023. Machine learning prediction of fuel properties of hydrochar from co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass. Energy, 271, 126968.
Djandja, O.S., Salami, A.A., Wang, Z.C., Duo, J., Yin, L.X., Duan, P.G. 2022. Random forest-based modeling for insights on phosphorus content in hydrochar produced from hydrothermal carbonization of sewage sludge. Energy, 245, 123295.
Dong, Z., Bai, X., Xu, D., Li, W. 2023. Machine learning prediction of pyrolytic products of lignocellulosic biomass based on physicochemical characteristics and pyrolysis conditions. Bioresource Technology, 367, 128182.
Dragicevic, I., Eich-Greatorex, S., Sogn, T.A., Horn, S.J., Krogstad, T. 2018. Use of high metal-containing biogas digestates in cereal production–Mobility of chromium and aluminium. Journal of environmental management, 217, 12-22.
Drosg, B., Fuchs, W., Al Seadi, T., Madsen, M., Linke, B. 2015. Nutrient recovery by biogas digestate processing. IEA Bioenergy Dublin.
Đurđević, D., Hulenić, I. 2020. Anaerobic digestate treatment selection model for biogas plant costs and emissions reduction. Processes, 8(2), 142.
Dutta, S., He, M., Xiong, X., Tsang, D.C. 2021. Sustainable management and recycling of food waste anaerobic digestate: a review. Bioresource technology, 341, 125915.
Ekpo, U., Ross, A.B., Camargo-Valero, M.A., Williams, P.T. 2016. A comparison of product yields and inorganic content in process streams following thermal hydrolysis and hydrothermal processing of microalgae, manure and digestate. Bioresource Technology, 200, 951-960.
Elbashier, M.M., Xiaohou, S., Ali, A.A., Mohmmed, A. 2018. Effect of digestate and biochar amendments on photosynthesis rate, growth parameters, water use efficiency and yield of Chinese melon (Cucumis melo L.) under saline irrigation. Agronomy, 8(2), 22.
Eraky, M., Elsayed, M., Qyyum, M.A., Ai, P., Tawfik, A. 2022. A new cutting-edge review on the bioremediation of anaerobic digestate for environmental applications and cleaner bioenergy. Environmental Research, 213, 113708.
Escuer-Gatius, J., Shanskiy, M., Soosaar, K., Astover, A., Raave, H. 2020. High-temperature hay biochar application into soil increases N2O fluxes. Agronomy, 10(1), 109.
Ewees, A.A., Elaziz, M.A. 2019. Improved adaptive neuro-fuzzy inference system using gray wolf optimization: a case study in predicting biochar yield. Journal of Intelligent Systems, 29(1), 924-940.
Ezz, H., Ibrahim, M.G., Fujii, M., Nasr, M. 2023. Dual biogas and biochar production from rice straw biomass: a techno-economic and sustainable development approach. Biomass Conversion and Biorefinery, 13(12), 10807-10821.
Fang, J., Zhan, L., Ok, Y.S., Gao, B. 2018. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. Journal of Industrial and Engineering Chemistry, 57, 15-21.
Farru, G., Asquer, C., Cappai, G., De Gioannis, G., Melis, E., Milia, S., Muntoni, A., Piredda, M., Scano, E.A. 2022. Hydrothermal carbonization of hemp digestate: influence of operating parameters. Biomass Conversion and Biorefinery.
Farru, G., Asquer, C., Cappai, G., De Gioannis, G., Melis, E., Milia, S., Muntoni, A., Piredda, M., Scano, E.A. 2024. Hydrothermal carbonization of hemp digestate: Influence of operating parameters. Biomass Conversion and Biorefinery, 14(5), 6999-7010.
Fernández-Sanromán, Á., Lama, G., Pazos, M., Rosales, E., Sanromán, M.Á. 2021. Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. Bioresource Technology, 320, 124399.
Foster, P., Prasad, M. 2021. Development of Quality Standards for Compost and Digestate in Ireland. Environmental Protection Agency: Wexford, Ireland.
Fu, D., Chen, Z., Xia, D., Shen, L., Wang, Y., Li, Q. 2017. A novel solid digestate-derived biochar-Cu NP composite activating H2O2 system for simultaneous adsorption and degradation of tetracycline. Environmental pollution, 221, 301-310.
Fu, D., Kurniawan, T.A., Li, H., Wang, L., Chen, Z., Li, W., Wang, Y., Wang, H., Li, Q. 2019. Applicability of HDPC-supported Cu nanoparticles composite synthesized from anaerobically digested wheat straw for octocrylene degradation in aqueous solutions. Chemical Engineering Journal, 355, 650-660.
Funke, A. 2015. Fate of Plant Available Nutrients during Hydrothermal Carbonization of Digestate. Chemie Ingenieur Technik, 87(12), 1713-1719.
Funke, A., Ziegler, F. 2010. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160-177.
Ganguly, A., Brown, R.C., Wright, M.M. 2022. Investigating the impacts of feedstock variability on a carbon-negative autothermal pyrolysis system using machine learning. Frontiers in Climate, 4, 842650.
Garlapalli, R.K., Wirth, B., Reza, M.T. 2016. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation. Bioresource technology, 220, 168-174.
Ghavami, N., Özdenkçi, K., Chianese, S., Musmarra, D., De Blasio, C. 2022. Process simulation of hydrothermal carbonization of digestate from energetic perspectives in Aspen Plus. Energy Conversion and management, 270, 116215.
Gherman, I.M., Abdallah, Z.S., Pang, W., Gorochowski, T.E., Grierson, C.S., Marucci, L. 2023. Bridging the gap between mechanistic biological models and machine learning surrogates. PLoS Computational Biology, 19(4), e1010988.
Gianfagna, L., Di Cecco, A. 2021. Explainable AI with python. Springer.
Gil-Lalaguna, N., Navarro-Gil, Á., Carstensen, H.-H., Ruiz, J., Fonts, I., Ceamanos, J., Murillo, M.B., Gea, G. 2022. CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect? Science of the Total Environment, 846, 157395.
Golkowska, K., Vázquez-Rowe, I., Lebuf, V., Accoe, F., Koster, D. 2014. Assessing the treatment costs and the fertilizing value of the output products in digestate treatment systems. Water science and technology, 69(3), 656-662.
Gonsalvesh, L., Gryglewicz, G., Carleer, R., Yperman, J. 2017. Valorization of swine manure into low cost activated carbons capable of Cr (VI) removal. Advances in environmental research, 6(2), 95-111.
González-Arias, J., Gil, M.V., Fernández, R.Á., Martínez, E.J., Fernández, C., Papaharalabos, G., Gómez, X. 2020. Integrating anaerobic digestion and pyrolysis for treating digestates derived from sewage sludge and fat wastes. Environmental Science and Pollution Research, 27(26), 32603-32614.
González-Arias, J., Sánchez, M.E., Cara-Jiménez, J., Baena-Moreno, F.M., Zhang, Z. 2022. Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 1-11.
González, R., González, J., Rosas, J.G., Smith, R., Gómez, X. 2020. Biochar and energy production: Valorizing swine manure through coupling co-digestion and pyrolysis. C, 6(2), 43.
Goswami, L., Kushwaha, A., Kafle, S.R., Kim, B.-S. 2022. Surface modification of biochar for dye removal from wastewater. Catalysts, 12(8), 817.
Grasham, O., Dupont, V., Cockerill, T., Camargo-Valero, M.A. 2022. Ammonia and biogas from anaerobic and sewage digestion for novel heat, power and transport applications—a techno-economic and GHG emissions study for the United Kingdom. Energies, 15(6), 2174.
Greenberg, I., Kaiser, M., Gunina, A., Ledesma, P., Polifka, S., Wiedner, K., Mueller, C.W., Glaser, B., Ludwig, B. 2019. Substitution of mineral fertilizers with biogas digestate plus biochar increases physically stabilized soil carbon but not crop biomass in a field trial. Science of the total environment, 680, 181-189.
Guan, D., Zhao, J., Wang, Y., Fu, Z., Zhang, D., Zhang, H., Xie, J., Sun, Y., Zhu, J., Wang, D. 2024. A critical review on sustainable management and resource utilization of digestate. Process Safety and Environmental Protection.
Guilayn, F., Rouez, M., Crest, M., Patureau, D., Jimenez, J. 2020. Valorization of digestates from urban or centralized biogas plants: a critical review. Reviews in Environmental Science and Bio/Technology, 19, 419-462.
Guo, S., Dong, X., Wu, T., Zhu, C. 2016. Influence of reaction conditions and feedstock on hydrochar properties. Energy Conversion and Management, 123, 95-103.
Guo, X., Gao, G., Remón, J., Ma, Y., Jiang, Z., Shi, B., Tsang, D.C. 2022. Selective hydrogenation of vanillin to vanillyl alcohol over Pd, Pt, and Au catalysts supported on an advanced nitrogen-containing carbon material produced from food waste. Chemical Engineering Journal, 440, 135885.
Gupta, R., Zhang, L., Hou, J., Zhang, Z., Liu, H., You, S., Ok, Y.S., Li, W. 2023. Review of explainable machine learning for anaerobic digestion. Bioresource technology, 369, 128468.
Gusiatin, Z.M., Kurkowski, R., Brym, S., Wiśniewski, D. 2016. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil. Environmental Science and Pollution Research, 23, 21249-21261.
Gyanwali, P., Khanal, R., Pokhrel, S., Adhikari, K. 2024. Exploring the Benefits of Biochar: A Review of Production Methods, Characteristics, and Applications in Soil Health and Environment. Egyptian Journal of Soil Science, 64(3), 855-884.
Hackeling, G. 2017. Mastering Machine Learning with scikit-learn. Packt Publishing Ltd.
Hai, A., Bharath, G., Patah, M.F.A., Daud, W.M.A.W., Rambabu, K., Show, P., Banat, F. 2023. Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural biomass by pyrolysis. Environmental Technology & Innovation, 30, 103071.
Haq, Z.U., Ullah, H., Khan, M.N.A., Naqvi, S.R., Ahad, A., Amin, N.A.S. 2022. Comparative study of machine learning methods integrated with genetic algorithm and particle swarm optimization for bio-char yield prediction. Bioresource Technology, 363, 128008.
He, C., Giannis, A., Wang, J.-Y. 2013. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy, 111, 257-266.
He, M., Cao, Y., Xu, Z., You, S., Ruan, R., Gao, B., Wong, K.-H., Tsang, D.C. 2022a. Process water recirculation for catalytic hydrothermal carbonization of anaerobic digestate: Water-Energy-Nutrient Nexus. Bioresource Technology, 361, 127694.
He, M., Zhu, X., Dutta, S., Khanal, S.K., Lee, K.T., Masek, O., Tsang, D.C. 2022. Catalytic co-hydrothermal carbonization of food waste digestate and yard waste for energy application and nutrient recovery. Bioresource technology, 344, 126395.
