請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94128
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李百祺 | zh_TW |
dc.contributor.advisor | Pai-Chi Li | en |
dc.contributor.author | 黃靖婷 | zh_TW |
dc.contributor.author | Ching-Ting Huang | en |
dc.date.accessioned | 2024-08-14T16:51:19Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-31 | - |
dc.identifier.citation | [1]F. Duck, Physical properties of tissues: a comprehensive reference book. Academic press, 2013.
[2]I. Lentacker, S. C. De Smedt, and N. N. Sanders, "Drug loaded microbubble design for ultrasound triggered delivery," Soft Matter, 10.1039/B823051J vol. 5, no. 11, pp. 2161-2170, 2009, doi: 10.1039/B823051J. [3]W.-W. Liu et al., "Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment," Scientific Reports, vol. 6, no. 1, p. 24753, 2016/04/20 2016, doi: 10.1038/srep24753. [4]葛竑志, "基於金奈米液滴汽化之聲穿孔效應研究," 國立臺灣大學, 2019. [Online]. Available: https://doi.org/10.6342%2fNTU201903966 [5]"Chapter 1 - Introduction," in Submarine Optical Cable Engineering, Y. Yincan, J. Xinmin, P. Guofu, and J. Wei Eds.: Academic Press, 2018, pp. 1-27. [6]洪士堯, "光聲多層膜及其於全學式超音波/光聲影像探頭之應用," 碩士, 生醫電子與資訊學研究所, 國立臺灣大學, 台北市, 2014. [Online]. Available: https://hdl.handle.net/11296/y342wv [7]N. Reznik et al., "The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets," Ultrasonics, vol. 53, no. 7, pp. 1368-1376, 2013/09/01/ 2013, doi: https://doi.org/10.1016/j.ultras.2013.04.005. [8]A. Delalande, S. Kotopoulis, M. Postema, P. Midoux, and C. Pichon, "Sonoporation: Mechanistic insights and ongoing challenges for gene transfer," Gene, vol. 525, no. 2, pp. 191-199, 2013/08/10/ 2013, doi: https://doi.org/10.1016/j.gene.2013.03.095. [9]H. Ju, R. A. Roy, and T. W. Murray, "Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy," Biomed. Opt. Express, vol. 4, no. 1, pp. 66-76, 2013/01/01 2013, doi: 10.1364/BOE.4.000066. [10]N. Reznik, R. Williams, and P. N. Burns, "Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent," Ultrasound in Medicine & Biology, vol. 37, no. 8, pp. 1271-1279, 2011/08/01/ 2011, doi: https://doi.org/10.1016/j.ultrasmedbio.2011.05.001. [11]C. C. Church, "Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound," Ultrasound in Medicine & Biology, vol. 28, no. 10, pp. 1349-1364, 2002/10/01/ 2002, doi: https://doi.org/10.1016/S0301-5629(02)00579-3. [12]D. Dalecki, "Mechanical Bioeffects of Ultrasound," Annual Review of Biomedical Engineering, vol. 6, no. Volume 6, 2004, pp. 229-248, 2004, doi: https://doi.org/10.1146/annurev.bioeng.6.040803.140126. [13]I. Lentacker, I. De Cock, R. Deckers, S. C. De Smedt, and C. T. W. Moonen, "Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms," Advanced Drug Delivery Reviews, vol. 72, pp. 49-64, 2014/06/15/ 2014, doi: https://doi.org/10.1016/j.addr.2013.11.008. [14]S. M. Chowdhury, L. Abou-Elkacem, T. Lee, J. Dahl, and A. M. Lutz, "Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook," Journal of Controlled Release, vol. 326, pp. 75-90, 2020/10/10/ 2020, doi: https://doi.org/10.1016/j.jconrel.2020.06.008. [15]B. A. Abeid, M. L. Fabiilli, J. B. Estrada, and M. Aliabouzar, "Ultra-high-speed dynamics of acoustic droplet vaporization in soft biomaterials: Effects of viscoelasticity, frequency, and bulk boiling point," Ultrasonics Sonochemistry, vol. 103, p. 106754, 2024/02/01/ 2024, doi: https://doi.org/10.1016/j.ultsonch.2024.106754. [16]S. M. M. Modarres-Gheisari, R. Gavagsaz-Ghoachani, M. Malaki, P. Safarpour, and M. Zandi, "Ultrasonic nano-emulsification – A review," Ultrasonics Sonochemistry, vol. 52, pp. 88-105, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.ultsonch.2018.11.005. [17]E. Strohm, M. Rui, M. Kolios, I. Gorelikov, and N. Matsuura, Optical droplet vaporization (ODV): Photoacoustic characterization of perfluorocarbon droplets. 