Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江皓森zh_TW
dc.contributor.advisorHao-Sen Chiangen
dc.contributor.authorDOAN THE HAzh_TW
dc.contributor.authorDOAN THE HAen
dc.date.accessioned2024-08-14T16:48:13Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation1. Strober W, Fuss I, Mannon P, Strober W, Fuss I, Mannon P. The fundamental basis of inflammatory bowel disease. J Clin Invest. 2007;117(3):514–21.

2. Thoreson R, Cullen JJ. Pathophysiology of Inflammatory Bowel Disease: An Overview. Surgical Clinics of North America. 2007;87(3):575–85.

3. Fakhoury M, Rebecca Negrulj, Armin Mooranian, Al-Salami H. Inflammatory bowel disease: clinical aspects. European Journal of Clinical and Experimental Medicine. 2014;7:113–20.

4. Neurath MF. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat Immunol. 2019;20(8):970–9.

5. Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30.

6. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet. 2017;390(10114):2769–78.

7. Yen HH, Weng MT, Tung CC, Wang YT, Chang YT, Chang CH, et al. Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: A nationwide population based study. Intest Res. 2019;17(1):54–62.

8. Cai Z, Wang S, Li J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front Med (Lausanne). 2021;8(December):1–24.

9. Lee SH, Kwon J eun, Cho ML. Immunological Pathogenesis of Inflammatory Bowel Disease. Intest Res. 2018;16(1):26–42.

10. Zhang YZ, Li YY. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol. 2014;20(1):91–9.

11. Qiu P, Ishimoto T, Zhang J, Zhang Z, Liu Y. The Gut Microbiota in Inflammatory Bowel Disease. Front Cell Infect Microbiol. 2022;12(February):1–14.

12. Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. Journal of Allergy and Clinical Immunology. 2020;145(1):16–27.

13. Forster SC, Clare S, Beresford-jones BS, Harcourt K, Notley G, Stares MD, et al. Identification of gut microbial species linked with disease variability in a widely used mouse model of colitis. 2022;7(APril).

14. Hernández-Chirlaque C, Aranda CJ, Ocón B, Capitán-Cañadas F, Ortega-González M, Carrero JJ, et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J Crohns Colitis. 2016;10(11):1324–35.

15. Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: The oxygen hypothesis. ISME Journal. 2013;7:1256–61.

16. Henson MA, Phalak P. Microbiota dysbiosis in inflammatory bowel diseases: in silico investigation of the oxygen hypothesis. BMC Syst Biol. 2017;11(145):1–15.

17. Feng J, Chen Y, Liu Y, Lin L, Lin X, Gong W, et al. Efficacy and safety of fecal microbiota transplantation in the treatment of ulcerative colitis: a systematic review and meta-analysis. Sci Rep. 2023;13(1):1–13.

18. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223–37.

19. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.

20. Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1).

21. Bacher P, Hohnstein T, Beerbaum E, Röcker M, Blango MG, Kaufmann S, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell. 2019;176(6):1340-1355.e15.

22. Li X V, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature. 2022;603(7902):1–7.

23. Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Gargus M, et al. Malassezia is Associated with Crohn’s Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe. 2019;25(3):377–88.

24. Pinto S, Benincà E, Galazzo G, Jonkers D, Penders J, Bogaards JA. Heterogeneous associations of gut microbiota with Crohn’s disease activity. Gut Microbes. 2024;16(1).

25. Imdad A, Pandit NG, Zaman M, Minkoff NZ, Tanner-Smith EE, Gomez-Duarte OG, et al. Fecal transplantation for treatment of inflammatory bowel disease. Cochrane Database of Systematic Reviews. 2023;2023(4).

26. Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov. 2023;9(361).

27. Schultz M. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis. 2008;14(7):1012–8.

28. Abraham B, Quigley EMM. Antibiotics and probiotics in inflammatory bowel disease: When to use them? Frontline Gastroenterol. 2020;11:62–9.

29. Nitzan O, Elias M, Peretz A, Saliba W. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):1078–87.

30. Sasson AN, Ananthakrishnan AN, Raman M. Diet in Treatment of Inflammatory Bowel Diseases. Clinical Gastroenterology and Hepatology. 2021;19(3):425-435.e3.

31. Hashash JG, Elkins J, Lewis JD, Binion DG. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology. 2024;166(3):521–32.

32. Triantafillidis JK, Vagianos C, Papalois AE. The role of enteral nutrition in patients with inflammatory bowel disease: Current aspects. Biomed Res Int. 2015;2015.

33. White B, Curle J, Gervais L, Wands D, Nichols B, Hansen R, et al. Exclusive enteral nutrition impacts peripheral blood mononuclear cell profile of children with Crohn’s disease. J Pediatr Gastroenterol Nutr. 2024;79:148–53.

34. Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2019;16(6):331–45.

35. Underhill DM, Iliev ID. The mycobiota: Interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–16.

36. Wheeler ML, Limon JJ, Underhill DM. Immunity to Commensal Fungi: Detente and Disease. Annual Review of Pathology Mechanisms of Disease. 2017;12:359–85.

37. Whibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine. 2015;76(1):42–52.

38. Li W, Hu Y an, Li F qiu, Shi L ning, Shao H feng, Huang M, et al. Distribution of Yeast Isolates from Invasive Infections and Their In Vitro Susceptibility to Antifungal Agents: Evidence from 299 Cases in a 3-Year (2010 to 2012) Surveillance Study. Mycopathologia. 2015;179(5–6):397–405.

39. Tan BH, Chakrabarti A, Li RY, Patel AK, Watcharananan SP, Liu Z, et al. Incidence and species distribution of candidaemia in Asia: A laboratory-based surveillance study. Clinical Microbiology and Infection. 2015;21(10):946–53.

40. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science (1979). 2012;336(6086):1314–7.

41. Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe. 2016;19(6):865–73.

42. Chehoud C, Albenberg LG, Judge C, Hoffmann C, Grunberg S, Bittinger K, et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1948–56.

43. Imai T, Inoue R, Kawada Y, Morita Y. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2019;54(2):149–59.

44. Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut. 2017;66:1039–48.

45. Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio. 2016;7(5):1–11.

46. Di Martino L, De Salvo C, Buela KA, Hager C, Ghannoum M, Osme A, et al. Candida tropicalis Infection Modulates the Gut Microbiome and Confers Enhanced Susceptibility to Colitis in Mice. Cell Mol Gastroenterol Hepatol. 2022;13(3):901–23.

47. Leonardi I, Gao IH, Lin WY, Allen M, Li X V, Fiers WD, et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell. 2022;185:1–16.

48. Scott BM, Gutiérrez-Vázquez C, Sanmarco LM, da Silva Pereira JA, Li Z, Plasencia A, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med. 2021;27(7):1212–22.

49. Sen S, Mansell TJ. Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology. 2020;137(October 2019):103333.

50. Netea MG, Joosten LAB, Van Der Meer JWM, Kullberg BJ, Van De Veerdonk FL. Immune defence against Candida fungal infections. Nat Rev Immunol. 2015;15(10):630–42.

51. Bojang E, Ghuman H, Kumwenda P, Hall RA. Immune sensing of Candida albicans. Journal of Fungi. 2021;7(2):1–16.

52. Medzhitov R, Janeway CA. Innate immunity: The virtues of a nonclonal system of recognition. Cell. 1997;91(3):295–8.

53. Zheng NX, Wang Y, Hu DD, Yan L, Jiang YY. The role of pattern recognition receptors in the innate recognition of Candida albicans. Virulence. 2015;6(4):347–61.

54. Miyazato A, Nakamura K, Yamamoto N, Mora-Montes HM, Tanaka M, Abe Y, et al. Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans. Infect Immun. 2009;77(7):3056–64.

55. Lowes DJ, Hevener KE, Peters BM. Second-Generation Antidiabetic Sulfonylureas Inhibit Candida albicans and Candidalysin-Mediated Activation of the NLRP3 Inflammasome David. Antimicrob Agents Chemother. 2020;64(2):e01777-19.

56. Tomalka J, Ganesan S, Azodi E, Patel K, Majmudar P, Hall BA, et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog. 2011;7(12).

57. Jigar V. Desai, Lionakis MS. The role of neutrophils in host defense against invasive fungal infections. Curr Clin Microbiol Rep. 2018;5(3):181–9.

58. Lionakis MS, Netea MG. Candida and Host Determinants of Susceptibility to Invasive Candidiasis. PLoS Pathog. 2013;9(1).

59. Mohammadi R, Foroughifar E. Candida infections among neutropenic patients. Caspian J Intern Med. 2016;7(2):71–7.

60. He Y, Liu J, Chen Y, Yan L, Wu J. Neutrophil Extracellular Traps in Candida albicans Infection. Front Immunol. 2022;13(June):1–7.

61. Qian Q, Jutila MA, Van Rooijen N, Cutler JE. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. The Journal of Immunology. 1994;152(10):5000–8.

62. Heung LJ. Monocytes and the Host Response to Fungal Pathogens. Front Cell Infect Microbiol. 2020;10(February):1–9.

63. Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. Journal of Infectious Diseases. 2014;209(1):109–19.

64. Domínguez-Andrés J, Feo-Lucas L, Minguito de la Escalera M, González L, López-Bravo M, Ardavín C. Inflammatory Ly6Chigh Monocytes Protect against Candidiasis through IL-15-Driven NK Cell/Neutrophil Activation. Immunity. 2017;46(6):1059-1072.e4.

65. Netea MG, Gijzen K, Coolen N, Verschueren I, Figdor C, Van Der Meer JWM, et al. Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes Infect. 2004;6(11):985–9.

66. del Fresno C, Soulat D, Roth S, Blazek K, Udalova I, Sancho D, et al. Interferon-β Production via Dectin-1-Syk-IRF5 Signaling in Dendritic Cells Is Crucial for Immunity to C. albicans. Immunity. 2013;38(6):1176–86.

67. Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, et al. Conventional Dendritic Cells Mount a Type I IFN Response against Candida spp. Requiring Novel Phagosomal TLR7-Mediated IFN-β Signaling. The Journal of Immunology. 2011;186(5):3104–12.

68. Speakman EA, Dambuza IM, Salazar F, Brown GD. T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors. Trends Immunol. 2020;41(1):61–76.

69. Swidergall M, Leibundgut-landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol. 2022;15:829–36.

70. Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, Albanesi C, et al. IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol. 2011;41(7):1894–901.

