請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94096
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 曾鈞懋 | zh_TW |
dc.contributor.advisor | Chun-Mao Tseng | en |
dc.contributor.author | 彭浩程 | zh_TW |
dc.contributor.author | Hao-Cheng Peng | en |
dc.date.accessioned | 2024-08-14T16:40:17Z | - |
dc.date.available | 2024-12-27 | - |
dc.date.copyright | 2024-08-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | 中文文獻
葉士肇(2010),淡水河流域汞之空間分布。國立台灣大學海洋研究所碩士論文。 李國楨(2018),利用線上流動注入之汞分析儀測定淡水河河口及其近岸海域總汞。國立台灣大學海洋研究所碩士論文。 英文文獻 Amos, H. M., Jacob, D. J., Kocman, D., Horowitz, H. M., Zhang, Y., Dutkiewicz, S., ... & Sunderland, E. M. (2014). Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environmental science & technology, 48(16), 9514-9522. Atasoy, M., Yildiz, D., Kula, İ., & Vaizoğullar, A. İ. (2023). Determination and speciation of methyl mercury and total mercury in fish tissue samples by gold-coated W-coil atom trap cold vapor atomic absorption spectrometry. Food Chemistry, 401, 134152. Bansal, N., Vaughan, J., Boullemant, A., & Leong, T. (2014). Determination of total mercury in bauxite and bauxite residue by flow injection cold vapour atomic absorption spectrometry. Microchemical Journal, 113, 36-41. Becknell, D. E., Marsh, R. H., & Allie, W. (1971). Use of anion exchange resin-loaded paper in the determination of trace mercury in water by neutron activation analysis. Analytical Chemistry, 43(10), 1230-1233. Biester, H., & Nehrke, G. (1997). Quantification of mercury in soils and sediments–acid digestion versus pyrolysis. Fresenius' journal of analytical chemistry, 358, 446-452. Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479(2), 233-248. Bloxham, M. J., Hill, S. J., & Worsfold, P. J. (1996). Determination of mercury in filtered sea-water by flow injection with on-line oxidation and atomic fluorescence spectrometric detection. Journal of analytical atomic spectrometry, 11(7), 511-514. Bouchet, S., Soerensen, A. L., Björn, E., Tessier, E., & Amouroux, D. (2023). Mercury Sources and Fate in a Large Brackish Ecosystem (the Baltic Sea) Depicted by Stable Isotopes. Environmental Science & Technology, 57(38), 14340-14350. Cappa, C. D., Kuipers, S. E., Roberts, J. M., Gilbert, A. S., & Elrod, M. J. (2000). Product identification and kinetics of reactions of HCl with HNO3/H2SO4/H2O solutions. The Journal of Physical Chemistry A, 104(19), 4449-4457. Chen, L., Liu, C., Yin, Y., Liu, G., Li, Y., & Cai, Y. (2022). Mass budget of mercury (Hg) in the seawater of Eastern China Marginal Seas: importance of the sediment–water transport processes. Environmental Science & Technology, 56(16), 11418-11428. Cloern, J. E., Foster, S. Q., & Kleckner, A. E. (2014). Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences, 11(9), 2477-2501. Cui, Z., Shi, X., Zhao, S., Lu, J., Tian, Z., Zhang, H., ... & Wang, Y. (2023). Distributions of total mercury and methylmercury and regulating factors in lake water and surface sediment in the cold-arid Wuliangsuhai Lake region. Environmental Geochemistry and Health, 45(11), 7999-8013. Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., ... & Lin, J. C. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651. De Paz, L. A., Alegria, A., Barbera, R., Farre, R., & Lagarda, M. J. (1997). Determination of mercury in dry-fish samples by microwave digestion and flow injection analysis system cold vapor atomic absorption spectrometry. Food Chemistry, 58(1-2), 169-172. Djedjibegovic, J., Larssen, T., Skrbo, A., Marjanović, A., & Sober, M. (2012). Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS). Food Chemistry, 131(2), 469-476. Element, C. A. S. (2007). Method 3051A microwave assisted acid digestion of sediments, sludges, soils, and oils. Z. Für Anal. Chem, 111, 362-366. Enrico, M., Balcom, P., Johnston, D. T., Foriel, J., & Sunderland, E. M. (2021). Simultaneous combustion preparation for mercury isotope analysis and detection of total mercury using a direct mercury analyzer. Analytica Chimica Acta, 1154, 338327. Eto, K., Tokunaga, H., Nagashima, K., & Takeuchi, T. (2002). An autopsy case of Minamata disease (methylmercury poisoning)—pathological viewpoints of peripheral nerves. Toxicologic Pathology, 30(6), 714-722. Fang, Y., Liu, G., Wang, Y., Liu, Y., Yin, Y., Cai, Y., ... & Jiang, G. (2024). Transformation of Mercurous [Hg (I)] Species during Laboratory Standard Preparation and Analysis: Implication for Environmental Analysis. Environmental Science & Technology, 58(15), 6825-6834. Farey, B. J., Nelson, L. A., & Rolph, M. G. (1978). Rapid technique for the breakdown of organic mercury compounds in natural waters and effluents. Analyst, 103(1227), 656-660. Farey, B. J., Nelson, L. A., & Rolph, M. G. (1978). Rapid technique for the breakdown of organic mercury compounds in natural waters and effluents. Analyst, 103(1227), 656-660. Fernández, Z. H., Rojas, L. A. V., Álvarez, A. M., Álvarez, J. R. E., dos Santos Júnior, J. A., González, I. P., ... & Torres, D. H. (2015). Application of Cold Vapor-Atomic Absorption (CVAAS) Spectrophotometry and Inductively Coupled Plasma-Atomic Emission Spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control, 48, 37-42. Ferreira, S. L., Lemos, V. A., Silva, L. O., Queiroz, A. F., Souza, A. S., da Silva, E. G., ... & das Virgens, C. F. (2015). Analytical strategies of sample preparation for the determination of mercury in food matrices—A review. Microchemical Journal, 121, 227-236. Fu, X., Feng, X., Zhang, G., Xu, W., Li, X., Yao, H., ... & Liu, N. (2010). Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. Journal of Geophysical Research: Atmospheres, 115(D6). Gao, Y., Shi, Z., Long, Z., Wu, P., Zheng, C., & Hou, X. (2012). Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchemical Journal, 103, 1-14. Gerbersmann, C., Heisterkamp, M., Adams, F. C., & Broekaert, J. C. (1997). Two methods for the speciation analysis of mercury in fish involving microwave-assisted digestion and gas chromatography-atomic emission spectrometry. Analytica Chimica Acta, 350(3), 273-285. Gu, W., Zhou, C. Y., Wong, M. K., & Gan, L. M. (1998). Orthogonal array design (OAD) for the optimization of mercury extraction from soils by dilute acid with microwave heating. Talanta, 46(5), 1019-1029. Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., & Wrzosek-Jakubowska, J. (2016). Mercury in marine and oceanic waters—a review. Water, Air, & Soil Pollution, 227(10), 371. Hammerschmidt, C. R., & Fitzgerald, W. F. (2004). Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science & Technology, 38(5), 1487-1495. Hissler, C., & Probst, J. L. (2006). Impact of mercury atmospheric deposition on soils and streams in a mountainous catchment (Vosges, France) polluted by chlor-alkali industrial activity: the important trapping role of the organic matter. Science of the Total Environment, 361(1-3), 163-178. Issaro, N., Abi-Ghanem, C., & Bermond, A. (2009). Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Analytica chimica acta, 631(1), 1-12. Jan, S., Sheu, D. D., & Kuo, H. M. (2006). Water mass and throughflow transport variability in the Taiwan Strait. Journal of Geophysical Research: Oceans, 111(C12). Jan, S., Tseng, Y. H., & Dietrich, D. E. (2010). Sources of water in the Taiwan Strait. Journal of oceanography, 66, 211-221. Jan, S., Wang, J., Chern, C. S., & Chao, S. Y. (2002). Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35(3-4), 249-268. Jenne, E. A., & Avotins, P. (1975). The time stability of dissolved mercury in water samples—I. Literature review. Journal of Environmental Quality, 4(4), 427-431. Jones, R. D., Jacobson, M. E., Jaffe, R., West-Thomas, J., Arfstrom, C., & Alli, A. (1995). Method development and sample processing of water, soil, and tissue for the analysis of total and organic mercury by cold vapor atomic fluorescence spectrometry. In Mercury as a Global Pollutant: Proceedings of the Third International Conference held in Whistler, British Columbia, July 10–14, 1994 (pp. 1285-1294). Springer Netherlands. Jonsson, S., Mastromonaco, M. G. N., Gårdfeldt, K., & Mason, R. P. (2022). Distribution of total mercury and methylated mercury species in Central Arctic Ocean water and ice. Marine Chemistry, 242, 104105. Kannan, K., Smith, Jr, R. G., Lee, R. F., Windom, H. L., Heitmuller, P. T., Macauley, J. M., & Summers, J. K. (1998). Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Archives of environmental contamination and toxicology, 34, 109-118. Kuo, N. W., Jien, S. H., Hong, N. M., Chen, Y. T., & Lee, T. Y. (2017). Contribution of urban runoff in Taipei metropolitan area to dissolved inorganic nitrogen export in the Danshui River, Taiwan. Environmental Science and Pollution Research, 24, 578-590. Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., Swarr, G. J., Munson, K. M., Ohnemus, D. C., ... & Saito, M. A. (2014). A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 512(7512), 65-68. Lamborg, C. H., Hammerschmidt, C. R., Gill, G. A., Mason, R. P., & Gichuki, S. (2012). An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises. Limnology and Oceanography: Methods, 10(2), 90-100. Liao, W., Wang, G., Zhao, W., Zhang, M., Wu, Y., Liu, X., & Li, K. (2019). Change in mercury speciation in seafood after cooking and gastrointestinal digestion. Journal of hazardous materials, 375, 130-137. Liu, C., Chen, L., Liang, S., & Li, Y. (2020). Distribution of total mercury and methylmercury and their controlling factors in the East China Sea. Environmental pollution, 258, 113667. Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., & Lin, S. W. (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256(1-4), 65-76. Liu, M., Zhang, Q., Maavara, T., Liu, S., Wang, X., & Raymond, P. A. (2021). Rivers as the largest source of mercury to coastal oceans worldwide. Nature Geoscience, 14(9), 672-677. Liu, W. C., Hsu, M. H., Kuo, A. Y., & Kuo, J. T. (2001). The influence of river discharge on salinity intrusion in the Tanshui estuary, Taiwan. Journal of Coastal Research, 544-552. Liu, W. C., Liu, H. M., & Ken, P. J. (2020). Investigating the contaminant transport of heavy metals in estuarine waters. Environmental Monitoring and Assessment, 192, 1-17. Maćkiewicz, A., & Ratajczak, W. (1993). Principal components analysis (PCA). Computers & Geosciences, 19(3), 303-342. Mailman, M., & Bodaly, R. A. (2005). Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in Northwestern Ontario. Environmental Pollution, 138(1), 161-166. Manganiello, L., Ríos, A., & Valcárcel, M. (2002). A method for screening total mercury in water using a flow injection system with piezoelectric detection. Analytical Chemistry, 74(4), 921-925. Mikac, N., Niessen, S., Ouddane, B., & Wartel, M. (1999). Speciation of mercury in sediments of the Seine estuary (France). Applied organometallic chemistry, 13(10), 715-725. Nevado, J. B., Martín-Doimeadios, R. R., Bernardo, F. G., & Moreno, M. J. (2008). Determination of monomethylmercury in low-and high-polluted sediments by microwave extraction and gas chromatography with atomic fluorescence detection. Analytica Chimica Acta, 608(1), 30-37. Pérez, P. A., Bravo, M. A., & Quiroz, W. (2020). Total mercury bias in soil analysis by CV-AFS: causes, consequences and a simple solution based on sulfhydryl cotton fiber as a clean-up step. Analytical Methods, 12(29), 3756-3762. Qian, J., Skyllberg, U., Tu, Q., Bleam, W. F., & Frech, W. (2000). Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils. Fresenius' journal of analytical chemistry, 367, 467-473. Qin, C., Du, B., Yin, R., Meng, B., Fu, X., Li, P., ... & Feng, X. (2020). Isotopic fractionation and source appointment of methylmercury and inorganic mercury in a paddy ecosystem. Environmental Science & Technology, 54(22), 14334-14342. Reimers, R. S., Burrows, W. D., & Krenkel, P. A. (1973). Total mercury analysis: review and critique. Journal (Water Pollution Control Federation), 814-828. Reyes, L. H., Mar, J. L. G., Hernández-Ramírez, A., Peralta-Hernández, J. M., Barbosa, J. M. A., & Kingston, H. S. (2011). Microwave assisted extraction for mercury speciation analysis. Microchimica acta, 172, 3-14. Reyes, L. H., Rahman, G. M., & Kingston, H. S. (2009). Robust microwave-assisted extraction protocol for determination of total mercury and methylmercury in fish tissues. Analytica Chimica Acta, 631(2), 121-128. Rohovec, J., Navrátil, T., & Nováková, T. (2023). An Innovative Method to Generate Bromine Monochloride for Trace Hg Analysis. Bulletin of Environmental Contamination and Toxicology, 111(4), 55. Rukhin, A. L., & Vangel, M. G. (1998). Estimation of a common mean and weighted means statistics. Journal of the American Statistical Association, 93(441), 303-308. Santos, J. P., Mehmeti, L., & Slaveykova, V. I. (2022). Simple acid digestion procedure for the determination of total mercury in plankton by cold vapor atomic fluorescence spectroscopy. Methods and Protocols, 5(2), 29. Shabestari, A. B., BAA, M. S., & Mostafavi, S. M. (2018). Development of environmental analysis for determination of total mercury in fish oil pearls by microwave closed vessels digestion coupled with ICP-OES. Ekoloji, 27(106), 1935. Skyllberg, U. L. F., Qian, J. I. N., Frech, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64, 53-76. Sun, X., Hu, L., Sun, X., Fan, D., Liu, M., Wang, H., ... & Guo, Z. (2023). Mercury burial in modern sedimentary systems of the East China Marginal Seas: the role of coastal oceans in global mercury cycling. Global Biogeochemical Cycles, 37(9), e2023GB007760. Tassone, A., Moretti, S., Martino, M., Pirrone, N., Sprovieri, F., & Naccarato, A. (2020). Modification of the EPA method 1631E for the quantification of total mercury in natural waters. MethodsX, 7, 100987. Tomiyasu, T., Baransano, C., Hamada, Y. K., Kodamatani, H., Kanzaki, R., Hidayati, N., & Rahajoe, J. S. (2020). Distribution