請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94097完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘 | zh_TW |
| dc.contributor.advisor | Kuan-Ming Li | en |
| dc.contributor.author | 劉致宏 | zh_TW |
| dc.contributor.author | Chih-Hong Liu | en |
| dc.date.accessioned | 2024-08-14T16:40:35Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] Karen Wallace, Alastair D. Burt, Matthew C. Wright., “Liver fibrosis,” Biochem J, 2008.
[2] Juan Pablo Arab, Francisco Barrera, Marco Arrese, “The evolving role of liver biopsy in non-alcoholic fiber liver disease,” Annals of Hepatology, vol.17, Issue 6, pp. 899-902, 2018. [3] Hernaez R, Lazo M, Bonekamp S, Kamel I, Brancati FL, Guallar E, Clark JM., “ Diagnostic Accuracy and Reliability of Ultrasonography for the Detection of Fiber Liver: A Meta-Analysis,” Hepatology, 2011. [4] Leila H. Eadie, Paul Taylor, Adam P. Gibson., “A systematic review of computer-assisted diagnosis in diagnostic cancer imaging,” European Journal of Radiology, vol 81, Issue 1, 2012. [Online]. https://doi.org/10.1016/j.ejrad.2011.01.098. [5] Chieh-Chen Wu, Wen-Chun Yeh, Wen-Ding Hsu, Md. Mohaimenul Islam, Phung Anh (Alex) Nguyen, Tahmina Nasrin Poly, Yao-Chin Wang, Hsuan-Chia Yang, Yu-Chuan (Jack) Li., “Prediction of fiber liver disease using machine learning algorithms,” Computer Methods and Programs in Biomedicine, vol 170, 2019. [6] 基因叔叔, “ 超音波原理及應用相關簡介,” 24 8 2017. [Online]. https://unclegene6666.pixnet.net/blog/post/326169031-%E8%B6%85%E9%9F%B3%E6%B3%A2%E5%8E%9F%E7%90%86%E5%8F%8A%E6%87%89%E7%94%A8%E7%9B%B8%E9%97%9C%E7%B0%A1%E4%BB%8B [7] Lee W. Goldman., “Principles of CT and CT Technology.,” Journal of Nuclear Medicine Technology, 2007. [8] Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ., “Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians.,” J Clin Exp Hepatol, 2015. [9] Gerstenmaier J.F., Gibson R.N., “Ultrasound in chronic liver disease,” Insights Imaging, pp.441-445, 2014. [Online]. https://doi.org/10.1007/s13244-014-0336-2 [10] Jain, N., Kumar, V. Liver Ultrasound Image Segmentation Using Region-Difference Filters. J Digit Imaging 30, 376–390 (2017). https://doi.org/10.1007/s10278-016-9934-5 [11] Mark G. Bandyk, Dheeraj R. Gopireddy, Chandana Lall, K.C. Balaji, Jose Dolz., “MRI and CT bladder segmentation from classical to deep learning based approaches: Current limitations and lessons,” Computers in Biology and Medicine, vol.134, 2021. [12] Philippe Lambin, Emmanuel Rios-Velazquez, Ralph Leijenaar, et al., “Radiomics: extracting more information from medical images using advanced feature analysis,” Eur J Cancer, 2012. [13] Jingjun Wu, Ailian Liu, Jingjing Cui, et al., “Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images,” BMC Medical Imaging, vol.19, 2019. [14] Zwanenburg, Alex et al., “The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping,” Radiology, vol.295, pp.328-338, 2020. [15] Marius E. Mayerhoefer, Andrzej Materka, Georg Langs, “Introduction to Radiomics,” Journal of Nuclear Medicine, 61 (4), pp.488-495, 2020. [16] Haralick RM, Shanmugam K, “Textural features for image classification,” IEEE Trans Syst Man Cybern, 1973. [17] Galloway MM, “Texture classification using gray level run length,” Comput Graph Image Process, vol.4, pp.172-179, 1975. [18] Thibault