71. Mills KHG. IL-17 and IL-17-producing cells in protection versus pathology. Nat Rev Immunol. 2023;23:38–54.

72. Gaffen SL, Hernández-Santos N, Peterson AC. IL-17 signaling in host defense against Candida albicans. Immunol Res. 2011;50(2–3):181–7.

73. Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, et al. Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation. Immunity. 2016;44(3):659–71.

74. Netea MG, Vonk AG, van den Hoven M, Verschueren I, Joosten LA, van Krieken JH, et al. Differential role of IL-18 and IL-12 in the host defense against disseminated Candida albicans infection. Eur J Immunol. 2003;33(12):3409–17.

75. Delsing CE, Gresnigt MS, Leentjens J, Preijers F, Frager FA, Kox M, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: A case series. BMC Infect Dis. 2014;14(1):1–12.

76. van Furth R, Kullberg BJ, van’t Wout JW, Hoogstraten C. Recombinant Interferon-γ Enhances Resistance to Acute Disseminated Candida albicans Infection in Mice. Journal of Infectious Diseases. 1993;168(2):436–43.

77. Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, et al. Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog. 2009;5(12).

78. Richardson JP, Moyes DL. Adaptive immune responses to Candida albicans infection. Virulence. 2015;6(4):327–37.

79. Mencacci A, Del Sero G, Cenci E, D’Ostiani CF, Bacci A, Montagnoli C, et al. Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans. Journal of Experimental Medicine. 1998;187(3):307–17.

80. Mencacci A, Perruccio K, Bacci A, Cenci E, Benedetti R, Martelli MF, et al. Defective antifungal T-helper 1 (TH1) immunity in a murine model of allogeneic T-cell-depleted bone marrow transplantation and its restoration by treatment with TH2 cytokine antagonists. Blood. 2001;97(5):1483–90.

81. Renga G, Moretti S, Oikonomou V, Borghi M, Zelante T, Paolicelli G, et al. IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut. Cell Rep. 2018;23(6):1767–78.

82. Whibley N, Maccallum DM, Vickers MA, Zafreen S, Waldmann H, Hori S, et al. Expansion of Foxp3+ T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol. 2014;44(4):1069–83.

83. Bacher P, Kniemeyer O, Schönbrunn A, Sawitzki B, Assenmacher M, Rietschel E, et al. Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunol. 2014;7(4):916–28.

84. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting Edge: IL-17–Secreting Innate Lymphoid Cells Are Essential for Host Defense against Fungal Infection. The Journal of Immunology. 2013;190(2):521–5.

85. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75–84.

86. Lee JS, Tato CM, Joyce-Shaikh B, Gulan F, Cayatte C, Chen Y, et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity. 2015;43(4):727–38.

87. Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol. 2012;33(6):289–96.

88. Sonnenberg GF, Hepworth MR. Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol. 2019;19(10):599–613.

89. Doron I, Leonardi I, Li X V., Fiers WD, Semon A, Bialt-DeCelie M, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184(4):1017-1031.e14.

90. Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011;4(6):603–11.

91. Ost KS, O’Meara TR, Stephens WZ, Chiaro T, Zhou H, Penman J, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021;596(7870):114–8.

92. Doron I, Mesko M, Li X V., Kusakabe T, Leonardi I, Shaw DG, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol. 2021;6(12):1493–504.

93. Millet N, Solis N V., Swidergall M. Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity. Front Immunol. 2020;11(October):1–15.

94. Ferreira-Gomes M, Wich M, Böde S, Hube B, Jacobsen ID, Jungnickel B. B Cell Recognition of Candida albicans Hyphae via TLR 2 Promotes IgG1 and IL-6 Secretion for TH17 Differentiation. Front Immunol. 2021;12(November):1–13.

95. Li R, Rezk A, Li H, Gommerman JL, Prat A, Bar-Or A. Antibody-Independent Function of Human B Cells Contributes to Antifungal T Cell Responses. The Journal of Immunology. 2017;198(8):3245–54.

96. Zheng L, Wen XL, Duan SL. Role of metabolites derived from gut microbiota in inflammatory bowel disease. World J Clin Cases. 2022;10(9):2660–77.

97. Gonçalves P, Araújo JR, Di Santo JP. A cross-talk between microbiota-derived short-chain fatty acids and the host mucosal immune system regulates intestinal homeostasis and inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(3):558–72.

98. Meisel M, Mayassi T, Fehlner-Peach H, Koval JC, O’Brien SL, Hinterleitner R, et al. Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis. ISME Journal. 2017;11(1):15–30.

99. Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RMT, Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019;7(1):1–18.

100. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576(7785):143–8.

101. Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM, Bethge J, et al. Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases. Gastroenterology. 2017;153(6):1504-1516.e2.

102. Li X, Zhang ZH, Zabed HM, Yun J, Zhang G, Qi X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol Nutr Food Res. 2021;65(5):1–16.

103. Chiaro TR, Soto R, Stephens WZ, Kubinak JL, Petersen C, Gogokhia L, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med. 2017;9(380):1–12.