Herbes, C., Roth, U., Wulf, S., Dahlin, J. 2020. Economic assessment of different biogas digestate processing technologies: A scenario-based analysis. Journal of Cleaner Production, 255, 120282.
Ho, S.-H., Nagarajan, D., Ren, N.-q., Chang, J.-S. 2018. Waste biorefineries—integrating anaerobic digestion and microalgae cultivation for bioenergy production. Current opinion in biotechnology, 50, 101-110.
Hämäläinen, A., Kokko, M., Kinnunen, V., Hilli, T., Rintala, J. 2021. Hydrothermal carbonisation of mechanically dewatered digested sewage sludge—Energy and nutrient recovery in centralised biogas plant. Water research, 201, 117284.
Hough, B.R., Beck, D.A., Schwartz, D.T., Pfaendtner, J. 2017. Application of machine learning to pyrolysis reaction networks: Reducing model solution time to enable process optimization. Computers & Chemical Engineering, 104, 56-63.
Huang, D., Wang, N., Bai, X., Chen, Y., Xu, Q. 2022. The influencing mechanism of O2, H2O, and CO2 on the H2S removal of food waste digestate-derived biochar with abundant minerals. Biochar, 4(1), 71.
Huang, S., Wang, T., Chen, K., Mei, M., Liu, J., Li, J. 2020. Engineered biochar derived from food waste digestate for activation of peroxymonosulfate to remove organic pollutants. Waste management, 107, 211-218.
Huang, W.-H., Chang, Y.-J., Wu, R.-M., Chang, J.-S., Chuang, X.-Y., Lee, D.-J. 2023. Type-wide biochars loaded with Mg/Al layered double hydroxide as adsorbent for phosphate and mixed heavy metal ions in water. Environmental Research, 224, 115520.
Hung, C.-Y., Tsai, W.-T., Chen, J.-W., Lin, Y.-Q., Chang, Y.-M. 2017. Characterization of biochar prepared from biogas digestate. Waste management, 66, 53-60.
Janga, K.K., Øyaas, K., Hertzberg, T., Moe, S. 2012. Application of a Pseudo-Kinetic Generalized Serverity Model to the Concentrated Sulfuric Acid Hydrolysis of Pinewood and Aspenwood.
Jeyasubramanian, K., Thangagiri, B., Sakthivel, A., Raja, J.D., Seenivasan, S., Vallinayagam, P., Madhavan, D., Devi, S.M., Rathika, B. 2021. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel, 292, 120243.
Jiang, B., Lin, Y., Mbog, J.C. 2018. Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresource Technology, 270, 603-611.
Jiang, W., Xing, X., Zhang, X., Mi, M. 2019. Prediction of combustion activation energy of NaOH/KOH catalyzed straw pyrolytic carbon based on machine learning. Renewable energy, 130, 1216-1225.
Kapetanakis, T.N., Vardiambasis, I.O., Nikolopoulos, C.D., Konstantaras, A.I., Trang, T.K., Khuong, D.A., Tsubota, T., Keyikoglu, R., Khataee, A., Kalderis, D. 2021. Towards Engineered Hydrochars: Application of Artificial Neural Networks in the Hydrothermal Carbonization of Sewage Sludge. Energies, 14(11).
Kardani, N., Hedayati Marzbali, M., Shah, K., Zhou, A. 2022. Machine learning prediction of the conversion of lignocellulosic biomass during hydrothermal carbonization. Biofuels, 13(6), 703-715.
Kartal, F., Özveren, U. 2021. An improved machine learning approach to estimate hemicellulose, cellulose, and lignin in biomass. Carbohydrate Polymer Technologies and Applications, 2, 100148.
Kassem, N., Sills, D., Posmanik, R., Blair, C., Tester, J.W. 2020. Combining anaerobic digestion and hydrothermal liquefaction in the conversion of dairy waste into energy: A techno economic model for New York state. Waste management, 103, 228-239.
Kataki, S., Hazarika, S., Baruah, D. 2017. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient. Waste management, 59, 102-117.
Kataki, S., Hazarika, S., Baruah, D. 2019a. By-products of bioenergy systems (anaerobic digestion and gasification) as sources of plant nutrients: scope of processed application and effect on soil and crop. Journal of Material Cycles and Waste Management, 21(3), 556-572.
Kataki, S., Hazarika, S., Baruah, D. 2019b. Recycling of bioenergy by‐products as crop nutrient: Application in different phases for improvement of soil and crop. Environmental Progress & Sustainable Energy, 38(4), 13099.
Katongtung, T., Onsree, T., Tippayawong, N. 2022. Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Bioresource Technology, 344, 126278.
Kaya, E.Y., Ali, I., Ceylan, Z., Ceylan, S. 2024. Prediction of higher heating value of hydrochars using Bayesian optimization tuned Gaussian process regression based on biomass characteristics and process conditions. Biomass & Bioenergy, 180, 106993.
Khanal, S.K., Lü, F., Wong, J.W., Wu, D., Oechsner, H. 2021. Anaerobic digestion beyond biogas, Vol. 337, Elsevier, pp. 125378.
Kizito, S., Luo, H., Lu, J., Bah, H., Dong, R., Wu, S. 2019. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability, 11(11), 3211.
Kizito, S., Luo, H., Wu, S., Ajmal, Z., Lv, T., Dong, R. 2017. Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration. Journal of Environmental Management, 201, 260-267.
Kizito, S., Wu, S., Wandera, S.M., Guo, L., Dong, R. 2016. Evaluation of ammonium adsorption in biochar-fixed beds for treatment of anaerobically digested swine slurry: experimental optimization and modeling. Science of the total environment, 563, 1095-1104.
Knoblauch, C., Priyadarshani, S.R., Haefele, S.M., Schröder, N., Pfeiffer, E.M. 2021. Impact of biochar on nutrient supply, crop yield and microbial respiration on sandy soils of northern Germany. European Journal of Soil Science, 72(4), 1885-1901.
Kocatürk-Schumacher, N.P., Zwart, K., Bruun, S., Brussaard, L., Jensen, L.S. 2017. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate? Environmental technology, 38(10), 1313-1323.
Kovalcik, A., Meixner, K., Mihalic, M., Zeilinger, W., Fritz, I., Fuchs, W., Kucharczyk, P., Stelzer, F., Drosg, B. 2017. Characterization of polyhydroxyalkanoates produced by Synechocystis salina from digestate supernatant. International journal of biological macromolecules, 102, 497-504.
Kunz, A., Steinmetz, R.L.R., do Amaral, A.C. 2022. Fundamentals of anaerobic digestion, biogas purification, use and treatment of digestate.
Lachos-Perez, D., Torres-Mayanga, P.C., Abaide, E.R., Zabot, G.L., De Castilhos, F. 2022. Hydrothermal carbonization and Liquefaction: Differences, progress, challenges, and opportunities. Bioresource Technology, 343, 126084.
Lakshmi, D., Akhil, D., Kartik, A., Gopinath, K.P., Arun, J., Bhatnagar, A., Rinklebe, J., Kim, W., Muthusamy, G. 2021. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. Science of the Total Environment, 801, 149623.
Lamolinara, B., Pérez-Martínez, A., Guardado-Yordi, E., Fiallos, C.G., Diéguez-Santana, K., Ruiz-Mercado, G.J. 2022. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Management, 140, 14-30.
Lanza, G., Stang, A., Kern, J., Wirth, S., Gessler, A. 2018. Degradability of raw and post-processed chars in a two-year field experiment. Science of the total environment, 628, 1600-1608.
Lee, J.W., Kidder, M., Evans, B.R., Paik, S., Buchanan Iii, A., Garten, C.T., Brown, R.C. 2010. Characterization of biochars produced from cornstovers for soil amendment. Environmental science & technology, 44(20), 7970-7974.
Leng, L., Li, T., Zhan, H., Rizwan, M., Zhang, W., Peng, H., Yang, Z., Li, H. 2023. Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass. Energy, 278, 127967.
Leng, L., Yang, L., Lei, X., Zhang, W., Ai, Z., Yang, Z., Zhan, H., Yang, J., Yuan, X., Peng, H. 2022a. Machine learning predicting and engineering the yield, N content, and specific surface area of biochar derived from pyrolysis of biomass. Biochar, 4(1), 63.
Leng, L., Zhang, W., Chen, Q., Zhou, J., Peng, H., Zhan, H., Li, H. 2022b. Machine learning prediction of nitrogen heterocycles in bio-oil produced from hydrothermal liquefaction of biomass. Bioresource Technology, 362, 127791.
Leng, L., Zhang, W., Liu, T., Zhan, H., Li, J., Yang, L., Li, J., Peng, H., Li, H. 2022c. Machine learning predicting wastewater properties of the aqueous phase derived from hydrothermal treatment of biomass. Bioresource Technology, 358, 127348.
Leng, L.J., Zhou, J.H., Zhang, W.J., Chen, J.F., Wu, Z.B., Xu, D.H., Zhan, H., Yuan, X.Z., Xu, Z.Y., Peng, H.Y., Yang, Z.Q., Li, H.L. 2024. Machine-learning-aided hydrochar production through hydrothermal carbonization of biomass by engineering operating parameters and/or biomass mixture recipes. Energy, 288, 129854.
Li, C., Li, J., Pan, L., Zhu, X., Xie, S., Yu, G., Wang, Y., Pan, X., Zhu, G., Angelidaki, I. 2020a. Treatment of digestate residues for energy recovery and biochar production: From lab to pilot-scale verification. Journal of cleaner production, 265, 121852.
Li, H., Ai, Z., Yang, L., Zhang, W., Yang, Z., Peng, H., Leng, L. 2023a. Machine learning assisted predicting and engineering specific surface area and total pore volume of biochar. Bioresource Technology, 369, 128417.
Li, H., Chen, J., Zhang, W., Zhan, H., He, C., Yang, Z., Peng, H., Leng, L. 2023b. Machine-learning-aided thermochemical treatment of biomass: a review. Biofuel Research Journal, 10(1), 1786-1809.
Li, J., Pan, L., Li, Z., Wang, Y. 2023c. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. Science of The Total Environment, 885, 163895.
Li, J., Pan, L., Suvarna, M., Tong, Y.W., Wang, X. 2020b. Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning. Applied Energy, 269, 115166.
Li, J., Pan, L.J., Suvarna, M., Tong, Y.W., Wang, X.N. 2020c. Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning. Applied Energy, 269, 115166.
Li, J., Suvarna, M., Li, L., Pan, L., Pérez-Ramírez, J., Ok, Y.S., Wang, X. 2022a. A review of computational modeling techniques for wet waste valorization: Research trends and future perspectives. Journal of Cleaner Production, 367, 133025.
Li, J., Zhu, X.Z., Li, Y.A., Tong, Y.W., Ok, Y.S., Wang, X.N. 2021a. Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: Application of machine learning on waste-to-resource. Journal of Cleaner Production, 278, 123928.