G, Angulo J, Meyer F, “Advanced statistical matrices for texture characterization: application to cell classification,” IEEE Trans Biomed Eng, 2014. [19] Khalil, M.M. Radiomics Feature Selection in 18F-FDG PET Imaging: Investigation of the Most robust and Reproducible Candidates. Egypt. J. Nucl. Med. 2020, 21, 80–102. [20] Amadasun M, King R, “Textural features corresponding to textural properties,” IEEE Trans Syst Man Cybern, 1989. [21] Girish C, Ferat S, “A Survey on feature selection methods,” Computers & Electrical Engineering, vol.40, Issue1, pp.16-18, 2014. [22] Pernet, Cyril, “Null hypothesis significance testing: a short tutorial,” F1000Research, vol. 4, 25 8 2015. [23] Kim, Tae Kyun., “T test as a parametric statistic,” Korean journal of anesthesiology, vol. 68, 6 2015. [24] Trevor A. Craney, James G. Surles, “Model-Dependent Variance Inflation Factor Cutoff Values,” Quality Engineering, vol.14, 2002. [25] O’brien, R.M, “A Caution Regarding Rules of Thumb for Variance Inflation Factors,” Qual Quant, 41, pp.673–690, 2007. [26] Joseph Berkson., “Application of the Logistic Function to Bio-Assay,” Journal of the American Statistical Association, pp.357-365, 1944. [27] Song, Yan-Yan, and Ying Lu., “Decision tree methods: applications for classification and prediction,” Shanghai archives of psychiatry, vol.27,2 2015. [28] Chen, Junfei, Qian Li, Huimin Wang, Menghua Deng, “A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China,” International Journal of Environmental Research and Public Health, 2020. [29] Vladimir Cherkassky, Yunqian Ma, “Practical selection of SVM parameters and noise estimation for SVM regression,” Neural Networks, vol.17, Issue 1, pp.113-126, 2004. [30] Zhi-Hua Zhou, “Ensemble Methods: Foundations and Algorithms,” CRC Press, 2012. [31] Soumya, “Bagging vs Boosting in Machine Learning,” 07 7 2021. [Online]. https://www.geeksforgeeks.org/bagging-vs-boosting-in-machine-learning/. [32] Deepak Soekhoe, Peter van der Putten, Aske Plaat, “On the Impact of Data Set Size in Transfer Learning Using Deep Neural Networks,” Advances in Intelligent Data Analysis XV, pp. 50-60, 2016. [33] Alex Mitrani, “ROC and AUC for Categorical Model Evaluation,” 2019. [Online]. https://medium.com/swlh/roc-and-auc-for-categorical-model-evaluation-486dc1c267e4. [34] Zhu W, Zeng N, Wang N, “Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS Implementations,” NESUG Proceedings: Health Care and Life Sciences, Baltimore, Maryland, 2017. [35] Guokuan Li, Yu Luo, Wei Deng, Xiangyang Xu, Aihua Liu, Enmin Song, “ Computer aided diagnosis of fiber liver ultrasonic images based on support vector machine,” Annu Int Conf IEEE Eng Med Biol Soc, 2008. [36] Venkatanareshbabu Kuppili, Mainak Biswas, Aswini Sreekumar et al., “Extreme Learning Machine Framework for Risk Stratification of Fiber Liver Disease Using Ultrasound Tissue Characterization,” J Med Syst, 2017. [37] Laura J Brattain, Brian A Telfer, Manish Dhyani, Joseph R Grajo, Anthony E Samir, “Machine learning for medical ultrasound: status, methods, and future opportunities,” Abdom Radiol (NY), 2018. [38] Petzold, Golo et al., “Diagnostic accuracy of B-Mode ultrasound and Hepatorenal Index for graduation of hepatic steatosis in patients with chronic liver disease,” PloS