104. Sun S, Xu X, Liang L, Wang X, Bai X, Zhu L, et al. Lactic Acid-Producing Probiotic Saccharomyces cerevisiae Attenuates Ulcerative Colitis via Suppressing Macrophage Pyroptosis and Modulating Gut Microbiota. Front Immunol. 2021;12(November):1–18.

105. Wu J, Huang H, Wang L, Gao M, Meng S, Zou S, et al. A tailored series of engineered yeasts for the cell-dependent treatment of inflammatory bowel disease by rational butyrate supplementation. Gut Microbes. 2024;16(1).

106. Yu M, Ding H, Gong S, Luo Y, Lin H, Mu Y, et al. Fungal dysbiosis facilitates inflammatory bowel disease by enhancing CD4+ T cell glutaminolysis. Front Cell Infect Microbiol. 2023;13(April):1–12.

107. Peng Z, Zhang J, Zhang M, Yin L, Zhou Z, Lv C, et al. Tryptophan Metabolites Relieve Intestinal Candida albicans Infection by Altering the Gut Microbiota to Reduce IL-22 Release from Group 3 Innate Lymphoid Cells of the Colon Lamina Propria. Food Funct. 2024;

108. Thomson CA, Morgan SC, Ohland C, McCoy KD. From germ-free to wild: modulating microbiome complexity to understand mucosal immunology. Mucosal Immunol. 2022;15:1085–94.

109. Willing BP, Russell SL, Finlay BB. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011;9(4):233–43.

110. Campisciano G, Biffi S. Microbiota in vivo imaging approaches to study host-microbe interactions in preclinical and clinical setting. Heliyon. 2022;8(12).

111. Sommer F, Bäckhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.

112. Renz H, Brandtzaeg P, Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol. 2012;12(1):9–23.

113. Proctor A, Parvinroo S, Richie T, Jia X, Lee STM, Karp PD, et al. Resources to Facilitate Use of the Altered Schaedler Flora (ASF) Mouse Model to Study Microbiome Function. mSystems. 2022;7(5):1–15.

114. Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, Ring D, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2(16215):1–12.

115. Darnaud M, De Vadder F, Bogeat P, Boucinha L, Bulteau AL, Bunescu A, et al. A standardized gnotobiotic mouse model harboring a minimal 15-member mouse gut microbiota recapitulates SOPF/SPF phenotypes. Nat Commun. 2021;12(1):1–21.

116. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice. Curr Protoc Immunol. 2015;104.

117. Koh AY. Murine models of Candida gastrointestinal colonization and dissemination. Eukaryot Cell. 2013;12(11):1416–22.

118. Dieleman LA, Palmen MJHJ, Akol H, Bloemena E, Peña AS, Meuwissen SGM, et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114(3):385–91.

119. Collins JW, Chervaux C, Raymond B, Derrien M, Brazeilles R, Kosta A, et al. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia. Journal of Infectious Diseases. 2014;210(7):1029–41.

120. Qiu Z, Sheridan BS. Isolating Lymphocytes from the Mouse Small Intestinal Immune System. Journal of Visualized Experiments. 2018;2018(132):1–9.

121. Rubén ZP, García-Saura AG, Jebbar M, Golyshin PN, Álvaro SF. Combined whole-cell high-throughput functional screening for identification of new nicotinamidases/pyrazinamidases in metagenomic/polygenomic libraries. Front Microbiol. 2016;7(NOV):1–13.

122. Liu CT, Raghu R, Lin SH, Wang SY, Kuo CH, Tseng YJ, et al. Metabolomics of ginger essential oil against alcoholic fatty liver in mice. J Agric Food Chem. 2013;61(46):11231–40.

123. Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as Major Disruptors of Gut Microbiota. Front Cell Infect Microbiol. 2020;10:1–10.

124. Faye AS, Allin KH, Iversen AT, Agrawal M, Faith J, Colombel JF, et al. Antibiotic use as a risk factor for inflammatory bowel disease across the ages: a population-based cohort study. Gut. 2023;72(4):663–70.

125. Joly S, Pujol C, Schröppel K, Soll DR. Development of two species-specific fingerprinting probes for broad computer-assisted epidemiological studies of Candida tropicalis. J Clin Microbiol. 1996;34(12):3063–71.

126. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–62.

127. Fan X, Xiao M, Zhang D, Huang JJ, Wang H, Hou X, et al. Molecular mechanisms of azole resistance in Candida tropicalis isolates causing invasive candidiasis in China. Clinical Microbiology and Infection. 2019;25(7):885–91.

128. O’Brien CE, Oliveira-Pacheco J, Cinnéide E, Haase MAB, Hittinger CT, Rogers TR, et al. Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. PLoS Pathog. 2021;17(3):1–27.

129. Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 2008;4(2).

130. Chen Y han, Yeung F, Lacey KA, Zaldana K, Lin J da, Chern G, et al. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci Immunol. 2023;1–20.

131. Prieto D, Pla J. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans. Front Microbiol. 2015;6(AUG):1–10.

132. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–42.

133. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al. Induction and molecular signature of pathogenic TH 17 cells. Nat Immunol. 2012;13(10):991–9.

134. Gaffen SL, Jain R, Garg A V., Cua DJ. The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.

135. Saraiva M, Vieira P, Garra AO. Biology and therapeutic potential of interleukin-10. Journal of Experimental Medicine. 2019;1–19.