Li, X., Chen, L., Dai, X., Mei, Q., Ding, G. 2017. Thermogravimetry–Fourier transform infrared spectrometry–mass spectrometry technique to evaluate the effect of anaerobic digestion on gaseous products of sewage sludge sequential pyrolysis. Journal of Analytical and Applied Pyrolysis, 126, 288-297.
Li, X., Zhang, J., Liu, B., Su, Z. 2021b. A critical review on the application and recent developments of post-modified biochar in supercapacitors. Journal of Cleaner Production, 310, 127428.
Li, Y., Gupta, R., You, S. 2022b. Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass. Bioresource Technology, 359, 127511.
Liao, M., Yao, Y. 2021. Applications of artificial intelligence‐based modeling for bioenergy systems: A review. GCB Bioenergy, 13(5), 774-802.
Liberti, F., Pistolesi, V., Mouftahi, M., Hidouri, N., Bartocci, P., Massoli, S., Zampilli, M., Fantozzi, F. 2019. An incubation system to enhance biogas and methane production: A case study of an existing biogas plant in Umbria, Italy. Processes, 7(12), 925.
Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M., Fühner, C., Bens, O., Kern, J. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71-106.
Libutti, A., Trotta, V., Rivelli, A.R. 2020. Biochar, vermicompost, and compost as soil organic amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy, 10(3), 346.
Lin, H., Gan, J., Rajendran, A., Reis, C.E.R., Hu, B. 2015. Phosphorus removal and recovery from digestate after biogas production. in: Biofuels-status and perspective, IntechOpen.
Lin, R., O'Shea, R., Deng, C., Wu, B., Murphy, J.D. 2021. A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems. Renewable and Sustainable Energy Reviews, 150, 111427.
Liu, J., Huang, S., Chen, K., Wang, T., Mei, M., Li, J. 2020. Preparation of biochar from food waste digestate: pyrolysis behavior and product properties. Bioresource technology, 302, 122841.
Liu, J., Huang, S., Wang, T., Mei, M., Chen, S., Li, J. 2021a. Peroxydisulfate activation by digestate-derived biochar for azo dye degradation: Mechanism and performance. Separation and Purification Technology, 279, 119687.
Liu, J., Huang, S., Wang, T., Mei, M., Chen, S., Zhang, W., Li, J. 2021b. Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste. Renewable Energy, 179, 179-188.
Liu, J., Jia, H., Mei, M., Wang, T., Chen, S., Li, J. 2022a. Efficient degradation of diclofenac by digestate-derived biochar catalyzed peroxymonosulfate oxidation: performance, machine learning prediction, and mechanism. Process Safety and Environmental Protection, 167, 77-88.
Liu, J., Zhang, W., Mei, M., Wang, T., Chen, S., Li, J. 2022b. A Ca-rich biochar derived from food waste digestate with exceptional adsorption capacity for arsenic (III) removal via a cooperative mechanism. Separation and Purification Technology, 295, 121359.
Liu, Q., Zhang, G.Y., Yu, J.J., Kong, G., Cao, T.Q., Ji, G.Y., Zhang, X.S., Han, L.J. 2024. Machine learning-aided hydrothermal carbonization of biomass for coal-like hydrochar production: Parameters optimization and experimental verification. Bioresource Technology, 393, 130073.
Lu, J., Xu, S. 2021. Post-treatment of food waste digestate towards land application: A review. Journal of Cleaner Production, 303, 127033.
Lucian, M., Fiori, L. 2017. Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies, 10(2), 211.
Luo, Z., Wang, D., Zeng, W., Yang, J. 2020. Removal of refractory organics from piggery bio-treatment effluent by the catalytic ozonation process with piggery biogas residue biochar as the catalyst. Science of the Total Environment, 734, 139448.
Magama, P., Chiyanzu, I., Mulopo, J. 2022. A parametric experimental validation of a biorefinery concept based on anaerobic digestion of fruit and vegetable waste. Biofuels, Bioproducts and Biorefining, 16(4), 972-985.
Magdziarz, A., Mlonka-Mędrala, A., Sieradzka, M., Aragon-Briceño, C., Pożarlik, A., Bramer, E.A., Brem, G., Niedzwiecki, Ł., Pawlak-Kruczek, H. 2021. Multiphase analysis of hydrochars obtained by anaerobic digestion of municipal solid waste organic fraction. Renewable Energy, 175, 108-118.
Makádi, M., Tomócsik, A., Orosz, V. 2012. Digestate: a new nutrient source–review. Biogas 14, 295–312. Go to original source.
Malhotra, M., Aboudi, K., Pisharody, L., Singh, A., Banu, J.R., Bhatia, S.K., Varjani, S., Kumar, S., González-Fernández, C., Kumar, S. 2022. Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives. Renewable and Sustainable Energy Reviews, 166, 112642.
Manasa, M., Katukuri, N.R., Nair, S.S.D., Haojie, Y., Yang, Z., bo Guo, R. 2020a. Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil. Journal of Environmental Management, 269, 110737.
Manasa, M., Katukuri, N.R., Xu, X., Guo, R. 2020b. Rehabilitation of saline soil with biogas digestate, humic acid, calcium humate and their amalgamations. Communications in Soil Science and Plant Analysis, 51(13), 1707-1724.
Manatura, K., Chalermsinsuwan, B., Kaewtrakulchai, N., Kwon, E.E., Chen, W.-H. 2023. Machine learning and statistical analysis for biomass torrefaction: A review. Bioresource technology, 369, 128504.
Manikandan, S., Vickram, S., Subbaiya, R., Karmegam, N., Chang, S.W., Ravindran, B., Awasthi, M.K. 2023. Comprehensive review on recent production trends and applications of biochar for greener environment. Bioresource Technology, 129725.
Maniscalco, M.P., Volpe, M., Messineo, A. 2020. Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies, 13(16), 4098.
Marchese, M., Chesta, S., Santarelli, M., Lanzini, A. 2021. Techno-economic feasibility of a biomass-to-X plant: Fischer-Tropsch wax synthesis from digestate gasification. Energy, 228, 120581.
Mari Selvam, S., Balasubramanian, P. 2023. Influence of biomass composition and microwave pyrolysis conditions on biochar yield and its properties: a machine learning approach. BioEnergy Research, 16(1), 138-150.
Marin-Batista, J., Mohedano, A., Rodríguez, J., De La Rubia, M. 2020. Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge. Waste Management, 105, 566-574.
Marmiroli, M., Bonas, U., Imperiale, D., Lencioni, G., Mussi, F., Marmiroli, N., Maestri, E. 2018. Structural and functional features of chars from different biomasses as potential plant amendments. Frontiers in plant science, 9, 375024.
Mason, P.E., Higgins, L., Climent Barba, F., Cunliffe, A., Cheffins, N., Robinson, D., Jones, J.M. 2020. An Assessment of Contaminants in UK Road-Verge Biomass and the Implications for Use as Anaerobic Digestion Feedstock. Waste and biomass valorization, 11, 1971-1981.
Masoumi, S., Borugadda, V.B., Nanda, S., Dalai, A.K. 2021. Hydrochar: a review on its production technologies and applications. Catalysts, 11(8), 939.
Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M., Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P., Rittmann, B.E. 2016. Total value of phosphorus recovery. Environmental science & technology, 50(13), 6606-6620.
Medina-Martos, E., Istrate, I.-R., Villamil, J.A., Gálvez-Martos, J.-L., Dufour, J., Mohedano, Á.F. 2020. Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. Journal of cleaner production, 277, 122930.
Menkveld, H., Broeders, E. 2017. Recovery of ammonium from digestate as fertilizer. Water Practice and Technology, 12(3), 514-519.
Meyer, S., Glaser, B., Quicker, P. 2011. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environmental science & technology, 45(22), 9473-9483.
Michailos, S., Walker, M., Moody, A., Poggio, D., Pourkashanian, M. 2020. Biomethane production using an integrated anaerobic digestion, gasification and CO2 biomethanation process in a real waste water treatment plant: A techno-economic assessment. Energy conversion and management, 209, 112663.
Miliotti, E., Casini, D., Rosi, L., Lotti, G., Rizzo, A.M., Chiaramonti, D. 2020. Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: Characterization of solid products and compliance with biochar standards. Biomass and Bioenergy, 139, 105593.
Mo, Z., Tan, Z., Liang, J., Zhang, L., Li, C., Huang, S., Sun, S., Sun, Y. 2023. Iron-rich digestate biochar toward sustainable peroxymonosulfate activation for efficient anaerobic digestate dewaterability. Journal of Hazardous Materials, 443, 130200.
Mohammadi, A., Sandberg, M., Venkatesh, G., Eskandari, S., Dalgaard, T., Joseph, S., Granström, K. 2019. Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production. Energy, 182, 594-605.
Molino, A., Chianese, S., Musmarra, D. 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10-25.
Monlau, F., Francavilla, M., Sambusiti, C., Antoniou, N., Solhy, A., Libutti, A., Zabaniotou, A., Barakat, A., Monteleone, M. 2016. Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Applied Energy, 169, 652-662.
Monlau, F., Sambusiti, C., Antoniou, N., Barakat, A., Zabaniotou, A. 2015a. A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Applied Energy, 148, 32-38.
Monlau, F., Sambusiti, C., Antoniou, N., Zabaniotou, A., Solhy, A., Barakat, A. 2015b. Pyrochars from bioenergy residue as novel bio-adsorbents for lignocellulosic hydrolysate detoxification. Bioresource technology, 187, 379-386.
Monlau, F., Sambusiti, C., Ficara, E., Aboulkas, A., Barakat, A., Carrère, H. 2015c. New opportunities for agricultural digestate valorization: current situation and perspectives. Energy & Environmental Science, 8(9), 2600-2621.
Moreno, V.C., Iervolino, G., Tugnoli, A., Cozzani, V. 2020. Techno-economic and environmental sustainability of biomass waste conversion based on thermocatalytic reforming. Waste management, 101, 106-115.
Moretto, G., Russo, I., Bolzonella, D., Pavan, P., Majone, M., Valentino, F. 2020. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Research, 170, 115371.
Mougari, N., Largeau, J., Himrane, N., Hachemi, M., Tazerout, M. 2021. Application of artificial neural network and kinetic modeling for the prediction of biogas and methane production in anaerobic digestion of several organic wastes. International Journal of Green Energy, 18(15), 1584-1596.
Msemwa, G.G., Ibrahim, M.G., Fujii, M., Nasr, M. 2022. Phytomanagement of textile wastewater for dual biogas and biochar production: A techno-economic and sustainable approach. Journal of Environmental Management, 322, 116097.
Mu, L., Wang, Z., Wu, D., Zhao, L., Yin, H. 2022. Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: Machine learning algorithm based on proposed PSO–NN model. Fuel, 318, 123644.
Muhmood, A., Lu, J., Kadam, R., Dong, R., Guo, J., Wu, S. 2019. Biochar seeding promotes struvite formation, but accelerates heavy metal accumulation. Science of the total environment, 652, 623-632.