2010, pp. 495-498. [18]E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, "Vaporization of perfluorocarbon droplets using optical irradiation," (in eng), Biomed Opt Express, vol. 2, no. 6, pp. 1432-42, Jun 1 2011, doi: 10.1364/boe.2.001432. [19]W.-W. Liu, S.-H. Huang, and P.-C. Li, "Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation," Pharmaceutics, vol. 11, no. 6, doi: 10.3390/pharmaceutics11060279. [20]M. Michalik, J. Szymańczyk, M. Stajnke, T. Ochrymiuk, and A. Cenian, "Medical Applications of Diode Lasers: Pulsed versus Continuous Wave (cw) Regime," Micromachines, vol. 12, no. 6, p. 710, 2021. [Online]. Available: https://www.mdpi.com/2072-666X/12/6/710. [21]F. N. Mirza and K. A. Khatri, "The use of lasers in the treatment of skin cancer: A review," Journal of Cosmetic and Laser Therapy, vol. 19, no. 8, pp. 451-458, 2017/11/17 2017, doi: 10.1080/14764172.2017.1349321. [22]F. Mirzapour-Shafiyi, Y. Kametani, T. Hikita, Y. Hasegawa, and M. Nakayama, "Numerical evaluation reveals the effect of branching morphology on vessel transport properties during angiogenesis," PLOS Computational Biology, vol. 17, no. 6, p. e1008398, 2021, doi: 10.1371/journal.pcbi.1008398. [23]J. Lv, L. Zhang, W. Du, G. Ling, and P. Zhang, "Functional gold nanoparticles for diagnosis, treatment and prevention of thrombus," Journal of Controlled Release, vol. 345, pp. 572-585, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.jconrel.2022.03.044. [24]Y. Pan et al., "Nanodroplet-Coated Microbubbles Used in Sonothrombolysis with Two-Step Cavitation Strategy," Advanced Healthcare Materials, vol. 12, no. 6, p. 2202281, 2023, doi: https://doi.org/10.1002/adhm.202202281. [25]M.-F. Tsai et al., "Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy," ACS Nano, vol. 7, no. 6, pp. 5330-5342, 2013/06/25 2013, doi: 10.1021/nn401187c. [26]J. Xu et al., "Hyperthermia-triggered UK release nanovectors for deep venous thrombosis therapy," Journal of Materials Chemistry B, 10.1039/C9TB01851D vol. 8, no. 4, pp. 787-793, 2020, doi: 10.1039/C9TB01851D. [27]L. J. Delaney, S. Isguven, J. R. Eisenbrey, N. J. Hickok, and F. Forsberg, "Making waves: how ultrasound-targeted drug delivery is changing pharmaceutical approaches," Materials Advances, 10.1039/D1MA01197A vol. 3, no. 7, pp. 3023-3040, 2022, doi: 10.1039/D1MA01197A. [28]K. Hynynen, "Hynynen, K.: Ultrasound for drug and gene delivery to the brain. Adv. Drug Deliv. Rev. 60, 1209-1217," Advanced drug delivery reviews, vol. 60, pp. 1209-17, 07/01 2008, doi: 10.1016/j.addr.2008.03.010. [29]G. Peruzzi, G. Sinibaldi, G. Silvani, G. Ruocco, and C. M. Casciola, "Perspectives on cavitation enhanced endothelial layer permeability," Colloids and Surfaces B: Biointerfaces, vol. 168, pp. 83-93, 2018/08/01/ 2018, doi: https://doi.org/10.1016/j.colsurfb.2018.02.027. [30]M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, "Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption," (in