136. Lee JS, Tato CM, Joyce-Shaikh B, Gulan F, Cayatte C, Chen Y, et al. Interleukin-23-Independent IL-17 Production Regulates Intestinal Epithelial Permeability. Immunity. 2015;43(4):727–38.

137. Li LJ, Gong C, Zhao MH, Feng BS. Role of interleukin-22 in inflammatory bowel disease. World J Gastroenterol. 2014;20(48):18177–88.

138. Fritsch SD, Sukhbaatar N, Gonzales K, Pirinen E, Verhelst SHL. Metabolic support by macrophages sustains colonic epithelial homeostasis. Cell Metab. 2023;35:1–13.

139. Valeri M, Raffatellu M. Cytokines IL-17 and IL-22 in the host response to infection. Pathog Dis. 2016;74(9):1–15.

140. Aggor FEY, Break TJ, Trevejo-Nuñez G, Whibley N, Coleman BM, Bailey RD, et al. Oral epithelial IL-22/STAT3 signaling licenses IL-17-mediated immunity to oral mucosal candidiasis. Sci Immunol. 2020;5(48).

141. Shaikh H, Vargas JG, Mokhtari Z, Jarick KJ, Ulbrich M, Mosca JP, et al. Mesenteric Lymph Node Transplantation in Mice to Study Immune Responses of the Gastrointestinal Tract. Front Immunol. 2021;12(July):1–17.

142. Zeng B, Shi S, Ashworth G, Dong C, Liu J, Xing F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis. 2019;10(4).

143. Sorini C, Cardoso RF, Tripathi KP, Mold JE, Diaz OE, Holender Y, et al. Intestinal damage is required for the pro-inflammatory differentiation of commensal CBir1-specific T cells. Mucosal Immunol. 2024;17(1):81–93.

144. Lin X, Gaudino SJ, Jang KK, Bahadur T, Singh A, Banerjee A, et al. IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity. 2022;55(2):237-253.e8.

145. Bouladoux N, Harrison OJ, Belkaid Y. The mouse model of infection with Citrobacter rodentium. Curr Protoc Immunol. 2017;2017:19.15.1-19.15.25.

146. Mullineaux-Sanders C, Sanchez-Garrido J, Hopkins EGD, Shenoy AR, Barry R, Frankel G. Citrobacter rodentium–host–microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol. 2019;17(11):701–15.

147. Vallance BA, Deng W, Jacobson K, Finlay BB. Host susceptibility to the attaching and effacing bacterial pathogen Citrobacter rodentium. Infect Immun. 2003;71(6):3443–53.

148. Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7(8):4557–76.

149. Buschor S, Cuenca M, Uster SS, Schären OP, Balmer ML, Terrazos MA, et al. Innate immunity restricts Citrobacter rodentium A/E pathogenesis initiation to an early window of opportunity. PLoS Pathog. 2017;13(6):1–24.

150. Yang W, Cong Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol. 2021;18(4):866–77.

151. Sauve AA. NAD+ and vitamin B3: From metabolism to therapies. Journal of Pharmacology and Experimental Therapeutics. 2008;324(3):883–93.

152. Gasperi V, Sibilano M, Savini I, Catani MV. Niacin in the central nervous system: An update of biological aspects and clinical applications. Int J Mol Sci. 2019;20(4):1–26.

153. Makarov M V., Trammell SAJ, Migaud ME. The chemistry of the vitamin B3 metabolome. Biochem Soc Trans. 2018;47(1):131–47.

154. French, Jarrod B., Yana Cen, Tracy L. Vrablik, Ping Xu, Eleanor Allen WHR and AAS. Characterization of Nicotinamidases: Steady-State Kinetic Parameters, Class-wide Inhibition by Nicotinaldehydes and Catalytic Mechanism. Biochemistry. 2010;49(49):10421–10439.

155. Ghislain M, Talla E, François JM. Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNCI. Yeast. 2002;19(3):215–24.

156. Xing XR, Liao Z Bin, Tan F, Zhu ZY, Jiang Y, Cao YY. Effect of nicotinamide against Candida albicans. Front Microbiol. 2019;10(MAR):1–9.

157. Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. J Agric Food Chem. 2022;70(26):7851–70.

158. Mehdi K, Thierie J, Penninckx Mj. γ-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochemical Journal. 2001;359(3):631–7.

159. Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, et al. Commensal Fungi Recapitulate the Protective Benefits of Intestinal Bacteria. Cell Host Microbe. 2017;22(6):809-816.e4.

160. Limon JJ, Skalski JH, Underhill DM. Commensal Fungi in Health and Disease. Cell Host Microbe. 2017;22(2):156–65.

161. Ohkusa T, Nishikawa Y, Sato N. Gastrointestinal disorders and intestinal bacteria: Advances in research and applications in therapy. Front Med (Lausanne). 2023;9(February):1–15.

162. Samonis G, Gikas A, Anaissie EJ, Vrenzos G, Maraki S, Tselentis Y, et al. Prospective evaluation of effects of broad-spectrum antibiotics on gastrointestinal yeast colonization of humans. Antimicrob Agents Chemother. 1993;37(1):51–3.