of total and organic mercury in soils around an artisanal and small-scale gold mining area in West Java, Indonesia. SN Applied Sciences, 2, 1-11. Tranmer, M., & Elliot, M. (2008). Multiple linear regression. The Cathie Marsh Centre for Census and Survey Research (CCSR), 5(5), 1-5. Tseng, C. M., Chen, Y. S., Ang, S. J., Li, K. C., Peng, H. C., & Gong, G. C. (2022). Probing the outfall-related anomalous Hg levels in the Danshuei Estuarine Coastal, Taiwan. Marine Pollution Bulletin, 181, 113840. Tuzen, M. (2009). Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food and chemical toxicology, 47(8), 1785-1790. U.S. EPA. 1994. “Method 245.1: Determination of Mercury in Water by Cold Vapor Atomic Absorption Spectrometry.” Revision 3.0. Cincinnati, OH U.S. EPA. 2002. “Method 1631 , Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry“ Voegborlo, R. B., & Adimado, A. A. (2010). A simple classical wet digestion technique for the determination of total mercury in fish tissue by cold-vapour atomic absorption spectrometry in a low technology environment. Food chemistry, 123(3), 936-940. Wieteska, E., & Zi61ek, A. (2000). Sample preparation procedures for total mercury determination in materials of natural origin. Mercury, 4, 9. Xu, Y., He, T., Wu, P., Yin, D., & Ran, S. (2021). Fulvic acid: A key factor governing mercury bioavailability in a polluted plateau wetland. Water Research, 205, 117652. Yánez-Jácome, G. S., Romero-Estévez, D., Navarrete, H., Simbaña-Farinango, K., & Vélez-Terreros, P. Y. (2020). Optimization of a digestion method to determine total mercury in fish tissue by cold vapor atomic fluorescence spectrophotometry. Methods and Protocols, 3(2), 45. Zhang, H., Guo, C., Feng, H., Shen, Y., Wang, Y., Zeng, T., & Song, S. (2020). Total mercury, methylmercury, and selenium in aquatic products from coastal cities of China: Distribution characteristics and risk assessment. Science of the Total Environment, 739, 140034. Zhang, J., Chao, J., Tang, Y., Wan, P., Yang, X. J., Wong, C., ... & Hu, Q. (2020). Quantification of trace mercury in water: solving the problem of adsorption, sample preservation, and cross‐contamination. Global Challenges, 4(1), 1900061. Zolkos, S., Krabbenhoft, D. P., Suslova, A., Tank, S. E., McClelland, J. W., Spencer, R. G., ... & Holmes, R. M. (2020). Mercury export from Arctic great rivers. Environmental science & technology, 54(7), 4140-4148. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94096 | - |
dc.description.abstract | 本研究透過建立淡水河口及八里放流管附近海域的「汞」濃度之時序觀測,了解污染毒物汞在河口沿岸的生地化循環及來源。主要分析了水樣和沉積物中的總汞含量,成功發展了快速、簡單及準確之總汞消化及分析方法,確保所得數據的準確性和可靠性。從2005年至2020年共15年,每年四季進行總汞測定及基本水文觀測,提供了淡水河口及離岸汞濃度長期時空分布的資料以及汞污染的控制過程和來源資訊。在沉積物中,平均總汞濃度為58.0 ± 20.6(範圍17.9至122.1 ng g-1, n = 60),且在放流管周圍(D區, 70.8 ± 23.1)顯著高於沿岸區域(B區, 45.2 ± 18.2);水體中平均為16.6 ± 14.6 (範圍2.1至73.1 ng L-1, n =60),D區(16.3 ± 14.2)與B區(16.8 ± 15.0)則無明顯差異 (p > 0.05)。時序變化顯示,沉積物中總汞濃度呈現年均下降趨勢2.6 ng g-1 yr-1 (p < 0.05),而水樣在統計上無明顯增加的趨勢。此外,研究發現水體中的汞濃度隨季節變化,冷季較高,暖季則較低,且存在異常的高值,可能因八里污水排放所致。多變數迴歸及主成分分析進一步證實了八里放流管對區域總汞濃度污染的影響。盒子模式量化顯示,八里放流管每日排放的汞量是淡水河的4倍,表明淡水河口沿岸總汞濃度的逐年升高,除了淡水河河水汞的輸入外,污水處理廠排放的污水的來源不可忽視。研究結果有助於未來北台灣淡水河口地區環境保護和監測工作的設計和改進,減少汞污染,並提供保護生態和人類健康的科學依據。 | zh_TW |
dc.description.abstract | This study investigated the temporal dynamics of mercury (Hg) concentrations in the Danshuei River estuary and adjacent waters near the Bali outfall, aiming to understand the biogeochemical Hg cycling and pollution sources in coastal zone.
The primary focus was on the total Hg (THg) content in water and sediment samples. A rapid, simple, and accurate method for THg digestion and analysis was developed to ensure data accuracy and reliability. Over a 15-year period from 2005 to 2020, THg measurements and basic hydrological observations were conducted seasonally each year. This provided long-term Hg data on spatial and temporal distribution in the Danshuei River estuary and offshore areas, elucidating the processes and sources of Hg pollution. In sediments, the average THg concentration was 58.0 ± 20.6 ng g-1 (range 17.9 to 122.1 ng g-1, n = 60), with significantly higher concentrations around the outfall (Zone D, 70.8 ± 23.1) compared to coastal areas (Zone B, 45.2 ± 18.2). In water samples, the average concentration was 16.6 ± 14.6 ng L-1 (range 2.1 to 73.1 ng L-1, n = 60), with no significant difference between Zones D (16.3 ± 14.2) and B (16.8 ± 15.0) (p > 0.05). Temporal trends showed a decrease rate of 2.6 ng g-1 yr-1 in sediment THg concentrations (p<0.05), while there is no statistically significant increasing trend in the water samples. Additionally, THg levels in coastal waters varied seasonally, being higher in winter and lower in summer, with occasionally anomalous peaks possibly attributed to outfalls from the Bali sewage treatment plant. Multiple linear regression and principal component analyses further confirmed the effect of the Bali outfall to regional mercury pollution. Box modeling quantified that the daily Hg discharge from Bali outfall was four times that of the Danshuei River, highlighting that the annual increase in Danshuei coastal Hg concentrations. This increase is not only due to Hg input from the river but also from wastewater discharged by sewage treatment plants. The findings of this study contribute to the design and improvement of environmental protection and monitoring efforts in the Danshuei River estuarine coast of northern Taiwan, aiming to reduce Hg pollution and provide scientific basis for protecting ecosystems and human health. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:40:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:40:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 圖次 VI 表次 VII 第一章 緒論 1 1.1汞的特性和危害 1 1.2汞的生地化循環 2 1.3河口沿岸研究之重要性 3 1.4河口沿岸的污染 3 1.5研究動機與目的 4 第二章 總汞消化方法建立 5 2.1引言:文獻回顧 5 2.1.1沉積物與生物總汞的消化方法 5 2.1.2水樣總汞的消化方法 6 2.2材料與方法 11 2.2.1實驗材料 11 2.2.2總汞分析 13 2.2.3總汞消化實驗最佳化測試 15 2.3實驗結果 17 2.4結論與應用 20 2.4.1結論 20 2.4.2應用 21 第三章 淡水河口時序數據分析 22 3.1引言 22 3.1.1淡水河的水文資料 22 3.1.2八里汙水處理廠 22 3.1.3淡水河口過往研究 23 3.2採樣點 24 3.3樣品採集保存及數據分析 27 3.3.1 樣品採集保存 27 3.3.2 樣品分析及品質管理 27 3.3.3數據處理 28 3.4環境總汞與基本參數的時空變化 31 3.5汙染評估 34 3.6 主成分分析(PCA) 結果 35 3.7多變數回歸(MLR)結果 37 3.8 收支估算 39 第四章 結論 42 參考文獻 43 附錄一 52 | - |
dc.language.iso | zh_TW | - |
dc.title | 淡水河口海域汞的時序研究: 方法、分布、來源及汙染 | zh_TW |
dc.title | Temporal Mercury Variations along the Danshuei Estuarine Coast: Method, Distribution, Source, and Contamination | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張以杰;馬鴻文 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Jay Chang;Hwong-wen Ma | en |
dc.subject.keyword | 淡水河口,汞汙染,總汞消化,時序觀測,多變數回歸,汞預算估算, | zh_TW |
dc.subject.keyword | Danshuei River estuary,Mercury pollution,Total mercury digestion,Temporal observation,Multiple linear regression,Mercury budget estimation, | en |
dc.relation.page | 52 | - |
dc.identifier.doi | 10.6342/NTU202403861 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-08-07 | 3.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。