Mukherjee, S., Tappe, W., Weihermueller, L., Hofmann, D., Köppchen, S., Laabs, V., Schroeder, T., Vereecken, H., Burauel, P. 2016a. Dissipation of bentazone, pyrimethanil and boscalid in biochar and digestate based soil mixtures for biopurification systems. Science of the total environment, 544, 192-202.
Mukherjee, S., Weihermüller, L., Tappe, W., Hofmann, D., Köppchen, S., Laabs, V., Vereecken, H., Burauel, P. 2016b. Sorption–desorption behaviour of bentazone, boscalid and pyrimethanil in biochar and digestate based soil mixtures for biopurification systems. Science of the Total Environment, 559, 63-73.
Mukherjee, S., Weihermueller, L., Tappe, W., Vereecken, H., Burauel, P. 2016c. Microbial respiration of biochar-and digestate-based mixtures. Biology and fertility of soils, 52, 151-164.
Nair, R.R., Mondal, M.M., Srinivasan, S.V., Weichgrebe, D. 2022. Biochar synthesis from mineral-and ash-rich waste biomass, part 1: investigation of thermal decomposition mechanism during slow pyrolysis. Materials, 15(12), 4130.
Nair, R.R., Mondal, M.M., Weichgrebe, D. 2020. Biochar from co-pyrolysis of urban organic wastes—investigation of carbon sink potential using ATR-FTIR and TGA. Biomass Conversion and Biorefinery, 1-15.
Nansubuga, I., Banadda, N., Ronsse, F., Verstraete, W., Rabaey, K. 2015. Digestion of high rate activated sludge coupled to biochar formation for soil improvement in the tropics. Water research, 81, 216-222.
Narde, S.R., Remya, N. 2022. Biochar production from agricultural biomass through microwave-assisted pyrolysis: predictive modelling and experimental validation of biochar yield. Environment, Development and Sustainability, 1-14.
Nesse, A.S., Sogn, T., Børresen, T., Foereid, B. 2019. Peat replacement in horticultural growth media: the adequacy of coir, paper sludge and biogas digestate as growth medium constituents for tomato (Solanum lycopersicum L.) and lettuce (Lactuca sativa L.). Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 69(4), 287-294.
Neumann, J., Meyer, J., Ouadi, M., Apfelbacher, A., Binder, S., Hornung, A. 2016. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process. Waste management, 47, 141-148.
Ngigi, A., Ok, Y.S., Thiele-Bruhn, S. 2019. Biochar-mediated sorption of antibiotics in pig manure. Journal of hazardous materials, 364, 663-670.
Nisticò, R., Guerretta, F., Benzi, P., Magnacca, G., Mainero, D., Montoneri, E. 2019. Thermal conversion of municipal biowaste anaerobic digestate to valuable char. Resources, 8(1), 24.
Nizamuddin, S., Baloch, H.A., Griffin, G.J., Mubarak, N.M., Bhutto, A.W., Abro, R., Mazari, S.A., Ali, B.S. 2017. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews, 73, 1289-1299.
Nkoa, R. 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development, 34, 473-492.
Nosek, D., Cydzik-Kwiatkowska, A. 2020. Microbial structure and energy generation in microbial fuel cells powered with waste anaerobic digestate. Energies, 13(18), 4712.
O'Connor, J., Mickan, B.S., Rinklebe, J., Song, H., Siddique, K.H., Wang, H., Kirkham, M., Bolan, N.S. 2022a. Environmental implications, potential value, and future of food-waste anaerobic digestate management: A review. Journal of Environmental Management, 318, 115519.
O'Connor, J., Mickan, B.S., Siddique, K.H., Rinklebe, J., Kirkham, M., Bolan, N.S. 2022b. Physical, chemical, and microbial contaminants in food waste management for soil application: a review. Environmental Pollution, 300, 118860.
Okolie, J.A., Savage, S., Ogbaga, C.C., Gunes, B. 2022. Assessing the potential of machine learning methods to study the removal of pharmaceuticals from wastewater using biochar or activated carbon. Total Environment Research Themes, 1, 100001.
Okoro, O.V., Sun, Z. 2021. The characterisation of biochar and biocrude products of the hydrothermal liquefaction of raw digestate biomass. Biomass Conversion and Biorefinery, 11(6), 2947-2961.
Okoro, O.V., Sun, Z., Birch, J. 2018. Prognostic assessment of the viability of hydrothermal liquefaction as a post-resource recovery step after enhanced biomethane generation using co-digestion technologies. Applied Sciences, 8(11), 2290.
Oliveira, V., Dias-Ferreira, C., González-García, I., Labrincha, J., Horta, C., García-González, M.C. 2021. A novel approach for nutrients recovery from municipal waste as biofertilizers by combining electrodialytic and gas permeable membrane technologies. Waste Management, 125, 293-302.
Olszewski, M.P., Nicolae, S.A., Arauzo, P.J., Titirici, M.-M., Kruse, A. 2020. Wet and dry? Influence of hydrothermal carbonization on the pyrolysis of spent grains. Journal of Cleaner Production, 260, 121101.
Opatokun, S.A., Kan, T., Al Shoaibi, A., Srinivasakannan, C., Strezov, V. 2016. Characterization of food waste and its digestate as feedstock for thermochemical processing. Energy & Fuels, 30(3), 1589-1597.
Opatokun, S.A., Yousef, L.F., Strezov, V. 2017. Agronomic assessment of pyrolysed food waste digestate for sandy soil management. Journal of environmental management, 187, 24-30.
Osman, K.T., Osman, K.T. 2013. Plant nutrients and soil fertility management. Soils: Principles, properties and management, 129-159.
Overend, R.P., Chornet, E. 1987. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321(1561), 523-536.
Pérez-Camacho, M.N., Curry, R. 2018. Regional assessment of bioeconomy options using the anaerobic biorefinery concept. Proceedings of the Institution of Civil Engineers-Waste and Resource Management. Thomas Telford Ltd. pp. 104-113.
Pagliano, G., Gugliucci, W., Torrieri, E., Piccolo, A., Cangemi, S., Di Giuseppe, F.A., Robertiello, A., Faraco, V., Pepe, O., Ventorino, V. 2020. Polyhydroxyalkanoates (PHAs) from dairy wastewater effluent: bacterial accumulation, structural characterization and physical properties. Chemical and Biological Technologies in Agriculture, 7, 1-14.
Pan, G., Ding, J., Du, Y., Lee, D.-J., Lu, Y. 2021. A DFT accurate machine learning description of molten ZnCl2 and its mixtures: 2. Potential development and properties prediction of ZnCl2-NaCl-KCl ternary salt for CSP. Computational Materials Science, 187, 110055.
Pan, G., Dong, H., Nouroddin, M.K. 2022. Applying ANFIS and LSSVM models for the estimation of biochar aromaticity. International Journal of Chemical Engineering, 2022.
Papa, G., Sciarria, T.P., Carrara, A., Scaglia, B., D'Imporzano, G., Adani, F. 2020. Implementing polyhydroxyalkanoates production to anaerobic digestion of organic fraction of municipal solid waste to diversify products and increase total energy recovery. Bioresource Technology, 318, 124270.
Parmar, K.R., Brown, A.E., Hammerton, J.M., Camargo-Valero, M.A., Fletcher, L.A., Ross, A.B. 2022a. Co-processing lignocellulosic biomass and sewage digestate by hydrothermal carbonisation: influence of blending on product quality. Energies, 15(4), 1418.
Parmar, K.R., Brown, A.E., Hammerton, J.M., Camargo-Valero, M.A., Fletcher, L.A., Ross, A.B. 2022b. Co-Processing Lignocellulosic Biomass and Sewage Digestate by Hydrothermal Carbonisation: Influence of Blending on Product Quality. Energies, 15(4).
Parmar, K.R., Ross, A.B. 2019. Integration of hydrothermal carbonisation with anaerobic digestion; Opportunities for valorisation of digestate. Energies, 12(9), 1586.
Passanha, P., Esteves, S.R., Kedia, G., Dinsdale, R.M., Guwy, A.J. 2013. Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors. Bioresource technology, 147, 345-352.
Pathy, A., Meher, S., Balasubramanian, P. 2020. Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods. Algal Research, 50, 102006.
Paula, A.J., Ferreira, O.P., Souza Filho, A.G., Filho, F.N., Andrade, C.E., Faria, A.F. 2022. Machine learning and natural language processing enable a data-oriented experimental design approach for producing biochar and hydrochar from biomass. Chemistry of Materials, 34(3), 979-990.
Pauline, A.L., Joseph, K. 2020. Hydrothermal carbonization of organic wastes to carbonaceous solid fuel–A review of mechanisms and process parameters. Fuel, 279, 118472.
Pawlak-Kruczek, H., Niedzwiecki, L., Sieradzka, M., Mlonka-Mędrala, A., Baranowski, M., Serafin-Tkaczuk, M., Magdziarz, A. 2020a. Hydrothermal carbonization of agricultural and municipal solid waste digestates–Structure and energetic properties of the solid products. Fuel, 275, 117837.
Pawlak-Kruczek, H., Urbanowska, A., Yang, W., Brem, G., Magdziarz, A., Seruga, P., Niedzwiecki, L., Pozarlik, A., Mlonka-Mędrala, A., Kabsch-Korbutowicz, M. 2020b. Industrial process description for the recovery of agricultural water from digestate. Journal of Energy Resources Technology, 142(7), 070917.
Pecchi, M., Baratieri, M. 2019. Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review. Renewable and Sustainable Energy Reviews, 105, 462-475.
Pecchi, M., Patuzzi, F., Benedetti, V., Di Maggio, R., Baratieri, M. 2020. Thermodynamics of hydrothermal carbonization: Assessment of the heat release profile and process enthalpy change. Fuel processing technology, 197, 106206.
Peng, L., Dai, H., Wu, Y., Peng, Y., Lu, X. 2018. A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781.
Peng, W., Lü, F., Hao, L., Zhang, H., Shao, L., He, P. 2020. Digestate management for high-solid anaerobic digestion of organic wastes: A review. Bioresource Technology, 297, 122485.
Peng, W., Pivato, A. 2019. Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste and biomass valorization, 10(2), 465-481.
Peng, W., Zhang, H., Lü, F., Shao, L., He, P. 2021. Char derived from food waste based solid digestate for phosphate adsorption. Journal of Cleaner Production, 297, 126687.
Peng, Y., Li, L., Dong, Q., Yang, P., Liu, H., Ye, W., Wu, D., Peng, X. 2023. Evaluation of digestate-derived biochar to alleviate ammonia inhibition during long-term anaerobic digestion of food waste. Chemosphere, 311, 137150.
Petrovič, A., Vohl, S., Cenčič Predikaka, T., Bedoić, R., Simonič, M., Ban, I., Čuček, L. 2021. Pyrolysis of solid digestate from sewage sludge and lignocellulosic biomass: Kinetic and thermodynamic analysis, characterization of biochar. Sustainability, 13(17), 9642.
Piadeh, F., Offie, I., Behzadian, K., Rizzuto, J.P., Bywater, A., Córdoba-Pachón, J.-R., Walker, M. 2024. A critical review for the impact of anaerobic digestion on the sustainable development goals. Journal of Environmental Management, 349, 119458.
Piash, K.S., Anwar, R., Shingleton, C., Erwin, R., Lin, L.S., Sanyal, O. 2022. Integrating chemical precipitation and membrane separation for phosphorus and ammonia recovery from anaerobic digestate. AIChE Journal, 68(12), e17869.
Piccoli, I., Torreggiani, A., Pituello, C., Pisi, A., Morari, F., Francioso, O. 2020. Automated image analysis and hyperspectral imagery with enhanced dark field microscopy applied to biochars produced at different temperatures. Waste management, 105, 457-466.
Plana, P.V., Noche, B. 2016. A review of the current digestate distribution models: storage and transport. WIT Trans. Ecol. Environ, 202, 345-357.
Polifka, S., Wiedner, K., Glaser, B. 2018. Increased CO 2 fluxes from a sandy Cambisol under agricultural use in the Wendland region, Northern Germany, three years after biochar substrates application. GCB bioenergy, 10(7), 432-443.
Potnuri, R., Suriapparao, D.V., Rao, C.S., Sridevi, V., Kumar, A. 2022. Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach. Renewable Energy, 197, 798-809.
Qiao, Y., Zhang, S., Quan, C., Gao, N., Johnston, C., Wu, C. 2020. One-pot synthesis of digestate-derived biochar for carbon dioxide capture. Fuel, 279, 118525.
Rajabi Hamedani, S., Villarini, M., Colantoni, A., Carlini, M., Cecchini, M., Santoro, F., Pantaleo, A. 2020. Environmental and economic analysis of an anaerobic co-digestion power plant integrated with a compost plant. Energies, 13(11), 2724.
Rasam, S., Talebkeikhah, F., Talebkeikhah, M., Salimi, A., Moraveji, M.K. 2021. Physico-chemical properties prediction of hydrochar in macroalgae <i>Sargassum horneri</i> hydrothermal carbonisation. International Journal of Environmental Analytical Chemistry, 101(14), 2297-2318.
Ren, S., Usman, M., Tsang, D.C., O-Thong, S., Angelidaki, I., Zhu, X., Zhang, S., Luo, G. 2020. Hydrochar-facilitated anaerobic digestion: evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environmental Science & Technology, 54(9), 5755-5766.
Rex, P., Mohammed Ismail, K.R., Meenakshisundaram, N., Barmavatu, P., Sai Bharadwaj, A. 2023. Agricultural biomass waste to biochar: A review on biochar applications using machine learning approach and circular economy. ChemEngineering, 7(3), 50.
Reza, M.T., Borrego, A.G., Wirth, B. 2014. Optical texture of hydrochar from maize silage and maize silage digestate. International Journal of Coal Geology, 134, 74-79.
Reza, M.T., Coronella, C., Holtman, K.M., Franqui-Villanueva, D., Poulson, S.R. 2016. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate. ACS Sustainable Chemistry & Engineering, 4(7), 3649-3658.
Reza, M.T., Mumme, J., Ebert, A. 2015. Characterization of hydrochar obtained from hydrothermal carbonization of wheat straw digestate. Biomass Conversion and Biorefinery, 5(4), 425-435.
Reza, M.T., Poulson, S.R., Roman, S., Coronella, C.J. 2018. Behavior of stable carbon and stable nitrogen isotopes during hydrothermal carbonization of biomass. Journal of analytical and applied pyrolysis, 131, 85-92.
Rezaee, M., Gitipour, S., Sarrafzadeh, M.-H. 2020. Different pathways to integrate anaerobic digestion and thermochemical processes: moving toward the circular economy concept. Environmental Energy and Economic Research, 4(1), 57-67.
Rincón-Catalán, N.I., Pérez-Fabiel, S., Mejía-González, G., Herrera-López, D., Castro-Chan, R., Cruz-Salomón, A., Sebastian, P. 2022a. Power generation from cheese whey treatment by anaerobic digestion and microbial fuel cell. Waste and Biomass Valorization, 13(7), 3221-3231.
Rincón-Catalán, N.I., Cruz-Salomón, A., Sebastian, P., Pérez-Fabiel, S., Hernández-Cruz, M.d.C., Sánchez-Albores, R.M., Hernández-Méndez, J.M.E., Domínguez-Espinosa, M.E., Esquinca-Avilés, H.A., Ríos-Valdovinos, E.I. 2022b. Banana Waste-to-Energy Valorization by Microbial Fuel Cell Coupled with Anaerobic Digestion. Processes, 10(8), 1552.
Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R., Lehmann, J. 2010. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental science & technology, 44(2), 827-833.
Roberts, N., Hilliard, M., He, Q.P., Wang, J. 2020. A microalgae-methanotroph coculture is a promising platform for fuels and chemical production from wastewater. Frontiers in Energy Research, 8, 563352.
Rombola, A.G., Fabbri, D., Meredith, W., Snape, C.E., Dieguez-Alonso, A. 2016. Molecular characterization of the thermally labile fraction of biochar by hydropyrolysis and pyrolysis-GC/MS. Journal of analytical and applied pyrolysis, 121, 230-239.
Romio, C., Kofoed, M.V.W., Møller, H.B. 2021. Digestate post-treatment strategies for additional biogas recovery: A review. Sustainability, 13(16), 9295.
Ronga, D., Caradonia, F., Parisi, M., Bezzi, G., Parisi, B., Allesina, G., Pedrazzi, S., Francia, E. 2020. Using digestate and biochar as fertilizers to improve processing tomato production sustainability. Agronomy, 10(1), 138.
Ronga, D., Francia, E., Allesina, G., Pedrazzi, S., Zaccardelli, M., Pane, C., Tava, A., Bignami, C. 2019. Valorization of vineyard by-products to obtain composted digestate and biochar suitable for nursery grapevine (Vitis vinifera L.) production. Agronomy, 9(8), 420.
Roos, C.J. 2010. Clean heat and power using biomass gasification for industrial and agricultural projects. Northwest CHP Application Center Olympia, WA, USA.
Roy, U.K., Radu, T., Wagner, J. 2022. Hydrothermal carbonisation of anaerobic digestate for hydro-char production and nutrient recovery. Journal of Environmental Chemical Engineering, 10(1), 107027.
Sahoo, K., Bilek, E., Bergman, R., Mani, S. 2019. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Applied Energy, 235, 578-590.
Sambusiti, C., Monlau, F., Barakat, A. 2016. Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach. Bioresource technology, 212, 289-295.
San-Martín, M.I., Mateos, R., Escapa, A., Morán, A. 2019. Understanding nitrogen recovery from wastewater with a high nitrogen concentration using microbial electrolysis cells. Journal of Environmental Science and Health, Part A, 54(5), 472-477.
Sanderman, J., Baldock, J.A., Dangal, S.R., Ludwig, S., Potter, S., Rivard, C., Savage, K. 2021. Soil organic carbon fractions in the Great Plains of the United States: an application of mid-infrared spectroscopy. Biogeochemistry, 156(1), 97-114.
Saveyn, H., Eder, P. 2014. End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): Technical proposals. Publications Office of the European Union, Luxembourg, 310.
Sawatdeenarunat, C., Nam, H., Adhikari, S., Sung, S., Khanal, S.K. 2018. Decentralized biorefinery for lignocellulosic biomass: Integrating anaerobic digestion with thermochemical conversion. Bioresource technology, 250, 140-147.
Schulze, M., Mumme, J., Funke, A., Kern, J. 2016. Effects of selected process conditions on the stability of hydrochar in low-carbon sandy soil. Geoderma, 267, 137-145.
Sciarria, T.P., Vacca, G., Tambone, F., Trombino, L., Adani, F. 2019. Nutrient recovery and energy production from digestate using microbial electrochemical technologies (METs). Journal of Cleaner Production, 208, 1022-1029.
Scrinzi, D., Bona, D., Denaro, A., Silvestri, S., Andreottola, G., Fiori, L. 2022. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. Journal of Environmental Management, 309, 114688.
Seelam, J.S., de Souza, M.F., Chaerle, P., Willems, B., Michels, E., Vyverman, W., Meers, E. 2022. Maximizing nutrient recycling from digestate for production of protein-rich microalgae for animal feed application. Chemosphere, 290, 133180.
Selvaraj, P.S., Periasamy, K., Suganya, K., Ramadass, K., Muthusamy, S., Ramesh, P., Bush, R., Vincent, S.G.T., Palanisami, T. 2022. Novel resources recovery from anaerobic digestates: Current trends and future perspectives. Critical Reviews in Environmental Science and Technology, 52(11), 1915-1999.
Sfetsas, T., Patsatzis, S., Chioti, A., Kopteropoulos, A., Dimitropoulou, G., Tsioni, V., Kotsopoulos, T. 2022. A review of advances in valorization and post-treatment of anaerobic digestion liquid fraction effluent. Waste Management & Research, 40(8), 1093-1109.
Shabangu, S., Woolf, D., Fisher, E.M., Angenent, L.T., Lehmann, J. 2014. Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel, 117, 742-748.
Shafizadeh, A., Shahbeik, H., Rafiee, S., Moradi, A., Shahbaz, M., Madadi, M., Li, C., Peng, W.X., Tabatabaei, M., Aghbashlo, M. 2023. Machine learning-based characterization of hydrochar from biomass: Implications for sustainable energy and material production. Fuel, 347, 128467.
Shahbeik, H., Rafiee, S., Shafizadeh, A., Jeddi, D., Jafary, T., Lam, S.S., Pan, J., Tabatabaei, M., Aghbashlo, M. 2022. Characterizing sludge pyrolysis by machine learning: towards sustainable bioenergy production from wastes. Renewable Energy, 199, 1078-1092.
Sharma, H.B., Panigrahi, S., Sarmah, A.K., Dubey, B.K. 2020a. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept. Science of the total environment, 706, 135907.
Sharma, H.B., Sarmah, A.K., Dubey, B. 2020b. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and sustainable energy reviews, 123, 109761.
Sharmila, V.G., Tyagi, V.K., Varjani, S., Banu, J.R. 2023. A review on the lignocellulosic derived biochar-based catalyst in wastewater remediation: Advanced treatment technologies and machine learning tools. Bioresource Technology, 387,129587.
Shen, Y. 2020. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy, 134, 105479.
Shen, Y., Linville, J.L., Ignacio-de Leon, P.A.A., Schoene, R.P., Urgun-Demirtas, M. 2016. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar. Journal of Cleaner Production, 135, 1054-1064.
Shepherd, J.G., Sohi, S.P., Heal, K.V. 2016. Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development. Water Research, 94, 155-165.