one, vol.15, 2020. [39] Homayounieh, Fatemeh et al., “Accuracy of radiomics for differentiating diffuse liver diseases on non-contrast CT,” International journal of computer assisted radiology and surgery, vol.15, 2020. [40] Nalbantoglu, I L Ke, Elizabeth M Brunt, “Role of liver biopsy in nonalcoholic fiber liver disease,” World journal of gastroenterology, vol. 20, 2014. [41] NIDDK, “Liver biopsy,” 2019. [Online]. https://www.niddk.nih.gov/health-information/diagnostic-tests/liver-biopsy. [42] “醫療器材許可證資料集,” 老達利貿易股份有限公司,2022. [Online]. https://fda68.datagove.com/search.aspx?q=%e8%80%81%e9%81%94%e5%88%a9%e8%b2%bf%e6%98%93%e8%82%a1%e4%bb%bd%e6%9c%89%e9%99%90%e5%85%ac%e5%8f%b8. [43] van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L., “Computational Radiomics System to Decode the Radiographic Phenotype,” Cancer Research, 2017. [44] Biau, G. (2012). Analysis of a Random Forests Model. Journal of Machine Learning Research, 13, 1063-1095. [45] Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. [46] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media. [47] Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1), 81-106. [48] Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?. Journal of Machine Learning Research, 15(1), 3133-3181. [49] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. [50] “Cross-validation: evaluating estimator performance,” scikit-learn, 2022. [Online]. https://scikit-learn.org/stable/modules/cross_validation.html [51] Porskamp P, Rattray A, Young M, Ierodiaconou D. 底棲生境製圖的多尺度和分層分類。地球科學。2018;8(4):119. [52] Balyan, R., McCarthy, K.S. & McNamara, D.S. 將自然語言處理和分層機器學習方法應用於文字難度分類。國際藝術教育雜誌 30, 337–370 (2020)。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94097 | - |
| dc.description.abstract | 在臨床上,醫生會使用醫學影像診斷病徵,但是診斷需要透過大量的經驗累積與訓練。為了輔助醫生診斷,目前有許多研究利用電腦輔助診斷(Computer-aided diagnosis, CAD)來分析醫學影像,利用機器學習(Machine learning)或深度學習(Deep Learning)等演算法建立病徵判別模型。然而這些模型對於判斷結果的解釋性不高,醫師難以透過模型分辨的結果來回推電腦是利用影像的哪些特徵進行判斷,因此這些模型在實際臨床使用上還難以大量投入。
在過去,肝臟超音波影像的判斷通常需要透過醫師來分析,為了協助醫生診斷病情,需要建立肝臟輔助診斷系統來提升實用性。本研究主要蒐集臨床腹部超音波影像,利用機器學習的方法,並透過影像組學方法對肝臟超音波影像進行特徵抽取,包括亮度及紋理抽取共92種特徵。先利用隨機森林(Random Forest)篩選重要性較高的特徵,再使用這些特徵重新訓練模型以分析肝臟纖維化影像組學的主要特徵特性。 研究主要訓練多種不同的隨機森林分類模型來判斷正常肝臟與患有疾病肝臟各個嚴重度分級間的區分效果,發現GLSZM(Gray Level Size Zone Matrix)和GLCM(Gray Level Co-occurrence Matrix)特徵在不同級別的肝纖維化判斷中均顯示出高度的重要性。除了分析肝纖維化的主要特徵,本研究還建立了肝纖維化分類器,以病人為單位,透過階層式分類結合多個模型,將準確率從60%提高至80%以上,以協助醫師對肝纖維化進行初步判斷。透過本研究找到的主要特徵級建立的分類模型,可提供未來醫師對於影像判讀參考的量化標準,增加檢測肝臟疾病的診斷效率以及預測準確率,建立更完善的醫療診斷系統。 | zh_TW |
| dc.description.abstract | In clinical practice, doctors use medical imaging to diagnose diseases, but diagnosis requires extensive experience and training. To assist doctors in diagnosis, many studies currently employ Computer-aided Diagnosis (CAD) to analyze medical images and use algorithms such as Support Vector Machines (SVM) or Deep Learning to establish disease discrimination models. For example, these models have demonstrated good accuracy in the judgment of pulmonary nodules. However, these models often lack interpretability regarding their judgment results, making it difficult for doctors to understand which image features the computer used for its judgments. Therefore, these models are still challenging to implement widely in practical clinical use.
In the past, the evaluation of liver ultrasound images typically required analysis by physicians. To assist in diagnosing liver conditions and enhance practicality, this study aims to establish a liver auxiliary diagnosis system. This research primarily collects clinical abdominal ultrasound images and applies machine learning techniques combined with radiomics methods to extract features from the liver ultrasound images, including a total of 92 features related to brightness and texture. Initially, a Random Forest method is employed to select the most important features, and then these features are used to retrain the model to analyze the primary characteristics of liver fibrosis in the radiomics data. The study primarily trains multiple different Random Forest classification models to distinguish between normal liver and various severity levels of diseased liver, finding that GLSZM and GLCM features consistently show high importance in determining different levels of liver fibrosis. In addition to analyzing the main features of liver fibrosis, the study also establishes a liver fibrosis classifier. By using a hierarchical classification that combines multiple models, the accuracy rate is improved from 60% to over 80%, assisting physicians in the preliminary assessment of liver fibrosis. The classification model built using the key features identified in this study can provide quantitative standards for image interpretation, enhancing the efficiency and accuracy of liver disease diagnosis and creating a more comprehensive medical diagnostic system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:40:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:40:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 3 1.4 論文架構 4 第二章 文獻探討 6 2.1 醫療影像來源(Imaging source) 6 2.2 影像分割法(Segmentation) 8 2.3 影像組學(Radiomics) 8 2.3.1 亮度特徵(Intensity-based) 9 2.3.2 紋理特徵(Texture-based) 10 2.3.3 形狀特徵(Shape-based) 14 2.4 特徵篩選(Feature selection) 14 2.4.1 虛無假設 15 2.4.2 變異數膨脹因子 15 2.4.3 特徵選擇方法 16 2.5 機器學習分類模型(Machine learning model) 16 2.5.1 邏輯回歸(Logistic Regression) 16 2.5.2 決策樹(Decision Tree) 17 2.5.3 隨機森林(Random Forest) 18 2.5.4 支持向量機(Support Vector Machine) 19 2.5.5 Boosting Algorithm 20 2.5.6 卷積類神經網路(Convolutional Neural Network) 21 2.5.7 小結 21 2.6 電腦輔助診斷的判斷與應用 22 2.6.1 電腦輔助診斷判斷優劣方法 22 2.6.2 電腦輔助診斷的應用 24 第三章 研究方法 26 3.1 資料集建立以及標籤方法 27 3.2 研究使用設備 28 3.3 影像處理及特徵抽取 29 3.4 特徵篩選 33 3.5 隨機森林分析與驗證方法 34 第四章 肝纖維化分類結果與討論 37 4.1 不同大小ROI之正常肝臟與各級別肝纖維化分類 37 4.1.1 正常肝臟與各程度肝纖維化分類模型主要特徵 37 4.1.2 肝纖維化實驗結果討論 48 4.2 肝纖維化分級分類 51 4.2.1 肝纖維化分級分類結果 52 4.2.2 肝纖維化分級分類結果討論 58 4.3 肝纖維化程度判斷 61 4.3.1 肝纖維化程度分類 61 4.3.2 肝纖維化程度分類結果與討論 63 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 65 參考文獻 67 附錄 73 附錄一 73 附錄二 77 附錄三 78 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 電腦輔助診斷 | zh_TW |
| dc.subject | 肝纖維化 | zh_TW |
| dc.subject | 影像組學 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | Machine Learning | en |
| dc.subject | Radiomics | en |
| dc.subject | Fiber liver | en |
| dc.subject | Ultrasound | en |
| dc.subject | Computer-aided diagnosis | en |
| dc.title | 基於影像組學的肝纖維化超音波影像診斷系統研究 | zh_TW |
| dc.title | Research on Ultrasound Imaging Diagnosis System for Liver Fibrosis Based on Radiomics | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 梁嘉德;潘正堂 | zh_TW |
| dc.contributor.oralexamcommittee | Ja-Der Liang;Cheng-Tang Pan | en |
| dc.subject.keyword | 電腦輔助診斷,超音波,機器學習,影像組學,肝纖維化, | zh_TW |
| dc.subject.keyword | Computer-aided diagnosis,Ultrasound,Machine Learning,Radiomics,Fiber liver, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202403492 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
