請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94092完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李貫銘 | zh_TW |
| dc.contributor.advisor | Kuan-Ming Li | en |
| dc.contributor.author | 陳雋儒 | zh_TW |
| dc.contributor.author | Jun-Ru Chen | en |
| dc.date.accessioned | 2024-08-14T16:39:06Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] Dimla E. Dimla, "Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods," International Journal of Machine Tools and Manufacture, 40(8), pp. 1073-1098, 2000.
[2] J. Jurkovic, M. Korosec, Janez Kopac, "New approach in tool wear measuring technique using CCD vision system," International Journal of Machine Tools and Manufacturem, 45(9), pp. 1023-1030, 2005. [3] Zhou, L., Wang, C. Y., Wang, X. J., & Qin, Z., "Correlation between Cutting Forces and Tool Wear in High Speed Milling of Graphite," Advanced Materials Research, 69, pp. 403-407, 2009. [4] Zhang, J.Z., and Chen, J.C., "Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system," International Journal of Advanced Manufacturing Technology, 39, pp. 118-128, 2008. [5] Xu, C., Dou, J., Chai, Y., Li, H., Shi, Z., and Xu, J., "The Relationships Between Cutting Parameters, Tool Wear, Cutting Force, and Vibration," Advances in Mechanical Engineering, 10(1), pp. 1-14, 2018. [6] Y.Altintas, " Prediction of Cutting Forces and Tool breakage in milling from feed drive current measurements," Journal of Engineering for Industry, 114(4) pp. 386-392, 1992. [7] Girardin, F., Rémond, D., & Rigal, J. F., "Tool wear detection in milling—An original approach with a non-dedicated sensor," Mechanical Systems and Signal Processing, 24(6), pp. 1907-1920, 2010. [8] A. Rivero, L.N. López de Lacalle, M Luz Penalva, "Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals," Mechatronics, 18(10), pp. 627-633, 2008. [9] Li, H. Z., H. Zeng, and X. Q. Chen, "An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts," Journal of materials processing technology, 180(1-3), pp. 296-304, 2006. [10] J. C. Jáuregui, J. R. Reséndiz, S. Thenozhi, T. Szalay, Á. Jacsó, and M. Takács, "Frequency and Time-Frequency Analysis of Cutting Force and Vibration Signals for Tool Condition Monitoring," IEEE Access, 6, pp. 6400-6410, 2018. [11] Gaetano M. Pittalà, Stefania Rizzuti, "An investigation of the effect of tool wear on cutting force coefficients for solid end mills," Procedia CIRP, 117, pp. 444-449, 2023. [12] Yusuf Altintas, "Principles of Machining Engineering and Practice," University of British Columbia - Manufacturing Automation Laboratory, pp. 39, 2015. [13] Minghai Wang, Lei Gao, Yaohui Zheng, "An examination of the fundamental mechanics of cutting force coefficients," International Journal of Machine Tools and Manufacture, 78, pp. 1-7, 2014. [14] Oscar Gonzalo, Jokin Beristain, Haritz Jauregi, Carmen Sanz, "A method for the identification of the specific force coefficients for mechanistic milling simulation," International Journal of Machine Tools and Manufacture, 50(9), pp. 765-774, 2010. [15] Mark A. Rubeo, Tony L. Schmitz, "Mechanistic force model coefficients: A comparison of linear regression and nonlinear optimization," Precision Engineering, 45, pp. 311-321, 2016. [16] Simon S. Park, Yusuf Altintas, "Dynamic compensation of spindle integrated force sensors with kalman filter," Journal of Dynamic, System, Measurement, and Control, 126(3), pp. 443-452, 2004. [17] D. A. Smith, S. Smith, J. Tlusty, "High performance milling torque sensor," Journal of Manufacturing Science and Engineering, 120(3), pp. 504-514, 1998. [18] Zhengyou Xie, Yong Lu, Jianguang Li, "Development and testing of an integrated smart tool holder for four-component cutting force measurement," Mechanical Systems and Signal Processing, 93, pp. 225-240, 2017. [19] Young-Hun Jeong, Dong-Woo Cho, "Estimating cutting force from rotating and stationary feed motor currents on a milling machine," International Journal of Machine Tools and Manufacture, 42(14), pp. 1559-1566, 2002. [20] Deniz Aslan, and Yusuf Altintas, "Prediction of cutting forces in five-axis milling using feed drive current measurements," IEEE/ASME Transactions on mechatronics, 23(2), pp. 833-844, 2018. [21] 吳政祐, "線上預測銑削加工之切削力," 國立台灣大學機械工程學系碩士論文, 2020. [22] Chen-Jung Li, Hsiang-Chun Tseng, Meng-Shiun Tsai, Chih-Chun Cheng, "Novel servo-feed-drive model considering cutting force and structural effects in milling to predict servo dynamic behaviors," The International Journal of Advanced Manufacturing Technology, 106, pp. 1441-1451, 2020. [23] James W. Cooley, John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of computation, 19(90), pp. 297-301, 1965. [24] 林奕言, “銑削加工振動訊號前處理於刀具磨耗監控之研究,” 國立台灣大學機械工程學系碩士論文, 2020. [25] Cui, Yanjun, "Tool wear monitoring for milling by tracking cutting force model coefficients," University of New Hampshire, 2008. [26] Nouri, M., Fussell, B. K., Ziniti, B. L., and Linder, E, "Real-time tool wear monitoring in milling using a cutting condition independent method," International Journal of Machine Tools and Manufacture, 89, pp. 1-13, 2015. [27] Pengfei Ding, Xianzhen Huang, Chengying Zhao, Huizhen Liu, Xuewei Zhang, "Online monitoring model of micro-milling force incorporating tool wear prediction process," Expert Systems with Applications, 223, 119886, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94092 | - |
| dc.description.abstract | 傳統更換銑刀是根據加工方式(粗加工、精加工)、刀具廠商提供之壽命等來作為評判標準。而刀具磨耗是判斷刀具壽命的方法之一。除此之外,刀具磨耗亦會影響到切削加工的過程,例如材料移除率下降造成加工效率降低,或是加工表面粗糙度變差等。而觀察磨耗方式有圖像處理法與切削力監測法等方法,前者無法實現實時觀測,後者雖實現實時觀測,卻需要外接動力計來蒐集訊號,對於實驗進行有一定影響,因此本研究將探討機台控制器訊號是否可用於觀測刀具磨耗。
本研究將透過實驗討論考慮刀具磨耗時,機台控制器訊號推算切削力之可行性,並且透過推算切削力係數變化,觀察其與磨耗之間的關係。實驗中所蒐集之控制器訊號,包含主軸扭矩命令訊號、伺服軸扭矩命令訊號以及伺服軸位置誤差等,其中主軸扭矩命令訊號與切削實驗之切線方向受力相關,而伺服軸扭矩命令與進給方向受力相關,並且伺服軸傳動相較主軸複雜許多,因此需要找出位置誤差與切削力變化之頻率響應。透過控制器訊號估算之切削力,再透過切削週期法鑑別出切削力係數。由切削力係數的變化觀察與刀具磨耗相關性,並且與加工訊號觀察結果比較,得到邊緣力係數K_te、K_re與刀具磨耗呈高度正相關,以此建立一判斷刀具壽命之指標,應用於不同切削條件之實驗中。 | zh_TW |
| dc.description.abstract | Traditionally, tool replacement in milling operations is determined based on machining methods such as roughing and finishing, the tool manufacturer's recommended life, and other criteria. Tool wear is a crucial indicator for assessing tool life, and it significantly affects the machining process. For example, excessive tool wear can lead to reduced material removal rates, resulting in decreased machining efficiency, and deteriorated surface roughness. To monitor tool wear, methods such as image processing and cutting force monitoring are commonly used. However, image processing cannot achieve real-time observation, while cutting force monitoring, despite its real-time capabilities, requires the use of an external dynamometer to collect signals, which can interfere with the experiment. Thus, this study explores the feasibility of using machine controller signals to observe tool wear, providing a less intrusive and potentially more practical solution.
This research involves experimental investigations into the feasibility of using machine controller signals to estimate cutting forces while considering tool wear and to observe the relationship between changes in cutting force coefficients and tool wear. The controller signals collected in the experiment include spindle torque command signals, servo axis torque command signals, and servo axis position errors. Spindle torque command signals are related to the tangential force direction in the cutting experiment, while servo axis torque commands correspond to forces in the feed direction. The servo axis transmission system is considerably more complex than the spindle, necessitating the determination of the frequency response of position error to changes in cutting force. By estimating cutting forces from the controller signals, the cutting force coefficients are identified using the cutting cycle method. The relationship between the changes in these coefficients and tool wear is then analyzed. The correlation between cutting force coefficient changes and tool wear is observed and compared with results from machining signal observations. It is found that the edge force coefficients, K_te and K_re, exhibit a high positive correlation with tool wear. This correlation helps establish an index for determining tool life, which can be applied to experiments under various cutting conditions. The findings of this study aim to provide a new approach for real-time tool wear monitoring, potentially improving the efficiency and effectiveness of machining processes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:39:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:39:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III 英文摘要 IV 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究架構 3 第2章 文獻回顧 4 2.1 加工訊號監測 4 2.2 切削力模型 6 2.3 切削力係數鑑別 8 2.4 切削力量測 9 2.5 切削力學與伺服模型 10 2.6 小結 11 第3章 研究方法 12 3.1 研究流程 12 3.2 刀具狀態分析 14 3.3 加工訊號分析 15 3.4 控制器訊號與切削力轉換 18 3.4.1 主軸電流與切削力轉換 18 3.4.2 伺服軸電流與切削力轉換 19 3.4.3 伺服位置誤差與切削力動態 22 3.5 切削力係數鑑別 22 3.5.1 切削週期法 23 3.5.2 平均力法 24 3.5.3 小結 27 第4章 實驗規劃 28 4.1 實驗架構 28 4.2 實驗設備 29 4.2.1 工具機 29 4.2.2 刀具 29 4.2.3 工件 30 4.2.4 治具 31 4.2.5 動力計 32 4.2.6 電荷放大器 33 4.2.7 訊號擷取卡 34 4.2.8 CCD相機 34 4.3 實驗規劃 35 4.3.1 銑削實驗路徑規劃與實驗流程 35 4.3.2 敲擊實驗 37 第5章 實驗結果與討論 39 5.1 刀具磨耗量測結果 39 5.2 訊號處理 41 5.2.1 理想切削之訊號濾波 41 5.2.2 頻率相關性分析與訊號濾波 43 5.2.3 濾波結果比較與討論 46 5.2.4 主軸電流濾波訊號 47 5.3 控制器訊號估算切削力與係數鑑別 48 5.3.1 主軸電流估算切削力與切削力係數鑑別 49 5.3.2 伺服軸電流估算切削力 51 5.3.3 伺服位置誤差模擬切削力動態 54 5.3.4 伺服軸訊號鑑別切削力係數 56 5.3.5 小結 57 5.4 刀具磨耗與切削力係數關係 59 5.5 主軸電流與切削力係數觀測刀具磨耗之討論 60 5.6 透過線性迴歸檢測刀具磨耗 63 第6章 結論與未來展望 64 6.1 結論 64 6.2 未來展望 65 參考文獻 66 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 伺服軸訊號 | zh_TW |
| dc.subject | 主軸電流 | zh_TW |
| dc.subject | 切削力學 | zh_TW |
| dc.subject | 刀具磨耗 | zh_TW |
| dc.subject | 切削力係數 | zh_TW |
| dc.subject | tool wear | en |
| dc.subject | Cutting Mechanics | en |
| dc.subject | cutting force coefficient | en |
| dc.subject | spindle current | en |
| dc.subject | servo signals | en |
| dc.title | 基於控制器訊號觀測刀具磨耗對切削力係數之影響 | zh_TW |
| dc.title | The Influence of Tool Wear on Cutting Force Coefficient Based on Controller Signals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡孟勳;盧銘詮 | zh_TW |
| dc.contributor.oralexamcommittee | Meng-Shiun Tsai;Ming-Chyuan Lu | en |
| dc.subject.keyword | 刀具磨耗,切削力學,切削力係數,主軸電流,伺服軸訊號, | zh_TW |
| dc.subject.keyword | tool wear,Cutting Mechanics,cutting force coefficient,spindle current,servo signals, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202403583 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-08-06 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