Sikarwar, V.S., Pohořelý, M., Meers, E., Skoblia, S., Moško, J., Jeremiáš, M. 2021. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization. Fuel, 294, 120533.
Silvani, L., Cornelissen, G., Hale, S.E. 2019. Sorption of α-, β-, γ-and δ-hexachlorocyclohexane isomers to three widely different biochars: Sorption mechanisms and application. Chemosphere, 219, 1044-1051.
Singh, N.K., Yadav, M., Singh, V., Padhiyar, H., Kumar, V., Bhatia, S.K., Show, P.-L. 2023. Artificial intelligence and machine learning-based monitoring and design of biological wastewater treatment systems. Bioresource technology, 369, 128486.
Šlapáková, B., Jeřábková, J., Voříšek, K., Tejnecký, V., Drábek, O. 2018. The biochar effect on soil respiration and nitrification.
Sobhi, M., Guo, J., Gaballah, M.S., Li, B., Zheng, J., Cui, X., Sun, H., Dong, R. 2022. Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local environmental conditions: A critical review. Science of the Total Environment, 814, 152700.
Solarte-Toro, J.C., Chacón-Pérez, Y., Cardona-Alzate, C.A. 2018. Evaluation of biogas and syngas as energy vectors for heat and power generation using lignocellulosic biomass as raw material. Electronic Journal of Biotechnology, 33, 52-62.
Steinbrecher, T., Bonk, F., Scherzinger, M., Lüdtke, O., Kaltschmitt, M. 2022. Fractionation of lignocellulosic fibrous straw digestate by combined hydrothermal and enzymatic treatment. Energies, 15(17), 6111.
Stoumpou, V., Novakovic, J., Kontogianni, N., Barampouti, E.M., Mai, S., Moustakas, K., Malamis, D., Loizidou, M. 2020. Assessing straw digestate as feedstock for bioethanol production. Renewable energy, 153, 261-269.
Stutzenstein, P., Bacher, M., Rosenau, T., Pfeifer, C. 2018. Optimization of nutrient and carbon recovery from anaerobic digestate via hydrothermal carbonization and investigation of the influence of the process parameters. Waste and biomass valorization, 9, 1303-1318.
Suwelack, K.U., Wüst, D., Fleischmann, P., Kruse, A. 2016. Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate by severity parameter. Biomass Conversion and Biorefinery, 6, 151-160.
Takaya, C., Fletcher, L., Singh, S., Anyikude, K., Ross, A. 2016. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere, 145, 518-527.
Talebkeikhah, F., Rasam, S., Talebkeikhah, M., Torkashvand, M., Salimi, A., Moraveji, M.K. 2022. Investigation of effective processes parameters on lead (II) adsorption from wastewater by biochar in mild air oxidation pyrolysis process. International Journal of Environmental Analytical Chemistry, 102(16), 3975-3995.
Tang, J.Y., Chung, B.Y.H., Ang, J.C., Chong, J.W., Tan, R.R., Aviso, K.B., Chemmangattuvalappil, N.G., Thangalazhy-Gopakumar, S. 2023. Prediction model for biochar energy potential based on biomass properties and pyrolysis conditions derived from rough set machine learning. Environmental technology, 45 (15), 2908-2922.
Tayibi, S., Monlau, F., Marias, F., Cazaudehore, G., Fayoud, N.-E., Oukarroum, A., Zeroual, Y., Barakat, A. 2021a. Coupling anaerobic digestion and pyrolysis processes for maximizing energy recovery and soil preservation according to the circular economy concept. Journal of environmental management, 279, 111632.
Tayibi, S., Monlau, F., Marias, F., Thevenin, N., Jimenez, R., Oukarroum, A., Alboulkas, A., Zeroual, Y., Barakat, A. 2021b. Industrial symbiosis of anaerobic digestion and pyrolysis: Performances and agricultural interest of coupling biochar and liquid digestate. Science of The Total Environment, 793, 148461.
Temel, F.A., Yolcu, O.C., Turan, N.G. 2023. Artificial intelligence and machine learning approaches in composting process: a review. Bioresource Technology, 370, 128539.
Thiruvengadam, S., Murphy, M.E., Tan, J.S. 2021. Mathematically modelling pyrolytic polygeneration processes using artificial intelligence. Fuel, 295, 120488.
Timofeeva, S., Karaeva, J., Kovalev, A., Kovalev, D., Litti, Y.V. 2023. Steam gasification of digestate after anaerobic digestion and dark fermentation of lignocellulosic biomass to produce syngas with high hydrogen content. International Journal of Hydrogen Energy, 48(21), 7559-7568.
Tremouli, Α., Kamperidis, T., Pandis, P.K., Argirusis, C., Lyberatos, G. 2021. Exploitation of digestate from thermophilic and mesophilic anaerobic digesters fed with fermentable food waste using the MFC technology. Waste and Biomass Valorization, 1-10.
Tsai, W.-T., Fang, Y.-Y., Cheng, P.-H., Lin, Y.-Q. 2018. Characterization of mesoporous biochar produced from biogas digestate implemented in an anaerobic process of large-scale hog farm. Biomass Conversion and Biorefinery, 8, 945-951.
Tshikalange, B., Bello, Z.A., Ololade, O.O. 2020. Comparative nutrient leaching capability of cattle dung biogas digestate and inorganic fertilizer under spinach cropping condition. Environmental Science and Pollution Research, 27, 3237-3246.
Uddin, M.M., Wen, Z., Wright, M.M. 2022. Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production. Applied Energy, 321, 119376.
Ukoba, K., Jen, T.-C. 2022. Biochar and application of machine learning: a review. IntechOpen.
Uludag-Demirer, S., Demirer, G.N. 2022. Post-anaerobic treatability and residual biogas potential of digestate. Biomass Conversion and Biorefinery, 1-8.
Urbanowska, A., Kabsch-Korbutowicz, M., Wnukowski, M., Seruga, P., Baranowski, M., Pawlak-Kruczek, H., Serafin-Tkaczuk, M., Krochmalny, K., Niedzwiecki, L. 2020. Treatment of liquid by-products of hydrothermal carbonization (HTC) of agricultural digestate using membrane separation. Energies, 13(1), 262.
Van Poucke, R., Egene, C.E., Allaert, S., Lebrun, M., Bourgerie, S., Morabito, D., Ok, Y.S., Ronsse, F., Meers, E., Tack, F.M. 2020. Application of biochars and solid fraction of digestate to decrease soil solution Cd, Pb and Zn concentrations in contaminated sandy soils. Environmental geochemistry and health, 42, 1589-1600.
Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P.A., Tack, F.M., Meers, E. 2017. Nutrient recovery from digestate: systematic technology review and product classification. Waste and biomass valorization, 8, 21-40.
Wang, A.O., Ptacek, C.J., Mack, E.E., Blowes, D.W. 2021a. Impact of multiple drying and rewetting events on biochar amendments for Hg stabilization in floodplain soil from South River, VA. Chemosphere, 262, 127794.
Wang, A.O., Ptacek, C.J., Paktunc, D., Mack, E.E., Blowes, D.W. 2020a. Application of biochar prepared from ethanol refinery by-products for Hg stabilization in floodplain soil: Impacts of drying and rewetting. Environmental Pollution, 267, 115396.
Wang, C., Wang, J., Wu, W., Qian, J., Song, S., Yue, Z. 2019. Feasibility of activated carbon derived from anaerobic digester residues for supercapacitors. Journal of Power Sources, 412, 683-688.
Wang, H., Xiao, K., Yang, J., Yu, Z., Yu, W., Xu, Q., Wu, Q., Liang, S., Hu, J., Hou, H. 2020b. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron− rich sludge: a potential phosphorus fertilizer. Water research, 174, 115629.
Wang, H.S.-H., Yao, Y. 2023. Machine learning for sustainable development and applications of biomass and biomass-derived carbonaceous materials in water and agricultural systems: A review. Resources, Conservation and Recycling, 190, 106847.
Wang, J., Pan, J., Ma, X., Li, S., Chen, X., Liu, T., Wang, Q., Wang, J.J., Wei, D., Zhang, Z. 2022a. Solid digestate biochar amendment on pig manure composting: nitrogen cycle and balance. Bioresource Technology, 349, 126848.
Wang, N., Huang, D., Bai, X., Lin, Y., Miao, Q., Shao, M., Xu, Q. 2022b. Mechanism of digestate-derived biochar on odorous gas emissions and humification in composting of digestate from food waste. Journal of Hazardous Materials, 434, 128878.
Wang, N., Huang, D., Zhang, C., Shao, M., Chen, Q., Liu, J., Deng, Z., Xu, Q. 2021b. Long-term characterization and resource potential evaluation of the digestate from food waste anaerobic digestion plants. Science of the total environment, 794, 148785.
Wang, P., Peng, H., Adhikari, S., Higgins, B., Roy, P., Dai, W., Shi, X. 2020c. Enhancement of biogas production from wastewater sludge via anaerobic digestion assisted with biochar amendment. Bioresource technology, 309, 123368.
Wang, W., Chang, J.-S., Lee, D.-J. 2023a. Anaerobic digestate valorization beyond agricultural application: Current status and prospects. Bioresource technology, 373, 128742.
Wang, W., Chang, J.-S., Lee, D.-J. 2023b. Digestate-derived carbonized char and activated carbon: Application perspective. Bioresource technology, 381,129135.
Wang, W., Chang, J.-S., Lee, D.-J. 2022c. Integrating anaerobic digestion with bioelectrochemical system for performance enhancement: A mini review. Bioresource technology, 345, 126519.
Wang, W., Chang, J.-S., Lee, D.-J. 2024. Machine learning applications for biochar studies: A mini-review. Bioresource Technology, 394,130291.
Wang, W., Chang, J.-S., Show, K.-Y., Lee, D.-J. 2022d. Anaerobic recalcitrance in wastewater treatment: A review. Bioresource technology, 363, 127920.
Wang, W., Lee, D.-J. 2021. Valorization of anaerobic digestion digestate: A prospect review. Bioresource Technology, 323, 124626.
Wang, Y., Chen, G.Q. 2017. Polyhydroxyalkanoates: sustainability, production, and industrialization. Sustainable polymers from biomass, 11-33.
Wang, Y., Song, Y., Li, N., Liu, W., Yan, B., Yu, Y., Liang, L., Chen, G., Hou, L.a., Wang, S. 2022e. Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation. Journal of Hazardous Materials, 421, 126794.
Ward, A., Lewis, D., Green, F. 2014. Anaerobic digestion of algae biomass: A review. Algal Research, 5, 204-214.
Wehrle, R., Welp, G., Pätzold, S. 2021. Total and hot-water extractable organic carbon and nitrogen in organic soil amendments: Their prediction using portable mid-infrared spectroscopy with support vector machines. Agronomy, 11(4), 659.
Weidemann, E., Buss, W., Edo, M., Mašek, O., Jansson, S. 2018. Influence of pyrolysis temperature and production unit on formation of selected PAHs, oxy-PAHs, N-PACs, PCDDs, and PCDFs in biochar—a screening study. Environmental Science and Pollution Research, 25, 3933-3940.
Wiedner, K., Rumpel, C., Steiner, C., Pozzi, A., Maas, R., Glaser, B. 2013. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass and Bioenergy, 59, 264-278.
Wilk, M., Gajek, M., Śliz, M., Czerwińska, K., Lombardi, L. 2022. Hydrothermal carbonization process of digestate from sewage sludge: chemical and physical properties of hydrochar in terms of energy application. Energies, 15(18), 6499.
Wongrod, S., Simon, S., Guibaud, G., Lens, P.N., Pechaud, Y., Huguenot, D., van Hullebusch, E.D. 2018a. Lead sorption by biochar produced from digestates: Consequences of chemical modification and washing. Journal of environmental management, 219, 277-284.
Wongrod, S., Simon, S., van Hullebusch, E.D., Lens, P.N., Guibaud, G. 2019. Assessing arsenic redox state evolution in solution and solid phase during As (III) sorption onto chemically-treated sewage sludge digestate biochars. Bioresource technology, 275, 232-238.
Wongrod, S., Simon, S., van Hullebusch, E.D., Lens, P.N., Guibaud, G. 2018b. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As (III and V) and Cd (II) sorption. International biodeterioration & biodegradation, 135, 96-102.
Woolf, D., Amonette, J.E., Street-Perrott, F.A., Lehmann, J., Joseph, S. 2010. Sustainable biochar to mitigate global climate change. Nature communications, 1(1), 56.
Wu, W., Zhang, L., Wang, C., Wang, J., Qian, J., Song, S., Yue, Z. 2020. Effect of activation ratio on the characteristics of AC derived from anaerobic digester residue and its applications in supercapacitors. RSC advances, 10(9), 5436-5442.
Wu, Y.-M., Yang, J., Fan, X.-L., Fu, S.-F., Sun, M.-T., Guo, R.-B. 2017. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria. Bioresource technology, 231, 124-128.
Xia, A., Murphy, J.D. 2016. Microalgal cultivation in treating liquid digestate from biogas systems. Trends in Biotechnology, 34(4), 264-275.
Xie, Y., Wang, L., Li, H., Westholm, L.J., Carvalho, L., Thorin, E., Yu, Z., Yu, X., Skreiberg, Ø. 2022. A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis, 161, 105405.
Xu, Q., Luo, L., Li, D., Johnravindar, D., Varjani, S., Wong, J.W., Zhao, J. 2022. Hydrochar prepared from digestate improves anaerobic co-digestion of food waste and sewage sludge: Performance, mechanisms, and implication. Bioresource Technology, 362, 127765.
Xu, S., Wang, C., Duan, Y., Wong, J.W.-C. 2020. Impact of pyrochar and hydrochar derived from digestate on the co-digestion of sewage sludge and swine manure. Bioresource Technology, 314, 123730.
Yadav, B., Talan, A., Tyagi, R., Drogui, P. 2021. Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review. Bioresource Technology, 337, 125419.
Yaka, H., Insel, M.A., Yucel, O., Sadikoglu, H. 2022. A comparison of machine learning algorithms for estimation of higher heating values of biomass and fossil fuels from ultimate analysis. Fuel, 320, 123971.
Yan, M., Chen, F., Li, T., Zhong, L., Feng, H.Y., Xu, Z., Hantoko, D., Wibowo, H. 2023. Hydrothermal carbonization of food waste digestate solids: Effect of temperature and time on products characteristic and environmental evaluation. Process Safety and Environmental Protection, 178, 296-308.
Yang, D., Chen, Q., Liu, R., Song, L., Zhang, Y., Dai, X. 2022a. Ammonia recovery from anaerobic digestate: State of the art, challenges and prospects. Bioresource Technology, 363, 127957.
Yang, H.-J., Yang, Z.-M., Xu, X.-H., Guo, R.-B. 2020. Increasing the methane production rate of hydrogenotrophic methanogens using biochar as a biocarrier. Bioresource technology, 302, 122829.
Yang, H., Liu, X., Liu, Y., Cui, J., Xiao, Y. 2023. Revolutionizing biochar synthesis for enhanced heavy metal adsorption: Harnessing machine learning and Bayesian optimization. Journal of Environmental Chemical Engineering, 11(5), 110593.
Yang, Y., Shahbeik, H., Shafizadeh, A., Masoudnia, N., Rafiee, S., Zhang, Y., Pan, J., Tabatabaei, M., Aghbashlo, M. 2022b. Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries. Renewable Energy, 201, 70-86.
Yang, Z., Tsapekos, P., Zhang, Y., Zhang, Y., Angelidaki, I., Wang, W. 2021. Bio-electrochemically extracted nitrogen from residual resources for microbial protein production. Bioresource Technology, 337, 125353.
Yu, Y., Zhu, B., Ding, Y., Li, P., Ge, S. 2023. Hydrothermal carbonization of food waste digestates and polyvinyl chloride: focus on dechlorination performance and fuel characteristics. Biomass Conversion and Biorefinery, 13(17), 16161-16168.
Yuan, X., Wang, J., Deng, S., Suvarna, M., Wang, X., Zhang, W., Hamilton, S.T., Alahmed, A., Jamal, A., Park, A.-H.A. 2022. Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture. Renewable and Sustainable Energy Reviews, 162, 112413.
Zanellati, A., Spina, F., Rollé, L., Varese, G.C., Dinuccio, E. 2020. Fungal pretreatments on non-sterile solid digestate to enhance methane yield and the sustainability of anaerobic digestion. Sustainability, 12(20), 8549.
Zeymer, M., Meisel, K., Clemens, A., Klemm, M. 2017. Technical, economic, and environmental assessment of the hydrothermal carbonization of green waste. Chemical Engineering & Technology, 40(2), 260-269.
Zhang, B., Joseph, G., Wang, L., Li, X., Shahbazi, A. 2020a. Thermophilic anaerobic digestion of cattail and hydrothermal carbonization of the digestate for co-production of biomethane and hydrochar. Journal of environmental science and health, part A, 55(3), 230-238.
Zhang, C., Wang, X., Shao, M., Li, H., Chen, Q., Wang, N., Xu, Q. 2022a. Synthesis of nitrogen-enriched hydrochar via co-hydrothermal reaction of liquid digestate and corn stalk. Science of The Total Environment, 836, 155572.
Zhang, D., Wang, F., Shen, X., Yi, W., Li, Z., Li, Y., Tian, C. 2018a. Comparison study on fuel properties of hydrochars produced from corn stalk and corn stalk digestate. Energy, 165, 527-536.
Zhang, D., Wang, F., Zhang, A., Yi, W., Li, Z., Shen, X. 2019. Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate: comparison of dry and wet torrefaction. Bioresource technology, 275, 239-246.
Zhang, J.-J., Fan, H.-X., Dai, X.-H., Yuan, S.-J. 2018b. Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode. Royal Society Open Science, 5(4), 172456.
Zhang, L., Yao, D., Tsui, T.-H., Loh, K.-C., Wang, C.-H., Dai, Y., Tong, Y.W. 2022b. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment. Journal of Environmental Management, 306, 114471.
Zhang, T., He, X., Deng, Y., Tsang, D.C., Jiang, R., Becker, G.C., Kruse, A. 2020b. Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer. Science of the total environment, 698, 134240.
Zhang, T., Wu, X., Shaheen, S.M., Zhao, Q., Liu, X., Rinklebe, J., Ren, H. 2020c. Ammonium nitrogen recovery from digestate by hydrothermal pretreatment followed by activated hydrochar sorption. Chemical Engineering Journal, 379, 122254.
Zhang, W., Ashraf, W.M., Senadheera, S.S., Alessi, D.S., Tack, F.M., Ok, Y.S. 2023a. Machine learning based prediction and experimental validation of arsenite and arsenate sorption on biochars. Science of The Total Environment, 904, 166678.
Zhang, W., Chen, Q., Chen, J., Xu, D., Zhan, H., Peng, H., Pan, J., Vlaskin, M., Leng, L., Li, H. 2023b. Machine learning for hydrothermal treatment of biomass: A review. Bioresource Technology, 370, 128547.
Zhang, W., Li, J., Liu, T., Leng, S., Yang, L., Peng, H., Jiang, S., Zhou, W., Leng, L., Li, H. 2021. Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Bioresource Technology, 342, 126011.
Zhang, Y., Gong, L., Jiang, Q., Cui, M.-H., Zhang, J., Liu, H. 2020d. In-situ CO2 sequestration and nutrients removal in an anaerobic digestion-microbial electrolysis cell by silicates application: Effect of dosage and biogas circulation. Chemical Engineering Journal, 399, 125680.
Zhao, J., Wang, Z., Li, J., Yan, B., Chen, G. 2022. Pyrolysis of food waste and food waste solid digestate: A comparative investigation. Bioresource Technology, 354, 127191.
Zhao, X., Becker, G.C., Faweya, N., Correa, C.R., Yang, S., Xie, X., Kruse, A. 2018. Fertilizer and activated carbon production by hydrothermal carbonization of digestate. Biomass Conversion and Biorefinery, 8(2), 423-436.
Zhou, Y., Qin, S., Verma, S., Sar, T., Sarsaiya, S., Ravindran, B., Liu, T., Sindhu, R., Patel, A.K., Binod, P. 2021. Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresource Technology, 337, 125451.
Zhu, L.-T., Chen, X.-Z., Ouyang, B., Yan, W.-C., Lei, H., Chen, Z., Luo, Z.-H. 2022. Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors. Industrial & Engineering Chemistry Research, 61(28), 9901-9949.
Zhu, L., Yan, C., Li, Z. 2016. Microalgal cultivation with biogas slurry for biofuel production. Bioresource technology, 220, 629-636.
Zhu, X., Li, Y., Wang, X. 2019. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresource technology, 288, 121527.
Zuo, L., Lin, R., Shi, Q., Xu, S. 2020. Evaluation of the bioavailability of heavy metals and phosphorus in biochar derived from manure and manure digestate. Water, Air, & Soil Pollution, 231, 1-11.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94138-
dc.description.abstract厭氧消化可將有機生質物轉化為沼氣,惟過程將同時產生大量副產物-沼渣。基於循環經濟理念影響,傳統被視為廢棄物之沼渣逐漸被視為具有利用價值之生物資源,進而強化沼渣加值化之必要性。水熱碳化可將沼渣轉化為具有多元用途之水炭,係為具有前景之沼渣加值化技術。機器學習(ML)可作為加速開發適宜特定用途生物炭工藝製程之有效工具。本研究首次利用機器學習技術預測沼渣水熱炭產率,其中使用專屬沼渣之資料集進行計算。藉由裝袋法-隨機森林(RF)與提升法-極限梯度提升(XGB)兩種集成樹演算法,本研究藉由沼渣元素分析/近似分析特性與水熱碳化反應參數預測沼渣水炭產率。XGB相較於RF具有更好之預測性能,其中測試R2和均方根誤差(RMSE)分別為0.911和19.15。水熱碳化參數為影響水炭產率之主要因子。本研究另基於機器學習分析結果的啟發,提出整合反應溫度、時間與原料固含量之修正激烈因子(Ro'),相較於傳統激烈因子(Ro)具有較佳之適用性。本研究進一步預測沼渣水炭產率、水碳性質(碳(Cc)、氫(Hc)、氮( Nc)、氧(Oc)、硫(Sc)、灰分(Ashc)、高位熱值(HHVc)與水熱碳化製程參數,包含能量產率(EY)、能量緻密率(ED)與碳回收率(CR)。整體而言,XGB 和 RF 在 Cc、Hc、Oc、Sc、Ashc 和 HHVc之預測展現出合宜性能,測試R2 分別為 0.856-0.942 和 0.864-0.947。本研究另開發可同時預測產率與水炭特性(Cc、Hc、Nc、Oc、Sc、Ashc、HHVc)之多工模型,其中XGB相較於RF可展現較佳之預測效能,其平均測試R2可達0.895,與現行文獻測試成效相仿。SHapley Additive exPlanations (SHAP) 分析結果顯示沼渣碳含量(C)與水熱碳化反應溫度(T)係為影響多工預測成效之主導因子。鏈回歸技術可強化多工模型之預測效能,涵蓋範疇包含EY、ED 和 CR。根據實驗驗證結果,本研究開發之XGB單任務模型對於水炭特性Cc、Oc、ashc 和HHVc 之預測展現可接受的預測性能,顯示所開發之機器學習模型可有效地預測水炭特性,據此有利於優化水熱碳化製程參數與選擇沼渣水炭之適宜應用。zh_TW
dc.description.abstractAnaerobic digestion (AD) converts organic biomass into biogas while generating voluminous digestate byproducts, which has been viewed as waste while recently gradually being recognized as a valuable resource based on circular economic concepts, emphasizing the necessity of digestate valorization. Hydrothermal carbonization (HTC) is a promising technique for valorizing digestate into hydrochar with versatile applications. Machine learning (ML) is an effective tool for expediting the biochar engineering process for specific end-use. This research used ML techniques to predict digestate-derived hydrochar for the first time, with the dataset including only digestate as the biomass resource. Two ensemble tree-based machine learning algorithms based on random forest (RF) (bagging) and eXtreme Gradient Boosting (XGB) (boosting) predicted the digestate-derived hydrochar yield from digestate elemental/proximate compositions and HTC reaction parameters. XGB shows better predictive performance than RF, with test R2 and RMSE of 0.911 and 19.15, respectively. HTC parameters are the dominant factors affecting yield prediction. Inspired by the features importance analysis from ML, the new modified severity factor (Ro') integrating the effect of reaction temperature, time, and solid loading was proposed, showing better generalizability than the conventional severity factor (Ro). Moreover, digestate-derived hydrochar yield, properties (Cc, Hc Nc, Oc, Sc, Ashc, HHVc), and HTC process index, including energy yield (EY), energy densification (ED), and carbon recovery (CR) were predicted. XGB and RF showed satisfactory performance in predicting Cc, Hc, Oc, Sc, Ashc, and HHVc, with test R2 of 0.856-0.942 and 0.864-0.947, respectively. The multi-task model for predicting yield and hydrochar properties (Cc, Hc, Nc, Oc, Sc, Ashc, HHVc) was also developed. XGB outperforms RF, with the average test R2 achieving 0.895, comparable to the current published work. The SHapley Additive exPlanations (SHAP) analysis reveals that digestate C content and HTC temperature (T) dominate multi-task predictions. The chain regressor technique enhanced the model performance toward multi-task prediction, including EY, ED, and CR. Based on the experimental validation results, the developed XGB single-task shows acceptable predictive performance toward hydrochar Cc, Oc, ashc, and HHVc, suggesting the developed ML model satisfactorily predicts hydrochar properties, benefiting for optimizing HTC process parameters and determining suitable applications for digestate-derived hydrochar.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:54:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:54:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Contents v
List of Abbreviations ix
List of Figures xi
List of Tables xiii
Chapter 1. Introduction 1
1.1 Backgrounds 1
1.2 Motivation and purpose 5
Chapter 2. Literature review 11
2.1 Valorization of anaerobic digestate 11
2.1.1 Potentials of digestate valorization 11
2.1.1.1 Cellulose, hemicellulose, and lignin 15
2.1.1.2 Macro and microelements in the digestate 15
2.1.2 Digestate valorization by land application 18
2.1.2.1 Fertilizing supplement 18
2.1.2.2 Soil amendment 19
2.1.2.3 Legislative limitations for digestate management 23
2.2 Digestate valorization beyond agricultural application 27
2.2.1 Motivation for valorizing digestate beyond land use 27
2.2.2 Liquid digestate valorization 28
2.2.2.1 Nutrient recovery 28
2.2.2.2 Microalgae cultivation 34
2.2.3 Solid digestate valorization 35
2.2.3.1 Biological methods 35
2.2.3.2 Thermochemical methods 37
2.2.4 Novel methods 50
2.2.4.1 Polyhydroxyalkanoates (PHAs) production 50
2.2.4.2 Electrochemical method 51
2.3 Applications of digestate-derived carbonized char and activated carbon 56
2.3.1 Digestate-derived unactivated carbonous char 56
2.3.1.1 Pyrochar 56
2.3.1.2 Hydrochar 60
2.3.1.3 Comparison between hydrochar and pyrochar 67
2.3.2 Applications of digestate-derived unactivated carbonous char 68
2.3.2.1 Land use 68
2.3.2.2 Renewable fuel 71
2.3.2.3 Additives for anaerobic digestion enhancement 72
2.3.2.4 Catalyst for recalcitrant compound degradation/removal 74
2.3.2.5 Nutrient recovery agents 77
2.3.2.6 Adsorbents for Water Remediation 78
2.3.2.7 Adsorbents for gas purification 79
2.3.2.8 Carbon sink 80
2.3.2.9 Precursors for formed nanoparticles 80
2.4 Challenges and Prospects for digestate valorization 80
2.4.1 Regulation threshold 80
2.4.2 Comparisons between biological/thermochemical ways for digestate valorization 81
2.4.3 Development of integrated digestate management systems 82
2.4.4 The necessity for pilot/full-scale verification 83
2.4.5 Advanced novel methods for digestate valorization 84
2.4.6 End-use preference for digestate-derived carbonized char 85
2.4.7 Improving char's surface properties 85
2.4.8 Develop high-added value/multiple applications for char products 87
2.4.9 Detailed mechanisms and models 87
2.4.10 Development of comprehensive evaluation protocol/LCA and TEA 88
2.4.11 The suggested scenario for digestate valorization 89
2.5 Machine learning applications for biochar char 93
2.5.1 Machine learning (ML) 93
2.5.1.1 Introduction 93
2.5.1.2 The ML algorithms 94
2.5.1.3 Hybrid-model techniques for ML 99
2.5.2 The ML learning char applications 103
2.5.2.1 Predicting char production performance 103
2.5.2.2 Concluded results based on ML model interpretation 115
Chapter 3. Materials and methods 117
3.1 Machine learning process 117
3.1.1 Dataset compilation and pre-processing 117
3.1.1.1 Prediction for hydrochar yield 117
3.1.1.2 Prediction for hydrochar properties and process index 118
3.1.2 Pearson analysis 119
3.1.3 Data preprocessing 120
3.1.4 Machine learning model development 120
3.1.5 Model performance evaluation 121
3.1.6 Model interpretation 121
3.2 Experimental verification 122
3.2.1 Raw materials 122
3.2.2 Hydrothermal carbonization 122
3.2.3 Analytical methods 123
Chapter 4. Machine learning predicting the yield of hydrochar derived from digestate 124
4.1 Dataset characterization 124
4.2 Correlation analysis 128
4.3 Hyper-parameter tuning 128
4.4 Model performance evaluation 131
4.5 Feature importance and partial dependence plot analysis 133
4.6 Modeling hydrochar yield by conventional severity factors 137
4.7 Modeling hydrochar yield by modified severity factors 143
4.8 Discussions 148
4.9 Summary 149
Chapter 5. Machine learning predicting properties of hydrochar derived from digestate 151
5.1 Dataset characterization 151
5.2 Correlation analysis 155
5.3 Hyper-parameter tuning for single-task prediction 157
5.4 Model performance evaluation for single-task prediction 159
5.5 Feature importance analysis for single-task prediction 162
5.6 Hyperparameter tuning/model performance evaluation/feature importance analysis for multi-task prediction 168
5.7 Multi-task prediction by chain regressor technique 170
5.8 Experimental validation 175
5.9 Summary 177
Chapter 6. Conclusions 178
Chapter 7. Prospects and challenges 180
7.1 Improved ML techniques 180
7.1.1 Develop ML model with high generalizability and better interpretability 180
7.1.2 Sufficient available data with accuracy, beyond scale for developing well-functioning ML models 181
7.1.2.1 Concerning data size 181
7.1.2.2 Concerning data quality and availability 182
7.1.2.3 Concerning data consortia 183
7.1.3 Advanced ML approach and hybrid model should be the future trend 183
7.2 Develop ML model specialized for biochar production and practical use 184
7.2.1 Use ML techniques for entire biochar enterprise 184
7.2.2 Use reinforcement learning ML for entire biochar enterprise 185
7.2.3 Develop semi-supervised ML based on uncertain, distinct data sources 186
References 189
Appendix 228
-
dc.language.isoen-
dc.subject沼渣zh_TW
dc.subject應用zh_TW
dc.subject厭氧消化zh_TW
dc.subject機器學習zh_TW
dc.subject水炭zh_TW
dc.subject水熱碳化zh_TW
dc.subject效能zh_TW
dc.subject加值化zh_TW
dc.subjecthydrothermal carbonizationen
dc.subjectanaerobic digestionen
dc.subjectdigestateen
dc.subjectvalorizationen
dc.subjecthydrocharen
dc.subjectmachine learningen
dc.subjectapplicationen
dc.subjectperformanceen
dc.title機器學習於沼渣水熱炭加值化之應用zh_TW
dc.titleThe machine learning application for digestate derived hydrochar valorizationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee張嘉修;黃志彬;吳嘉文 ;劉懷勝zh_TW
dc.contributor.oralexamcommitteeJo-Shu Chang;Chih-pin Huang;Chia-Wen Wu;Hwai-Shen Liuen
dc.subject.keyword厭氧消化,沼渣,加值化,水熱碳化,水炭,機器學習,應用,效能,zh_TW
dc.subject.keywordanaerobic digestion,digestate,valorization,hydrothermal carbonization,hydrochar,machine learning,application,performance,en
dc.relation.page234-
dc.identifier.doi10.6342/NTU202402510-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2029-07-28-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-07-28
7.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved