請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李金美 | zh_TW |
| dc.contributor.advisor | Chin-Mei Lee | en |
| dc.contributor.author | 陳育貞 | zh_TW |
| dc.contributor.author | Yu-Zhen Chen | en |
| dc.date.accessioned | 2024-08-14T16:52:12Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | Ajuh, P., Kuster, B., Panov, K., Zomerdijk, J.C., Mann, M., and Lamond, A.I. (2000). Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry. The EMBO journal 19, 6569-6581.
Ali, G.S., Prasad, K., Hanumappa, M., and Reddy, A. (2008). Analyses of in vivo interaction and mobility of two spliceosomal proteins using FRAP and BiFC. PLoS One 3, e1953. Behzadnia, N., Golas, M.M., Hartmuth, K., Sander, B., Kastner, B., Deckert, J., Dube, P., Will, C.L., Urlaub, H., and Stark, H. (2007). Composition and three‐dimensional EM structure of double affinity‐purified, human prespliceosomal A complexes. The EMBO journal 26, 1737-1748. Berg, M.G., Singh, L.N., Younis, I., Liu, Q., Pinto, A.M., Kaida, D., Zhang, Z., Cho, S., Sherrill-Mix, S., and Wan, L. (2012). U1 snRNP determines mRNA length and regulates isoform expression. Cell 150, 53-64. Blanchette, M., and Chabot, B. (1999). Modulation of exon skipping by high‐affinity hnRNP A1‐binding sites and by intron elements that repress splice site utilization. The EMBO journal. Bontinck, M., Van Leene, J., Gadeyne, A., De Rybel, B., Eeckhout, D., Nelissen, H., and De Jaeger, G. (2018). Recent trends in plant protein complex analysis in a developmental context. Frontiers in plant science 9, 358535. Budayeva, H.G., and Cristea, I.M. (2014). A mass spectrometry view of stable and transient protein interactions. Advancements of Mass Spectrometry in Biomedical Research, 263-282. Capovilla, G., Symeonidi, E., Wu, R., and Schmid, M. (2017). Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. Journal of Experimental Botany 68, 5117-5127. Chanarat, S., and Sträßer, K. (2013). Splicing and beyond: the many faces of the Prp19 complex. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1833, 2126-2134. Chaudhary, S., Khokhar, W., Jabre, I., Reddy, A.S., Byrne, L.J., Wilson, C.M., and Syed, N.H. (2019). Alternative splicing and protein diversity: plants versus animals. Frontiers in plant science 10, 708. Cho, S.Y., Shin, E.S., Park, P.J., Shin, D.W., Chang, H.K., Kim, D., Lee, H.H., Lee, J.H., Kim, S.H., and Song, M.J. (2007). Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. Journal of biological chemistry 282, 2456-2465. Choi, H., Larsen, B., Lin, Z.-Y., Breitkreutz, A., Mellacheruvu, D., Fermin, D., Qin, Z.S., Tyers, M., Gingras, A.-C., and Nesvizhskii, A.I. (2011). SAINT: probabilistic scoring of affinity purification–mass spectrometry data. Nature methods 8, 70-73. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The plant journal 16, 735-743. Crisci, A., Raleff, F., Bagdiul, I., Raabe, M., Urlaub, H., Rain, J.-C., and Krämer, A. (2015). Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins. Nucleic acids research 43, 10456-10473. Das, T., Park, J.K., Park, J., Kim, E., Rape, M., Kim, E.E., and Song, E.J. (2017). USP15 regulates dynamic protein–protein interactions of the spliceosome through deubiquitination of PRP31. Nucleic acids research 45, 4866-4880. David, C.J., Boyne, A.R., Millhouse, S.R., and Manley, J.L. (2011). The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65–Prp19 complex. Genes & development 25, 972-983. de Moura, T.R., Mozaffari-Jovin, S., Szabo, C.Z.K., Schmitzova, J., Dybkov, O., Cretu, C., Kachala, M., Svergun, D., Urlaub, H., Luhrmann, R., and Pena, V. (2018). Prp19/Pso4 Is an Autoinhibited Ubiquitin Ligase Activated by Stepwise Assembly of Three Splicing Factors. Mol Cell 69, 979-992 e976. Du, Y., Cao, L., Wang, S., Guo, L., Tan, L., Liu, H., Feng, Y., and Wu, W. (2023). Differences in alternative splicing and their potential underlying factors between animals and plants. Journal of Advanced Research. Emenecker, R.J., Holehouse, A.S., and Strader, L.C. (2020). Emerging roles for phase separation in plants. Developmental Cell 55, 69-83. Feke, A., Liu, W., Hong, J., Li, M.W., Lee, C.M., Zhou, E.K., and Gendron, J.M. (2019). Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. Elife 8. Feke, A.M., Hong, J., Liu, W., and Gendron, J.M. (2020). A Decoy Library Uncovers U-Box E3 Ubiquitin Ligases That Regulate Flowering Time in Arabidopsis. Genetics 215, 699-712. Gehring, N.H., and Roignant, J.Y. (2021). Anything but Ordinary - Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends Genet 37, 355-372. Gil, K.E., Park, M.J., Lee, H.J., Park, Y.J., Han, S.H., Kwon, Y.J., Seo, P.J., Jung, J.H., and Park, C.M. (2017). Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering. The Plant Journal 89, 128-140. Girard, C., Will, C.L., Peng, J., Makarov, E.M., Kastner, B., Lemm, I., Urlaub, H., Hartmuth, K., and Lührmann, R. (2012). Post-transcriptional spliceosomes are retained in nuclear speckles until splicing completion. Nature communications 3, 994. Giudice, J., and Jiang, H. (2024). Splicing regulation through biomolecular condensates and membraneless organelles. Nature Reviews Molecular Cell Biology. Golovkin, M., and Reddy, A. (1996). Structure and expression of a plant U1 snRNP 70K gene: alternative splicing of U1 snRNP 70K pre-mRNAs produces two different transcripts. The Plant Cell 8, 1421-1435. Golovkin, M., and Reddy, A.S. (2003). Expression of U1 small nuclear ribonucleoprotein 70K antisense transcript using APETALA3 promoter suppresses the development of sepals and petals. Plant physiology 132, 1884-1891. Grote, M., Wolf, E., Will, C.L., Lemm, I., Agafonov, D.E., Schomburg, A., Fischle, W., Urlaub, H., and Lührmann, R. (2010). Molecular architecture of the human Prp19/CDC5L complex. Molecular and cellular biology 30, 2105-2119. Guo, X., Zhang, X., Jiang, S., Qiao, X., Meng, B., Wang, X., Wang, Y., Yang, K., Zhang, Y., and Li, N. (2024). E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. Plant Physiology 194, 684-697. Horton, R.M., Cai, Z., Ho, S.N., and Pease, L.R. (2013). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 54, 129-133. Huang, H., and Nusinow, D.A. (2016). Tandem purification of His6-3x FLAG tagged proteins for mass spectrometry from Arabidopsis. Bio-protocol 6, e2060-e2060. Huang, H., Alvarez, S., Bindbeutel, R., Shen, Z., Naldrett, M.J., Evans, B.S., Briggs, S.P., Hicks, L.M., Kay, S.A., and Nusinow, D.A. (2016). Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Molecular & Cellular Proteomics 15, 201-217. Huang, Y.-W., Tseng, C.-Y., Tu, Y.-T., Hsieh, H.-Y., Wang, Y.-S., Chen, Y.-Z., Ly, Y.-T., Tu, S.-L., and Lee, C.-M. (2024). MOS4-Associated Complex subunits 3A and 3B modulate FLM splicing to repress photoperiod-dependent floral transition. bioRxiv, 2024.2003. 2026.586198. Huang, Y.W. (2024). Investigation of the mechanism for Arabidopsis MAC3A and MAC3B modulating flowering time under short day (National Taiwan University). Jia, M., Chen, X., Shi, X., Fang, Y., and Gu, Y. (2023). Nuclear transport receptor KA120 regulates molecular condensation of MAC3 to coordinate plant immune activation. Cell Host Microbe 31, 1685-1699 e1687. Jia, T., Zhang, B., You, C., Zhang, Y., Zeng, L., Li, S., Johnson, K.C.M., Yu, B., Li, X., and Chen, X. (2017). The Arabidopsis MOS4-Associated Complex Promotes MicroRNA Biogenesis and Precursor Messenger RNA Splicing. Plant Cell 29, 2626-2643. Jiang, B., Zhong, Z., Su, J., Zhu, T., Yueh, T., Bragasin, J., Bu, V., Zhou, C., Lin, C., and Wang, X. (2023). Co-condensation with photoexcited cryptochromes facilitates MAC3A to positively control hypocotyl growth in Arabidopsis. Science Advances 9, eadh4048. Johnson, K., Dong, O., and Li, X. (2011a). The evolutionarily conserved MOS4-associated complex. Open Life Sciences 6, 776-784. Johnson, K.C., Dong, O.X., and Li, X. (2011b). The evolutionarily conserved MOS4-associated complex. Central European Journal of Biology 6, 776-784. Kim, E., Goren, A., and Ast, G. (2008). Alternative splicing: current perspectives. Bioessays 30, 38-47. Knight, J.D., Liu, G., Zhang, J.P., Pasculescu, A., Choi, H., and Gingras, A.C. (2015). A web‐tool for visualizing quantitative protein–protein interaction data. Proteomics 15, 1432-1436. Koncz, C., Dejong, F., Villacorta, N., Szakonyi, D., and Koncz, Z. (2012a). The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Frontiers in plant science 3, 9. Koncz, C., Dejong, F., Villacorta, N., Szakonyi, D., and Koncz, Z. (2012b). The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Frontiers in plant science 3, 18033. Kondo, Y., Oubridge, C., van Roon, A.-M.M., and Nagai, K. (2015). Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. elife 4, e04986. Lamm, G.M., and Lamond, A.I. (1993). Non-snRNP protein splicing factors. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1173, 247-265. Lan, W., Qiu, Y., and Miao, Y. (2022). Ubiquitination and Ubiquitin-Like Modifications as Mediators of Alternative Pre-mRNA Splicing in Arabidopsis thaliana. Frontiers in Plant Science 13, 869870. Langemeier, J., Radtke, M., and Bohne, J. (2013). U1 snRNP-mediated poly (A) site suppression: beneficial and deleterious for mRNA fate. RNA biology 10, 180-184. Leijten, W., Koes, R., Roobeek, I., and Frugis, G. (2018). Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae crop species. Plants 7, 111. Li, S., Liu, K., Zhou, B., Li, M., Zhang, S., Zeng, L., Zhang, C., and Yu, B. (2018). MAC3A and MAC3B, Two Core Subunits of the MOS4-Associated Complex, Positively Influence miRNA Biogenesis. Plant Cell 30, 481-494. Li, Y., Yang, J., Shang, X., Lv, W., Xia, C., Wang, C., Feng, J., Cao, Y., He, H., and Li, L. (2019a). SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. New Phytologist 224, 321-335. Li, Y., Yang, J., Shang, X., Lv, W., Xia, C., Wang, C., Feng, J., Cao, Y., He, H., Li, L., and Ma, L. (2019b). SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis. New Phytol 224, 321-335. Liao, S.E., and Regev, O. (2021). Splicing at the phase-separated nuclear speckle interface: a model. Nucleic acids research 49, 636-645. Lin, Y., and Fang, X. (2021). Phase separation in RNA biology. Journal of Genetics and Genomics 48, 872-880. Liu, H.-X., Zhang, M., and Krainer, A.R. (1998). Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes & development 12. Liu, S., Rauhut, R., Vornlocher, H.-P., and Lührmann, R. (2006). The network of protein–protein interactions within the human U4/U6. U5 tri-snRNP. Rna 12, 1418-1430. Llinas, R.J., Xiong, J.Q., Clark, N.M., Burkhart, S.E., and Bartel, B. (2022). An Arabidopsis pre-RNA processing8a (prp8a) missense allele restores splicing of a subset of mis-spliced mRNAs. Plant Physiology 189, 2175-2192. Lu, J., Fu, Y., Li, M., Wang, S., Wang, J., Yang, Q., Ye, J., Zhang, X., Ma, H., and Chang, F. (2020). Global quantitative proteomics studies revealed tissue-preferential expression and phosphorylation of regulatory proteins in Arabidopsis. International journal of molecular sciences 21, 6116. Mahrez, W., Shin, J., Munoz-Viana, R., Figueiredo, D.D., Trejo-Arellano, M.S., Exner, V., Siretskiy, A., Gruissem, W., Köhler, C., and Hennig, L. (2016). BRR2a affects flowering time via FLC splicing. PLoS genetics 12, e1005924. Makarova, O.V., and Makarov, E.M. (2015). The 35S U5 snRNP is generated from the activated spliceosome during in vitro splicing. Plos one 10, e0128430. Makarova, O.V., Makarov, E.M., Urlaub, H., Will, C.L., Gentzel, M., Wilm, M., and Lührmann, R. (2004). A subset of human 35S U5 proteins, including Prp19, function prior to catalytic step 1 of splicing. The EMBO journal 23, 2381-2391. Mangilet, A.F., Weber, J., Schueler, S., Droste-Borel, I., Streicher, S., Schmutzer, T., Rot, G., Macek, B., and Laubinger, S. (2023). The Arabidopsis U1 snRNP regulates mRNA 3'-end processing. bioRxiv, 2023.2009. 2019.558503. Marko, M., Leichter, M., Patrinou-Georgoula, M., and Guialis, A. (2010). hnRNP M interacts with PSF and p54nrb and co-localizes within defined nuclear structures. Experimental cell research 316, 390-400. Marquardt, S., Raitskin, O., Wu, Z., Liu, F., Sun, Q., and Dean, C. (2014). Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Molecular cell 54, 156-165. Martín, G., Márquez, Y., Mantica, F., Duque, P., and Irimia, M. (2021). Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome biology 22, 1-26. Matera, A.G., and Wang, Z. (2014). A day in the life of the spliceosome. Nature reviews Molecular cell biology 15, 108-121. Mellacheruvu, D., Wright, Z., Couzens, A.L., Lambert, J.-P., St-Denis, N.A., Li, T., Miteva, Y.V., Hauri, S., Sardiu, M.E., and Low, T.Y. (2013). The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature methods 10, 730-736. Meyer, K., Köster, T., Nolte, C., Weinholdt, C., Lewinski, M., Grosse, I., and Staiger, D. (2017). Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein At GRP7. Genome biology 18, 1-22. Monaghan, J., Xu, F., Xu, S., Zhang, Y., and Li, X. (2010). Two putative RNA-binding proteins function with unequal genetic redundancy in the MOS4-associated complex. Plant Physiol 154, 1783-1793. Monaghan, J., Xu, F., Gao, M., Zhao, Q., Palma, K., Long, C., Chen, S., Zhang, Y., and Li, X. (2009). Two Prp19-like U-box proteins in the MOS4-associated complex play redundant roles in plant innate immunity. PLoS Pathog 5, e1000526. Ohi, M.D., Kooi, C.W.V., Rosenberg, J.A., Ren, L., Hirsch, J.P., Chazin, W.J., Walz, T., and Gould, K.L. (2005). Structural and functional analysis of essential pre-mRNA splicing factor Prp19p. Molecular and cellular biology 25, 451-460. Otasek, D., Morris, J.H., Bouças, J., Pico, A.R., and Demchak, B. (2019). Cytoscape automation: empowering workflow-based network analysis. Genome biology 20, 1-15. Park, Y.-J., Lee, J.-H., Kim, J.Y., and Park, C.-M. (2019). Alternative RNA splicing expands the developmental plasticity of flowering transition. Frontiers in Plant Science 10, 458931. Pastuszak, A.W., Joachimiak, M.P., Blanchette, M., Rio, D.C., Brenner, S.E., and Frankel, A.D. (2011). An SF1 affinity model to identify branch point sequences in human introns. Nucleic acids research 39, 2344-2356. Pohl, M., Bortfeldt, R.H., Grützmann, K., and Schuster, S. (2013). Alternative splicing of mutually exclusive exons—A review. Biosystems 114, 31-38. Posé, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G.C., Immink, R.G., and Schmid, M. (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414-417. Qi, H.-D., Lin, Y., Ren, Q.-P., Wang, Y.-Y., Xiong, F., and Wang, X.-L. (2019). RNA splicing of FLC modulates the transition to flowering. Frontiers in plant science 10, 1625. Riolo, G., Cantara, S., and Ricci, C. (2021). What’s wrong in a jump? Prediction and validation of splice site variants. Methods and Protocols 4, 62. Sihn, C.-R., Cho, S.Y., Lee, J.H., Lee, T.R., and Kim, S.H. (2007). Mouse homologue of yeast Prp19 interacts with mouse SUG1, the regulatory subunit of 26S proteasome. Biochemical and biophysical research communications 356, 175-180. Song, E.J., Werner, S.L., Neubauer, J., Stegmeier, F., Aspden, J., Rio, D., Harper, J.W., Elledge, S.J., Kirschner, M.W., and Rape, M. (2010). The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes & development 24, 1434-1447. Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., Thanaraj, T., and Soreq, H. (2005). Function of alternative splicing. Gene 344, 1-20. Steffen, A., Elgner, M., and Staiger, D. (2019). Regulation of flowering time by the RNA-binding proteins at GRP7 and at GRP8. Plant and Cell Physiology 60, 2040-2050. Streitner, C., Köster, T., Simpson, C.G., Shaw, P., Danisman, S., Brown, J.W., and Staiger, D. (2012). An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Nucleic acids research 40, 11240-11255. Sun, J.-S., and Manley, J.L. (1995). A novel U2-U6 snRNA structure is necessary for mammalian mRNA splicing. Genes & development 9, 843-854. Swaraz, A., Park, Y.-D., and Hur, Y. (2011). Knock-out mutations of Arabidopsis SmD3-b induce pleotropic phenotypes through altered transcript splicing. Plant science 180, 661-671. Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A.L., Fang, T., Doncheva, N.T., and Pyysalo, S. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic acids research 51, D638-D646. Tracz, M., and Bialek, W. (2021). Beyond K48 and K63: non-canonical protein ubiquitination. Cellular & molecular biology letters 26, 1. Tseng, C.Y. (2024). A study of Arabidopsis thaliana MAC3A and MAC3B involving in photoperiodic floral transition (National Taiwan University). Tu, Y.-T., Chen, C.-Y., Huang, Y.-S., Chang, C.-H., Yen, M.-R., Hsieh, J.-W.A., Chen, P.-Y., and Wu, K. (2022). HISTONE DEACETYLASE 15 and MOS4-associated complex subunits 3A/3B coregulate intron retention of ABA-responsive genes. Plant Physiology 190, 882-897. Urlaub, H., Raker, V.A., Kostka, S., and Lührmann, R. (2001). Sm protein–Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. The EMBO journal 20, 187-196. Verhage, L., Severing, E.I., Bucher, J., Lammers, M., Busscher-Lange, J., Bonnema, G., Rodenburg, N., Proveniers, M.C., Angenent, G.C., and Immink, R.G. (2017). Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants. PloS one 12, e0172950. Wang, J., Ye, Z., Huang, T.H., Shi, H., and Jin, V.X. (2017). Computational methods and correlation of exon-skipping events with splicing, transcription, and epigenetic factors. Cancer Gene Networks, 163-170. Wang, L., Yang, T., Wang, B., Lin, Q., Zhu, S., Li, C., Ma, Y., Tang, J., Xing, J., and Li, X. (2020). RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science advances 6, eaaz1622. Wang, Z., and Burge, C.B. (2008). Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802-813. Wansink, D.G., Schul, W., Van Der Kraan, I., Van Steensel, B., Van Driel, R., and De Jong, L. (1993). Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. The Journal of cell biology 122, 283-293. Wiborg, J., O'Shea, C., and Skriver, K. (2008). Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochemical Journal 413, 447-457. Wickham, H., and Wickham, H. (2016). Data analysis. (Springer). Wu, Z., Zhu, D., Lin, X., Miao, J., Gu, L., Deng, X., Yang, Q., Sun, K., Zhu, D., and Cao, X. (2016). RNA binding proteins RZ-1B and RZ-1C play critical roles in regulating pre-mRNA splicing and gene expression during development in Arabidopsis. The Plant Cell 28, 55-73. Xiao, J., Li, C., Xu, S., Xing, L., Xu, Y., and Chong, K. (2015). JACALIN-LECTIN LIKE1 regulates the nuclear accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, influencing the RNA processing of FLOWERING LOCUS C antisense transcripts and flowering time in Arabidopsis. Plant physiology 169, 2102-2117. Xu, F., Wang, L., Li, Y., Shi, J., Staiger, D., and Yu, F. (2024). Phase separation of GRP7 facilitated by FERONIA-mediated phosphorylation inhibits mRNA translation to modulate plant temperature resilience. Molecular Plant 17, 460-477. Xu, Y., Jin, W., Li, N., Zhang, W., Liu, C., Li, C., and Li, Y. (2016). UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis. The Plant Cell 28, 1200-1214. Yu, Z., Qu, X., Lv, B., Li, X., Sui, J., Yu, Q., and Ding, Z. (2024). MAC3A and MAC3B mediate degradation of the transcription factor ERF13 and thus promote lateral root emergence. The Plant Cell, koae047. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94131 | - |
| dc.description.abstract | 選擇性剪接是一種重要的轉錄後調控機制,以調節基因表現來因應外在環境變動。在阿拉伯芥中,MOS4相關複合體(MAC)作為一個保守的剪接因子,參與mRNA的調控中。MAC的核心成員包括兩個E3泛素連接酶: MAC3A與MAC3B。前人研究表明,這兩者的雙突變體會導致全基因組內含子保留事件明顯增加。然而,MAC3A和MAC3B在植物中調節mRNA剪接的具體機制尚未明瞭。我們實驗室先前的研究發現,與Col-0相比,mac3a mac3b突變體在短日照條件下表現出明顯的早花外表型。此外,RNA定序分析發現,在短日照下,與Col-0相比mac3a mac3b中超過98%的剪接事件發生變化,特別是內含子保留事件。因此,我們假設MAC3A和MAC3B能透過與其他蛋白的相互作用共同調控選擇性剪接,從而影響短日照下的開花外表型。為了揭示MAC3A的相互作用蛋白質網絡並確認潛在的相互作用者,進一步探討其分子機制。在本篇論文中,我使用免疫沉澱串聯質譜分析(IP-MS)來鑑定MAC3A的相互作用蛋白,並研究這些相互作用如何調控剪接。我在阿拉伯芥中表達全長(35s::FLAG-MAC3A-FL)或E3連接酶缺陷(35s::FLAG-MAC3A-H31A/D34A)的MAC3A,並以mac3a mac3b作為背景對照進行IP-MS,藉由數據分析,我鑑定出264個與全長MAC3A相互作用的蛋白,以及811個與E3連接酶缺陷的MAC3A相互作用的蛋白。基因本體論(GO)分析顯示,這些蛋白與mRNA加工過程相關。在相互作用候選蛋白中,MAC的核心成員以及剪接體組成成員是顯著富集,表明MAC3A確實參與了剪接調控。最後,我挑選了幾個參與剪接和開花調控的相互作用候選蛋白,進一步驗證它們與MAC3A之間的相互作用,並探討它們在RNA剪接調控中的分子機制。 | zh_TW |
| dc.description.abstract | Alternative splicing (AS) is a critical post-transcriptional mechanism that modulates gene expression, serving as an effective means to respond to environments. The conserved Arabidopsis MOS4-associated complex (MAC) functions as a splicing factor and participates in mRNA splicing. MAC3A and MAC3B, the two U-box E3 ubiquitin ligases are core components of MAC, and their mutants have been reported to cause genome-wide intron retention (IR) defects. However, their roles in mediating mRNA splicing in plants remain unclear. Previous studies in our lab observed that the mac3a mac3b showed an early-flowering phenotype compared to Col-0 in short-day conditions. Furthermore, RNA-sequencing (RNA-seq) analysis revealed that more than 98% of splicing events, particularly IR events, were altered in the mac3a mac3b. Therefore, we hypothesize that MAC3A and MAC3B, along with other interacting proteins, mediate AS, influencing the flowering phenotype under short-day conditions. To uncover the MAC3A interacting protein network, identify potential interactors, and further explore the molecular mechanism, I used Immunoprecipitation-Mass Spectrometry (IP-MS) to identify MAC3A's interacting proteins and investigate their potential roles in modulating splicing. I performed IP-MS with Arabidopsis expressing full-length (35s::FLAG-MAC3A-FL) or E3 ligase-defective (35s::FLAG-MAC3A-H31A/D34A) MAC3A together with mac3a mac3b background control. Through analyses, I identified 264 and 811 interacting candidates with full-length and E3 ligase-defective MAC3A, respectively. Gene Ontology (GO) analysis indicated that these proteins are associated with mRNA processing. Among the interacting candidates, the major MAC subunits and spliceosome components were enriched, indicating that MAC3A is indeed involved in splicing regulation. Additionally, the ubiquitin ligases-defective MAC3A-H31A-D34A may not alter the core components of MAC or spliceosome interactions. Finally, I have selected several interacting candidates involved in splicing and flowering regulation to further verify the interactions and investigate their molecular mechanisms in regulating RNA splicing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:52:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:52:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 Ⅰ
致謝 Ⅱ Contents Ⅲ 中文摘要 Ⅶ Abstract Ⅷ Abbreviations Ⅹ List of table and figures XIV Introduction 1 Pre-mRNA splicing and alternative splicing (AS) 1 Spliceosome regulates the splicing process 2 Spliceosome and Prp19/CDC5 complex or NineTeen Complex (NTC)/ Prp19 complex (Prp19C) 4 Two components of the MOS4-Associated Complex (MAC), MAC3A and MAC3B in Arabidopsis thaliana 6 AS-regulated flowering pathways in Arabidopsis 9 Splicing factors and RNA-binding proteins (RBPs) regulate floral regulators and flowering time in Arabidopsis 10 Motivation and objectives 13 Materials and methods 14 Plant materials and growth conditions 14 Plasmid construction 14 Generation of FLAG-MAC3A transgenic Arabidopsis 15 Measurements of primary root length 17 Conjugation of the anti-FLAG antibodies to the magnetic beads 17 Immunoprecipitation-Mass Spectrometry (IP-MS) 18 Data processing and visualization 20 Bimolecular Fluorescence Complementation (BiFC) Assay 22 Yeast Two-Hybrid (Y2H) 23 Co-Immunoprecipitation (Co-IP) 25 Immunoblot analysis 26 Protein subcellular localization imaging 27 Measurements of nuclear condensates 28 RNA extraction and Reverse transcription (RT)-PCR 28 Results 30 Identification of MAC3A interacting proteins using Immunoprecipitation-Mass Spectrometry (IP-MS) 30 The Significance Analysis of INTeractome (SAINT) tool to identify potential interactors 34 Gene Ontology analysis of MAC3A interactors 35 The selected MAC3A-interacting proteins involved in RNA splicing 36 Confirming the protein-protein interaction between MAC3A/MAC3B and their interacting candidates 37 MAC3A/MAC3B, U1-70K, and GRP7 localized in the nucleus of tobacco epidermal leaf cells 40 Discussion 42 Comparing the IP-MS datasets of the intact function MAC3A-FL and the E3 ligase-defective MAC3A-H31A-D34A 42 The MAC3A proteome is more closely associated with mRNA splicing, but does not exclude relationships with other clusters 45 Some reported interactors with MAC3A were not detected in this study 46 Whether the roles of MAC3A and MAC3B in the regulation of splicing in Arabidopsis is conserved with that in humans remains to be determined 48 The association between MAC3A and U1-70K in the regulation of mRNA splicing 50 The association between MAC3A and GRP7 may require U1-70K as a bridge 52 Whether the liquid-liquid phase separation (LLPS) formation by GRP7 contributes to the RNA splicing 54 Table 57 Figure 62 Appendices 85 References 102 | - |
| dc.language.iso | en | - |
| dc.subject | 剪接相關蛋白質 | zh_TW |
| dc.subject | 開花 | zh_TW |
| dc.subject | IP-MS | zh_TW |
| dc.subject | 選擇性剪接 | zh_TW |
| dc.subject | MAC3A | zh_TW |
| dc.subject | flowering | en |
| dc.subject | splicing-related proteins | en |
| dc.subject | IP-MS | en |
| dc.subject | alternative splicing | en |
| dc.subject | MAC3A | en |
| dc.title | 探討MAC3A相互作用的蛋白質網絡 | zh_TW |
| dc.title | Investigation of the MAC3A interacting protein network | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉明容;蔡皇龍;涂世隆;邱子珍 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Jung Liu;Huang-Lung Tsai;Shih-Long Tu;Tzyy-Jen Chiou | en |
| dc.subject.keyword | MAC3A,選擇性剪接,IP-MS,剪接相關蛋白質,開花, | zh_TW |
| dc.subject.keyword | MAC3A,alternative splicing,IP-MS,splicing-related proteins,flowering, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202402566 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 植物科學研究所 | - |
| dc.date.embargo-lift | 2029-08-01 | - |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-01 | 8.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