163. Drummond RA, Desai J V., Ricotta EE, Swamydas M, Deming C, Conlan S, et al. Long-term antibiotic exposure promotes mortality after systemic fungal infection by driving lymphocyte dysfunction and systemic escape of commensal bacteria. Cell Host Microbe. 2022;1–14.

164. Dollive S, Chen YY, Grunberg S, Bittinger K, Hoffmann C, Vandivier L, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS One. 2013;8(8).

165. Spatz M, Da Costa G, Ventin-Holmberg R, Planchais J, Michaudel C, Wang Y, et al. Antibiotic treatment using amoxicillin-clavulanic acid impairs gut mycobiota development through modification of the bacterial ecosystem. Microbiome. 2023;11(1):1–18.

166. Savage HP, Bays DJ, Tiffany C, Gonzalez MAF, Bejarano EliJ, Nguyen H, et al. Epithelial hypoxia maintains colonization resistance against Candida albicans. Cell Host Microbe. 2024;32:1–11.

167. Li X V., Leonardi I, Iliev ID. Gut Mycobiota in Immunity and Inflammatory Disease. Immunity. 2019;50(6):1365–79.

168. Glazier VE, Kramara J, Ollinger T, Solis N V, Zarnowski R, Wakade RS, et al. The Candida albicans reference strain SC5314 contains a rare, dominant allele of the transcription factor Rob1 that modulates filamentation, biofilm formation, and oral commensalism. mBio. 2023;14(5).

169. Alnuaimi AD, O’Brien-Simpson NM, Reynolds EC, Mccullough MJ. Clinical isolates and laboratory reference Candida species and strains have varying abilities to form biofilms. FEMS Yeast Res. 2013;13(7):689–99.

170. Whiley RA, Cruchley AT, Gore C, Hagi-Pavli E. Candida albicans strain-dependent modulation of pro-inflammatory cytokine release by in vitro oral and vaginal mucosal models. Cytokine. 2012;57(1):89–97.

171. Iliev ID, Leonardi I. Fungal dysbiosis: Immunity and interactions at mucosal barriers. Nat Rev Immunol. 2017;17(10):635–46.

172. Zhang Z, Li J, Zheng W, Zhao G, Zhang H, Wang X, et al. Peripheral Lymphoid Volume Expansion and Maintenance Are Controlled by Gut Microbiota via RALDH+ Dendritic Cells. Immunity. 2016;44(2):330–42.

173. Conti HR, Peterson AC, Brane L, Huppler AR, Herna´ndez-Santos N, Whibley N, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. Journal of Experimental Medicine. 2014;211(10):2075–84.

174. Dunne MR, Wagener J, Loeffler J, Doherty DG, Rogers TR. Unconventional T cells - New players in antifungal immunity. Clinical Immunology. 2021;227(April):108734.

175. Kumar P, Monin L, Castillo P, Elsegeiny W, Horne W, Eddens T, et al. Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation. Immunity. 2016;44(3):659–71.

176. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75–84.

177. Deng Z, Wang S, Wu C, Wang C. IL-17 inhibitor-associated inflammatory bowel disease: A study based on literature and database analysis. Front Pharmacol. 2023;14(March):1–9.

178. Turner JE, Stockinger B, Helmby H. IL-22 Mediates Goblet Cell Hyperplasia and Worm Expulsion in Intestinal Helminth Infection. PLoS Pathog. 2013;9(10):1–7.

179. Mizoguchi A, Yano A, Himuro H, Ezaki Y, Sadanaga T, Mizoguchi E. Clinical importance of IL-22 cascade in IBD. J Gastroenterol. 2018;53(4):465–74.

180. Akiyama S, Sakuraba A. Distinct roles of interleukin-17 and T helper 17 cells among autoimmune diseases. J Transl Autoimmun. 2021;4:100104.

181. Yang J, Bai W, Zeng X, Cui C. Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties – A review. Trends Food Sci Technol. 2019;91(January):339–46.

182. Sofyanovich OA, Nishiuchi H, Yamagishi K, Matrosova E V., Serebrianyi VA. Multiple pathways for the formation of the γ-glutamyl peptides γ-glutamyl-valine and γ-glutamyl-valyl-glycine in Saccharomyces cerevisiae. PLoS One. 2019;14(5):1–18.

183. Ghosh S, Whitley CS, Haribabu B, Jala VR. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cmgh. 2021;11(5):1463–82.

184. van Tilburg Bernardes E, Pettersen VK, Gutierrez MW, Laforest-Lapointe I, Jendzjowsky NG, Cavin JB, et al. Intestinal fungi are causally implicated in microbiome assembly and immune development in mice. Nat Commun. 2020;11(1):1–16.

185. Wang D, Pham VT, Steinert RE, Zhernakova A, Fu J. Microbial vitamin production mediates dietary effects on diabetic risk. Gut Microbe. 2022;14(1).

186. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, et al. Archaea and Fungi of the Human Gut Microbiome: Correlations with Diet and Bacterial Residents. PLoS One. 2013;8(6).

187. Salem HA, Wadie W. Effect of Niacin on Inflammation and Angiogenesis in a Murine Model of Ulcerative Colitis. Sci Rep. 2017;7(1):1–8.

188. Li J, Kong D, Wang Q, Wu W, Tang Y, Bai T, et al. Niacin ameliorates ulcerative colitis via prostaglandin D 2 ‐mediated D prostanoid receptor 1 activation. EMBO Mol Med. 2017;9(5):571–88.