eng), Proc Natl Acad Sci U S A, vol. 103, no. 31, pp. 11719-23, Aug 1 2006, doi: 10.1073/pnas.0604318103. [31]R. Bekeredjian, S. Chen, P. A. Frenkel, P. A. Grayburn, and R. V. Shohet, "Ultrasound-Targeted Microbubble Destruction Can Repeatedly Direct Highly Specific Plasmid Expression to the Heart," Circulation, vol. 108, no. 8, pp. 1022-1026, 2003/08/26 2003, doi: 10.1161/01.CIR.0000084535.35435.AE. [32]K. Ferrara, R. Pollard, and M. Borden, "Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery," Annual Review of Biomedical Engineering, vol. 9, no. Volume 9, 2007, pp. 415-447, 2007, doi: https://doi.org/10.1146/annurev.bioeng.8.061505.095852. [33]C. R. Mayer, N. A. Geis, H. A. Katus, and R. Bekeredjian, "Ultrasound targeted microbubble destruction for drug and gene delivery," Expert Opinion on Drug Delivery, vol. 5, no. 10, pp. 1121-1138, 2008/10/01 2008, doi: 10.1517/17425247.5.10.1121. [34]W.-W. Liu, S.-H. Huang, and P.-C. Li, "Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation," Pharmaceutics, vol. 11, no. 6, p. 279, 2019. [Online]. Available: https://www.mdpi.com/1999-4923/11/6/279. [35]L. C. Moyer, K. F. Timbie, P. S. Sheeran, R. J. Price, G. W. Miller, and P. A. Dayton, "High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles," Journal of Therapeutic Ultrasound, vol. 3, no. 1, p. 7, 2015/05/27 2015, doi: 10.1186/s40349-015-0029-4. [36]D. Gao et al., "Ultrasound-Triggered Phase-Transition Cationic Nanodroplets for Enhanced Gene Delivery," ACS Applied Materials & Interfaces, vol. 7, no. 24, pp. 13524-13537, 2015/06/24 2015, doi: 10.1021/acsami.5b02832. [37]H. Ju, R. A. Roy, and T. W. Murray, "Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy," (in eng), Biomed Opt Express, vol. 4, no. 1, pp. 66-76, Jan 1 2013, doi: 10.1364/boe.4.000066. [38]C. W. Wei et al., "Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results," (in eng), Opt Lett, vol. 39, no. 9, pp. 2599-602, May 1 2014, doi: 10.1364/ol.39.002599. [39]H. Won Baac et al., "Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation," Applied Physics Letters, vol. 97, no. 23, 2010, doi: 10.1063/1.3522833. [40]S. Noimark et al., "Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging," Advanced Functional Materials, vol. 28, no. 9, p. 1704919, 2018/02/01 2018, doi: https://doi.org/10.1002/adfm.201704919. [41]R. K. Poduval et al., "Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite," Applied Physics Letters, vol. 110, no. 22, 2017, doi: 10.1063/1.4984838. [42]W. Huang, W. Y. Chang, J. Kim, S. Li, S. Huang, and X. Jiang, "A Novel Laser Ultrasound Transducer Using Candle Soot Carbon Nanoparticles," IEEE Transactions on Nanotechnology, vol. 15, no. 3, pp. 395-401, 2016, doi: 10.1109/TNANO.2016.2536739. [43]吳文卲, "使用單發雷射之雙模態光聲/超音波顯微系統," 國立臺灣大學, 2016. [Online]. Available: https://doi.org/10.6342%2fNTU201603419 [44]S. Addanki, I. S. Amiri, and P. Yupapin, "Review of optical fibers-introduction and applications in fiber lasers," Results in Physics, vol. 10, pp. 743-750, 2018/09/01/ 2018, doi: https://doi.org/10.1016/j.rinp.2018.07.028. [45]P. D. Dragic, M. Cavillon, and J. Ballato, "Materials for optical fiber lasers: A review," Applied Physics Reviews, vol. 5, no. 4, 2018, doi: 10.1063/1.5048410. [46]R. T. Schermer, "Mode scalability in bent optical fibers," Opt. Express, vol. 15, no. 24, pp. 15674-15701, 2007/11/26 2007, doi: 10.1364/OE.15.015674. [47]M. E. Lines, "Scattering losses in optic fiber materials. II. Numerical estimates," Journal of Applied Physics, vol. 55, no. 11, pp. 4058-4063, 1984, doi: 10.1063/1.332995. [48]D. Donlagic, "A low bending loss multimode fiber transmission system," Opt. Express, vol. 17, no. 24, pp. 22081-22095, 2009/11/23 2009, doi: 10.1364/OE.17.022081. [49]B. Avvaru and A. B. Pandit, "Oscillating bubble concentration and its size distribution using acoustic emission spectra," Ultrasonics Sonochemistry, vol. 16, no. 1, pp. 105-115, 2009/01/01/ 2009, doi: https://doi.org/10.1016/j.ultsonch.2008.07.003. [50]O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, "Acoustic droplet vaporization is initiated by superharmonic focusing," Proceedings of the National Academy of Sciences, vol. 111, no. 5, pp. 1697-1702, 2014, doi: doi:10.1073/pnas.1312171111. [51]M. Aliabouzar, K. N. Kumar, and K. Sarkar, "Acoustic vaporization threshold of lipid-coated perfluoropentane droplets," The Journal of the Acoustical Society of America, vol. 143, no. 4, pp. 2001-2012, 2018, doi: 10.1121/1.5027817. [52]C.-Y. Lai, C.-H. Wu, C.-C. Chen, and P.-C. Li, "Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability," Ultrasound in Medicine & Biology, vol. 32, no. 12, pp. 1931-1941, 2006/12/01/ 2006, doi: https://doi.org/10.1016/j.ultrasmedbio.2006.06.020. [53]R. J. Colchester et al., "Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings," Applied Physics Letters, vol. 104, no. 17, 2014, doi: 10.1063/1.4873678. [54]S. Noimark et al., "Carbon-Nanotube–PDMS Composite Coatings on Optical Fibers for All-Optical Ultrasound Imaging," Advanced Functional Materials, vol. 26, no. 46, pp. 8390-8396, 2016, doi: https://doi.org/10.1002/adfm.201601337. [55]X. Zou, N. Wu, Y. Tian, and X. Wang, "Broadband miniature fiber optic ultrasound generator," Opt. Express, vol. 22, no. 15, pp. 18119-18127, 2014/07/28 2014, doi: 10.1364/OE.22.018119. [56]A. H. Lo, O. D. Kripfgans, P. L. Carson, E. D. Rothman, and J. B. Fowlkes, "Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 54, no. 5, pp. 933-946, 2007, doi: 10.1109/TUFFC.2007.339. [57]Q. Wu et al., "Investigation of the Acoustic Vaporization Threshold of Lipid-Coated Perfluorobutane Nanodroplets Using Both High-Speed Optical Imaging and Acoustic Methods," Ultrasound in Medicine & Biology, vol. 47, no. 7, pp. 1826-1843, 2021/07/01/ 2021, doi: https://doi.org/10.1016/j.ultrasmedbio.2021.02.019. [58]M. Aliabouzar, K. N. Kumar, and K. Sarkar, "Effects of droplet size and perfluorocarbon boiling point on the frequency dependence of acoustic vaporization threshold," The Journal of the Acoustical Society of America, vol. 145, no. 2, pp. 1105-1116, 2019, doi: 10.1121/1.5091781. [59]P. S. Sheeran, T. O. Matsunaga, and P. A. Dayton, "Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy," Physics in Medicine & Biology, vol. 58, no. 13, p. 4513, 2013/06/13 2013, doi: 10.1088/0031-9155/58/13/4513. [60]K. Wilson, K. Homan, and S. Emelianov, "Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging," Nature Communications, vol. 3, no. 1, p. 618, 2012/01/10 2012, doi: 10.1038/ncomms1627. [61]A. S. Hannah, D. VanderLaan, Y.-S. Chen, and S. Y. Emelianov, "Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm," Biomed. Opt. Express, vol. 5, no. 9, pp. 3042-3052, 2014/09/01 2014, doi: 10.1364/BOE.5.003042. [62]J. D. Dove, P. A. Mountford, T. W. Murray, and M. A. Borden, "Engineering optically triggered droplets for photoacoustic imaging and therapy," (in eng), Biomed Opt Express, vol. 5, no. 12, pp. 4417-27, Dec 1 2014, doi: 10.1364/boe.5.004417. [63]W. T. Shi and F. Forsberg, "Ultrasonic characterization of the nonlinear properties of contrast microbubbles," Ultrasound in Medicine & Biology, vol. 26, no. 1, pp. 93-104, 2000/01/01/ 2000, doi: https://doi.org/10.1016/S0301-5629(99)00117-9. [64]D. B. Khismatullin, "Resonance frequency of microbubbles: Effect of viscosity," The Journal of the Acoustical Society of America, vol. 116, no. 3, pp. 1463-1473, 2004, doi: 10.1121/1.1778835. [65]C.-D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, "Surface cleaning from laser-induced cavitation bubbles," Applied Physics Letters, vol. 89, no. 7, 2006, doi: 10.1063/1.2337506. [66]W. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, "Laser-induced cavitation bubbles for cleaning of solid surfaces," Journal of Applied Physics, vol. 95, no. 6, pp. 2952-2956, 2004, doi: 10.1063/1.1650531. [67]N. Kawashima, R. Wadachi, H. Suda, T. Yeng, and P. Parashos, "Root canal medicaments*," International Dental Journal, vol. 59, no. 1, pp. 5-11, 2009/02/01 2009, doi: https://doi.org/10.1922/IDJ_2060Kawashima07. [68]C. Estrela, R. Holland, C. R. d. A. Estrela, A. H. G. Alencar, M. D. Sousa-Neto, and J. D. Pécora, "Characterization of Successful Root Canal Treatment," Brazilian Dental Journal, vol. 25, 2014. [69]G. De-Deus, C. Reis, D. Beznos, A. M. G. de Abranches, T. Coutinho-Filho, and S. Paciornik, "Limited Ability of Three Commonly Used Thermoplasticized Gutta-Percha Techniques in Filling Oval-shaped Canals," Journal of Endodontics, vol. 34, no. 11, pp. 1401-1405, 2008/11/01/ 2008, doi: https://doi.org/10.1016/j.joen.2008.08.015. [70]A. Kato, A. Ziegler, N. Higuchi, K. Nakata, H. Nakamura, and N. Ohno, "Aetiology, incidence and morphology of the C-shaped root canal system and its impact on clinical endodontics," International Endodontic Journal, vol. 47, no. 11, pp. 1012-1033, 2014/11/01 2014, doi: https://doi.org/10.1111/iej.12256. [71]K. R. Carson, G. G. Goodell, and S. B. McClanahan, "Comparison of the antimicrobial activity of six irrigants on primary endodontic pathogens," (in eng), J Endod, vol. 31, no. 6, pp. 471-3, Jun 2005, doi: 10.1097/01.don.0000148868.72833.62. [72]Y. Zhao, W. Fan, T. Xu, F. R. Tay, J. L. Gutmann, and B. Fan, "Evaluation of several instrumentation techniques and irrigation methods on the percentage of untouched canal wall and accumulated dentine debris in C-shaped canals," International Endodontic Journal, vol. 52, no. 9, pp. 1354-1365, 2019/09/01 2019, doi: https://doi.org/10.1111/iej.13119. [73]Y. Li et al., "Cleaning and Disinfecting Oval-Shaped Root Canals: Ex Vivo Evaluation of Three Rotary Instrumentation Systems with Passive Ultrasonic Irrigation," (in eng), Medicina (Kaunas), vol. 59, no. 5, May 16 2023, doi: 10.3390/medicina59050962. [74]M. Haapasalo, Y. Shen, W. Qian, and Y. Gao, "Irrigation in endodontics," (in eng), Dent Clin North Am, vol. 54, no. 2, pp. 291-312, Apr 2010, doi: 10.1016/j.cden.2009.12.001. [75]L. W. van der Sluis, M. Versluis, M. K. Wu, and P. R. Wesselink, "Passive ultrasonic irrigation of the root canal: a review of the literature," (in eng), Int Endod J, vol. 40, no. 6, pp. 415-26, Jun 2007, doi: 10.1111/j.1365-2591.2007.01243.x. [76]M. Malki et al., "Irrigant flow beyond the insertion depth of an ultrasonically oscillating file in straight and curved root canals: visualization and cleaning efficacy," (in eng), J Endod, vol. 38, no. 5, pp. 657-61, May 2012, doi: 10.1016/j.joen.2012.02.001. [77]E. Joyce, S. S. Phull, J. P. Lorimer, and T. J. Mason, "The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species," Ultrasonics Sonochemistry, vol. 10, no. 6, pp. 315-318, 2003/10/01/ 2003, doi: https://doi.org/10.1016/S1350-4177(03)00101-9. [78]M. Haapasalo, Y. Shen, Z. Wang, and Y. Gao, "Irrigation in endodontics," British Dental Journal, vol. 216, no. 6, pp. 299-303, 2014/03/01 2014, doi: 10.1038/sj.bdj.2014.204. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94128 | - |
dc.description.abstract | 微氣泡在超音波影像與治療中有許多應用,影像上基於強反射特性,可作為超音波顯影劑;治療上基於穴蝕效應、聲穿孔效應等超音波生物效應,則可作為藥物傳遞、血栓溶解或基因治療之藥物載體。然而微氣泡的穩定性與尺寸不盡理想,因此近年來奈米液滴日漸成為研究重點。奈米液滴不僅是在汽化後可與微氣泡具相同的功能,在汽化過程中的力學效應也可有其應用。相較於微氣泡,奈米液滴具有較高的穩定性、較小的尺寸。然而具有這些優勢的同時也代表液滴需要較高的能量來達到汽化。激發液滴汽化的方式可分為聲學激發與光學激發。研究顯示在光聲合併的雙模態激發下液滴汽化所需的總能量可大幅降低。然而現行的雙模態激發架構由兩套相互獨立的光學與聲學系統組成,需建立第三套系統將兩模態同步,硬體設備架構龐大。且當前研究皆以自由空間雷射作為導光途徑,難以將光導入體內。這些缺點對雙模態激發的實際應用造成限制。為解決架構複雜度與光路問題,本研究以單一光纖作為傳輸裝置。將雷射耦合到光纖中,以達到靈活快速的光路調整並允許光線被導入狹小空間。使用浸塗法製作光聲薄膜,藉由光聲效應,產生超音波,並將薄膜面積縮減製作於光纖出光口。透過調整薄膜的吸光度,使薄膜吸收光產生超音波對液滴做聲學激發的同時,也允許部分光源穿透,提供液滴光學激發所需光能,藉此免去超音波系統。另一方面,本研究從外觀型態、能量與頻譜,探討了薄膜暴露於雷射能量下狀態的變化。針對不同的薄膜製作參數以及重複浸塗次數,量測其聲場與光場的大小與分布,從中找出理想的薄膜輸出聲壓與光能。最後將薄膜應用於微氣泡的激發,由影像亮度與粒子顆數量化氣泡減少程度,作為薄膜具引發慣性穴蝕效應能力之驗證。最終將薄膜應用於奈米液滴的雙模態激發,透過粒徑分析證實其汽化能力。本研究做到使用單一光源產生超音波與光能量,縮減雙模態激發的硬體架構, 藉由將雷射耦合進入光纖,改善光路調整費時的問題,並使雷射與超音波能被引道入狹小腔室中,增加應用領域可能性。 | zh_TW |
dc.description.abstract | Microbubbles have broad applications in diagnostic and therapeutic ultrasound. Due to their strong scattering, microbubbles can serve as contrast agents in ultrasound imaging. Based on ultrasound bioeffects such as cavitation and sonoporation, microbubbles can act as carriers for drug delivery, thrombolysis, or gene therapy. However, microbubbles are not ideal due to their instability and size limitations. Consequently, of nanodroplets have been developed. Nanodroplets not only function similarly to microbubbles after vaporization but also exhibit oscillatory behavior during the vaporization that can be utilized. Compared to microbubbles, nanodroplets offer higher stability and smaller sizes, but these advantages come at the cost of higher energy required for vaporization. There are two ways to induce droplet vaporization: acoustic excitation and optical excitation. Research indicates that dual-modality excitation using both acoustic and optical methods can significantly reduce the total energy required for droplet vaporization. However, current dual-modality excitation systems consist of independent optical and acoustic systems, requiring another system for synchronization. This results in a complex and bulky hardware setup. Additionally, laser used in current research is delivered in free space, which makes it difficult to guide light into confined spaces. These drawbacks limit the practical application of dual-modality excitation. To address these problems, this study uses single fiber as the delivery device. Coupling the laser into an optical fiber, achieving flexible and rapid optical path adjustments and allowing light to be delivered into confined spaces. A photoacoustic film was fabricated using a dip-coating method. Utilizing the photoacoustic effect, ultrasound is generated by the film, which is miniaturized and coated at the output end of optical fiber. By adjusting the film's absorption coefficient, the film absorbs light to produce ultrasound for acoustic excitation while allowing part of the light to pass through, providing the optical energy for droplet excitation, thus eliminating the need for an ultrasound system. Additionally, this study investigates the changes in the film’s morphology, energy, and spectrum under laser exposure. By measuring the acoustic and optical fields under different film fabrication parameters and number of repeated coatings, the ideal film output was determined. The film was then applied to microbubble excitation to verify its ability to induce inertial cavitation, quantified using ultrasound imaging and particle analyzation. Finally, the film was applied to dual-modality excitation of nanodroplets to demonstrate its vaporization capability, using particle analysis to determine the extent of vaporization. This study achieved the generation of both ultrasound and optical energy using a single light source, simplifying the dual-modality excitation hardware setup. By coupling the laser into the optical fiber, the issue of time-consuming optical path adjustments was resolved, and laser and ultrasound can be guided into narrow cavities, expanding potential application areas. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:51:19Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:51:19Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書i
致謝 ii 摘要 iii ABSTRACTiv 目錄vi 圖目錄ix 表目錄xiii 第一章 緒論1 1.1 超音波生物效應1 1.1.1 超音波熱效應1 1.1.2 超音波非熱效應2 1.2 雷射物質交互作用6 1.3 光聲結合於治療之應用7 1.3.1 超音波熱效應之應用7 1.3.2 超音波非熱效應之應用7 1.3.3 小結9 1.4 微氣泡與奈米液滴9 1.4.1 微氣泡9 1.4.2 奈米液滴10 1.5 現行液滴激發的挑戰與發展11 1.5.1 雙模態激發架構11 1.6 光聲薄膜13 1.7 光纖16 1.8 論文架構19 第二章 研究方法20 2.1 光聲薄膜製作20 2.2 雷射耦合21 2.3 薄膜特性觀察23 2.3.1聲場量測23 2.3.2 光能量量測26 2.4 微氣泡制備與粒徑分布量測26 2.5 液滴制備與粒徑分布量測26 2.6 微氣泡穴蝕效應之定量27 2.6.1超音波影像觀察27 2.6.2粒徑分析28 2.7 液滴汽化效應之定量28 2.7.1差分汽化劑量定量28 2.7.2粒徑分溪31 第三章 研究結果32 3.1 光纖切割完整性與耦合效率32 3.2 光聲分離量測架構34 3.3 薄膜性質36 3.3.1薄膜受光行為36 3.3.2吸光粒子數量之影響41 3.3.3薄膜光與聲場之強度與衰減42 3.3.4 重複浸塗43 3.4 薄膜超音波應用於氣泡穴蝕效應44 3.5 薄膜超音波應用於液滴汽化效應48 3.5.1粒徑分析48 3.5.2差分汽化劑量52 第四章 分析與討論—薄膜性質55 4.1 薄膜受光行為與表面型態56 4.2 薄膜轉換效率57 第五章 分析與討論—薄膜應用61 5.1 粒徑量測61 5.2 液滴汽化之超音波參數63 5.3 薄膜汽化之雷射參數66 5.4 薄膜面積於量測與應用之影響67 5.5 差分汽化訊號量測68 第六章 結論70 第七章 未來工作71 7.1 薄膜製程71 7.2 汽化效應之觀察72 7.3 光聲薄膜結合光纖之應用74 參考文獻76 | - |
dc.language.iso | zh_TW | - |
dc.title | 光聲薄膜結合光纖應用於雙模態液滴激發 | zh_TW |
dc.title | Dual-Modality Droplet Vaporization Using Photoacoustic-film-coated Optical Fibers | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 沈哲州;宋孔彬;鄭耿璽 | zh_TW |
dc.contributor.oralexamcommittee | Che-Chou Shen;Kung-Bin Sung;Geng-Shi Jeng | en |
dc.subject.keyword | 光聲薄膜,金奈米液滴,聲學激發液滴汽化,光學激發液滴汽化,穴蝕效應, | zh_TW |
dc.subject.keyword | photoacoustic film,gold nanodroplets,acoustic droplet vaporization,optical droplet vaporization,cavitation, | en |
dc.relation.page | 81 | - |
dc.identifier.doi | 10.6342/NTU202402396 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-02 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
顯示於系所單位: | 生醫電子與資訊學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。