189. Toelstede S, Hofmann T. Kokumi-active glutamyl peptides in cheeses and their biogeneration by penicillium roquefortii. J Agric Food Chem. 2009;57(9):3738–48.

190. Zhao CJ, Gänzle MG. Synthesis of Taste-Active γ-Glutamyl Dipeptides during Sourdough Fermentation by Lactobacillus reuteri. J Agric Food Chem. 2016;64(40):7561–8.

191. Zhang H, Kodera T, Eto Y, Mine Y. γ-Glutamyl valine supplementation-induced mitigation of gut inflammation in a porcine model of colitis. J Funct Foods. 2016;24:558–67.

192. Zhang H, Kovacs-Nolan J, Kodera T, Eto Y, Mine Y. γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochim Biophys Acta Mol Basis Dis. 2015;1852(5):792–804.

193. Xing L, Zhang H, Majumder K, Zhang W, Mine Y. γ-Glutamylvaline prevents low-grade chronic inflammation via activation of a calcium-sensing receptor pathway in 3T3-L1Mouse adipocytes. J Agric Food Chem. 2019;67(30):8361–9.

194. Guha S, Paul C, Alvarez S, Mine Y, Majumder K. Dietary γ-Glutamyl Valine Ameliorates TNF-α-Induced Vascular Inflammation via Endothelial Calcium-Sensing Receptors. J Agric Food Chem. 2020;68(34):9139–49.

195. Mason KL, Downward JRE, Mason KD, Falkowski NR, Eaton KA, Kao JY, et al. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun. 2012;80(10):3371–80.

196. Downward JRE, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB. Modulation of post-antibiotic bacterial community reassembly and host response by Candida albicans. Sci Rep. 2013;3:1–11.

197. Liao CM, Zimmer MI, Wang CR. The functions of type I and Type II Natural Killer T cells in inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19(6):1330–8.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94119-
dc.description.abstract真菌在發炎性腸道疾病和其他慢性發炎性疾病中具有關鍵作用。熱帶念珠菌為一種腸道共生真菌,對於其如何引發宿主免疫反應來調節腸道平衡仍所知甚少。在本研究中,透過對小鼠使用廣效抗生素,我建立了一個研究宿主與真菌相互作用的動物模型。進而發現熱帶念珠菌標準菌株 (MYA-3404) 在化學誘導和細菌感染模型中都有利於抵抗結腸炎。在機制方面,定植在腸道中的熱帶念珠菌促進了 IL-17A 和 IL-22 的產生,進而增強了腸道屏障功能和腸上皮細胞的增殖。而 T 細胞亞群(Th17 和 T 細胞)和 ILC3 則刺激這兩種細胞激素的產生。熱帶念珠菌定植小鼠的糞便樣本的代謝物組分析顯示其維生素 B3 代謝發生了變化,透過菸鹼醯胺酶將菸鹼醯胺轉化為菸鹼酸。管餵菸鹼醯胺會加劇結腸炎症狀,而補充菸鹼酸則可透過 IL-17A 減輕腸道發炎。添加熱帶念珠菌可以緩解在實驗性結腸炎下施用菸鹼醯胺的作用。菸鹼醯胺酶抑制劑處理消除了熱帶念珠菌腸道定植所帶來的保護作用。此外,接種熱帶念珠菌增加血漿中的γ-谷氨酰亮氨酸表現量。注射 γ-谷氨酰亮氨酸的小鼠透過增加 IL-17A、IL-22 表現和上皮細胞增殖重現了對結腸炎的有益效果。有趣的是,與標準菌株相比,從念珠菌血症患者分離出的臨床菌株缺少對實驗性結腸炎的保護功能以及維生素 B3 和 γ-谷氨酰亮氨酸的代謝。整體而言,我的研究結果強調了熱帶念珠菌透過維生素 B3 和 γ-谷氨酰亮氨酸代謝途徑誘導 IL-17A 和 IL-22產生,以增強腸道發炎時保護效果。我的結果闡明了對共生真菌-代謝物組-免疫細胞軸調節腸道發炎的理解,並為開發真菌作為益生菌產品來治療發炎性腸道疾病患者提供了證據。zh_TW
dc.description.abstractMycobiota plays a critical role in inflammatory bowel disease and other chronic inflammatory conditions. However, how Candida tropicalis - a commensal gut fungus drives the host immune response to regulate intestinal homeostasis remains poorly unknown. In the present study, I established a model of investigating host-fungi interaction by administering broad-spectrum antibiotics for conventional mice. I demonstrated that the C. tropicalis reference strain (MYA-3404) displays favorable benefits against colitis in both chemical-induced and bacterial infection models. Mechanistically, C. tropicalis colonization in the gut promoted IL-17A and IL-22 production to enhance gut barrier function and the proliferation of intestinal epithelial cells. T cell subsets (Th17 and T cells) and ILC3s stimulated the production of these two cytokines. Metabolomic profile of fecal samples from mice with C. tropicalis colonization identified the alteration in vitamin B3 metabolism with the conversion of nicotinamide to nicotinic acid via nicotinamidase activity. Oral gavage with nicotinamide exacerbated colitis symptoms, while nicotinic acid supplementation alleviated intestinal inflammation through an IL-17A-dependent pathway. C. tropicalis supplementation rescued the consequences of nicotinamide administration under experimental colitis. Nicotinamidase inhibitor treatment abrogated the protective benefits conferred by intestinal C. tropicalis colonization. In addition, C. tropicalis inoculation increased g-glutamylleucine levels in plasma. Administration mice with g-glutamylleucine recapitulated the beneficial effects against colitis by enhancing IL-17A, IL-22, and epithelial cell proliferation. Interestingly, a clinical strain isolated from a candidemia patient lacked the protective function against experimental colitis and the metabolism of vitamin B3 and g-glutamylleucine in contrast to the reference strain. Overall, my findings underscore the role of C. tropicalis as an inducer of IL-17A and IL-22 production via vitamin B3 and g-glutamylleucine metabolic pathways to enhance intestinal inflammation protection. My results have shed light on the understanding of the commensal fungi-metabolome-immune cells axis to regulate intestinal inflammation and provide evidence for developing fungi as probiotic products to treat patients with inflammatory bowel disease (IBD).en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:48:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:48:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsChapter 1: Introduction 1
1.1 Introduction to Inflammatory Bowel Disease (IBD) 1
1.2 The link between gut microbiome and Inflammatory bowel disease 2
1.3 Candida spp. and Inflammatory bowel disease 3
1.4 Immune responses to Candida species 5
1.4.1 Recognition of Candida species 5
1.4.2 Innate immune responses to Candida species 5
1.4.3 Adaptive immune responses 6
1.5 Metabolomic profile in IBDs and their role in regulating the IBD symptoms 9
1.6 Mouse model for studying host-microbe interactions 10
1.7 Hypothesis and Specific aims 12
Chapter 2: Material and Methods 13
2.1 Mice study 13
2.2 DSS-induced colitis model 13
2.3 Metabolite supplementation 13
2.4 Fungal supplementation 14
2.5 Determination of fungal burden 14
2.6 Citrobacter rodentium infection model 14
2.7 Antibiotic treatment for animals 15
2.8 Neutralizing antibody injection 15
2.9 Histopathological examination 15
2.10 Cytokines measurement 16
2.11 Isolation of immune cells from MLN and intestinal lamina propria 16
2.12 In vitro Th17 differentiation assay 17
2.13 Flow cytometry 17
2.14 Quantification of sIgA binding to cultured fungi in feces 18
2.15 Immunofluorescent staining for epithelial cell proliferation 19
2.16 Intestinal permeability test 20
2.17 Nicotinamidase activity determination 20
2.18 Gamma-glutamyl-transferase (GGT) assay 20
2.19 Metabolite analysis for plasma 21
2.20 Metabolite analysis for fecal samples 21
2.21 Quantification and Statistical Analysis 23
Chapter 3: Results 24
3.1 Candida tropicalis colonization in the gut alleviating experimental colitis is dose-dependent 24
3.2 Candida tropicalis colonization induces IL-17A and IL-22 production and enforces intestinal barrier function and epithelial cell proliferation 26
3.3 Intestinal Candida tropicalis colonization stimulates the production of IL-17A by T cell subsets and IL-22 by Innate lymphoid cells type 3 (ILC3s) 27
3.4 The protective effect of C. tropicalis against chemical-induced colitis is mediated by both IL-17A and IL-22 28
3.5 The alleviation of experimental colitis by Candida tropicalis supplementation is metabolism- and strain-dependent 29
3.6 Candida tropicalis MYA-3404 exhibits protective effects from intestinal inflammation induced by Citrobacter rodentium infection 30
3.7 Candida tropicalis MYA-3404 metabolizes vitamin B3 to promote the beneficial function in the colitis model 31
3.8 Candida tropicalis MYA-3404 utilizes nicotinamidase activity to regulate intestinal inflammation 33
3.9 Nicotinic acid promoting beneficial effects against experimental colitis is mediated through IL-17A 35
3.10 MYA-3404 colonization in the gut promotes g-glutamylleucine in plasma and recapitulates the beneficial function in the experimental colitis model 35
Chapter 4: Discussion 38
5. Conclusion 43
6. Figures 44
7. References 95
-
dc.language.isoen-
dc.title研究熱帶念珠菌對於腸道免疫反應的影響zh_TW
dc.titleInvestigating the effects of Candida tropicalis colonization on intestinal immune responsesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳俊任;林志萱;林建達 ;蔡雨寰;王維樂zh_TW
dc.contributor.oralexamcommitteeChun-Jen Chen;Jr-Shiuan Lin;Jian-Da Lin;Yu-Huan Tsai;Wei-Le Wangen
dc.subject.keyword熱帶念珠菌,發炎性腸道疾病,維生素B3,γ-谷氨酰亮氨酸,IL-17A,IL-22,黏膜免疫,腸道屏障功能,腸道細胞增殖,zh_TW
dc.subject.keywordCandida tropicalis,inflammatory bowel diseases,vitamin B3,g-glutamylleucine,IL-17A,IL-22,mucosal immunity,intestinal barrier function,intestinal cell proliferation,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202403830-
dc.rights.note未授權-
dc.date.accepted2024-08-11-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
31.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved