Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物醫學碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94090
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾嘉綾zh_TW
dc.contributor.advisorChia-Lin Chungen
dc.contributor.author黃育心zh_TW
dc.contributor.authorYu-Hsin Huangen
dc.date.accessioned2024-08-14T16:38:31Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation朱盛祺、蔣夢心、陳致延、黃㯖昌。2010。臺東地區水稻徒長病之發病率調查與防治技術改進。臺東區農業改良場研究彙報 20:57-69。
吳志文、張芯瑜、邱運全。2010。水稻新品種-高雄147號 (香鑽) 之育成。高雄區農業改良場研究彙報 22:12-14。
吳柏叡。2019。臺灣稻熱病菌AVR-Pik基因型組成與致病性之分析。國立臺灣大學植物病理與微生物學研究所-碩士論文。
李超運、劉瑋婷。1997。水稻新品種-台梗16號。花蓮區農技報導 39:1-4。
邱運全、吳志文。2005。水稻新品種-高雄145號。高雄區農技報導 53:1-5。
施昱全、廖大經、吳永培、沈偉強、張為斌、陳杰宜、鍾嘉綾。2017。栽培稻台稉14號帶抗稻熱病基因Piz-t之探討。植物醫學 59:23-31。
洪嘉鎂、陳俞螢 2018 水稻白葉枯病退散!興大推2種抗病水稻。農傳媒。檢自: https://www.agriharvest.tw/archives/12978 (July 7, 2024)。
張芳瑜、胡智傑。2022。抗稻熱病水稻新品種臺大高雄1號。高雄區農情月刊 296:1。
陳玥潔、廖大經、吳永培、沈偉強、陳繹年、吳雅芳、鄭安秀、鍾嘉綾。2022。水稻臺農82號疊氮化鈉誘變系WM1370之抗稻熱病基因座分析。植物醫學 64:85-104。
陳韋綸。2016。建立分子標誌平臺以進行抗稻熱病多系品種之選育。國立臺灣大學植物病理與微生物學研究碩士論文。
陳隆澤、陳一心、鄭清煥、林芳洲、黃振增、陳素娥、楊嘉凌、林金樹、吳文政、林國清、陳紹崇、邱明德、古仁允、黃秋蘭、江瑞拱、潘昶儒。2000。水稻品種 (系) 特性檢定。89年稻作改良年報:191-232。
陳隆澤、黃守宏、鄭清煥。2009。水稻病蟲害抗性檢定工作回顧。台灣水稻保護成果及新展望研討會專刊:83-103。
陳儀嘉、廖大經、施昱全、陳杰宜、蕭伊婷、吳永培、沈偉強、張為斌、鄭安秀、鍾嘉綾。2020。栽培稻臺稉8號帶抗稻熱病基因Pik-KU之探討。植物醫學62:19-30。
陳繹年、陳珮臻。2020。被忽略的稻熱病初次感染源-「帶病秧苗」。植物醫學 62:13-16。
莊哲權 (2021) 池上水稻2成染病,伯朗大道農民叫苦。中國時報。檢自https://www.chinatimes.com/newspapers/20210607000461-260107?chdtv (July 7, 2024)。
黃玟菁、林盈宏、鄭哲皓、林鈺荏、朱盛祺。2021。苗栗地區稻熱病抗性品種篩選與防治效益評估。苗栗區農業改良場研究彙報 10:15-32。
黃佳興、吳文欽、潘昶儒。2016。水稻抗白葉枯病基因於花蓮地區抗病表現初探。花蓮區農業改良場研究彙報 34:27-36。
黃㯖昌、朱盛祺。2009。臺灣水稻徒長病之發生與防治。台灣水稻保護成果及新展望研討會專刊:29-43。
詹士弘、鄭旭凱。2013。白葉枯病肆虐,兩成五水稻染病。自由時報。檢自https://news.ltn.com.tw/news/local/paper/714413 (July 7, 2024)。
農業部臺中區農業改良場。2021。臺灣中部地區優質及多元利用之水稻品種選育。臺中區農業改良場110年度年報-作物改良:23。
農業部。2024。農業統計年報。檢自: https://agrstat.moa.gov.tw/sdweb/public/official/OfficialInformation.aspx (August 2, 2024)。
農藥資訊服務網。2024。水稻徒長病藥劑。檢自: https://pesticide.aphia.gov.tw/information/Query/BugFarmUserange/?flag=&farm=A010101&bug=B03 (July 7, 2024)。
農藥資訊服務網。2024。水稻白葉枯藥劑。檢自:
https://www.nksdata.tw/aisearch/pesticide.html?name=%E5%BE%92%E9%95%B7%E7%97%85&plant=%E6%B0%B4%E7%A8%BB (July 7, 2024)。
廖大經、陳隆澤、吳志文、鍾嘉綾。2016。水稻‘LTH’單基因系與‘CO 39’近同源系對台灣稻熱病菌之反應。台灣農業研究 658:17。
賴明信、李長沛、曾清山、黃惠娟、陳治官、郭益全。2001。水稻台農71號 (益全香米) 的育成。中華農業研究 50:1-12。
謝式拌鈺。1991。臺灣水稻白葉枯病發生近況與展望。稻作病害研討會專刊:117-130。
簡禎佑。2023。水稻抗稻熱病品種的新選擇‘桃園7號’誕生囉!桃園區農情月刊 289:3。
簡錦忠、謝麗娟。1989。本省稻白葉枯病菌病原群之研究。中華農業研究 38:216-228。
Abe, S. 2004. Breeding of a blast resistant multiline variety of rice, Sasanishiki BL. Japan Agricultural Research Quarterly 38:149-154.
Ahmadikhah, A. 2009. Rapid mini-prep DNA extraction method in rice (Oryza sativa). African Journal of Biotechnology 8: 234-238.
Amante-Bordeos, A., Sitch, L. A., Nelson, R., Dalmacio, R. D., Oliva, N. P., Aswidinnoor, H. and Leung, H. 1989. Oryza minuta, a source of blast and bacterial blight resistance for rice improvement. Pages 315-322 in: Review of Advances in Plant Biotechnology, 1985–1988. Mujeeb-Kazi, A. and Sitch, L. A. eds. International Maize and Wheat Improvement Center, Mexico City, and International Rice Research Institute, Manila, Philippines.
Ameen, F., Alsamhary, K., Alabdullatif, J. A. and Alnadhari, S. 2021. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety 213:112027.
An, Y. N., Murugesan, C., Choi, H., Kim, K. D. and Chun, S. C. 2023. Current studies on bakanae disease in rice: host range, molecular identification, and disease management. Mycobiology 51:195-209.
Balija, V., Bangale, U., Ponnuvel, S., Barbadikar, K. M., Madamshetty, S. P., Durbha, S. R.,Yadla, H. and Maganti, S. M. 2021. Improvement of upland rice variety by pyramiding drought tolerance qtl with two major blast resistance genes for sustainable rice production. Rice Science 28:493-500.
Bonman, J. M., Estrada, B. A., Kim, C. K. and Lee, E. J. 1991. Assessment of blast disease and yield loss in susceptible and partially resistant rice cultivars in two irrigated lowland environments. Plant Disease 75:462-466.
Brun, H., Chèvre, A. M., Fitt, B. D., Powers, S., Besnard, A. L., Ermel, M., Huteau, V., Marquer, B., Eber, F., Renard, M. and Andrivon, D. 2010. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytologist 185:285-299.
Chen, S. Y., Lai, M. H., Chu, Y. L., Wu, D. H., Tung, C. W., Chen, Y. J. and Chung, C. L. 2023. Identification of qBK2.1, a novel QTL controlling rice resistance against Fusarium fujikuroi. Botanical Studies 64:11.
Chen, S. Y., Lai, M. H., Tung, C. W., Wu, D. H., Chang, F. Y., Lin, T. C. and Chung, C. L. 2019. Genome-wide association mapping of gene loci affecting disease resistance in the rice-Fusarium fujikuroi pathosystem. Rice 12:85.
Chen, Y. C., Hu, C. C., Chang, F. Y., Chen, C. Y., Chen, W. L., Tung, C. W., Shen, W. C., Wu, C. W., Cheng, A. H., Liao, D. J., Liao, C. Y., Liu, L. D. and Chung, C. L. 2021. Marker-assisted development and evaluation of monogenic lines of rice cv. Kaohsiung 145 carrying blast resistance genes. Plant Disease 105:3858-3868.
Chen, Y. C., Lai, M. H., Wu, C. Y., Lin, T. C., Cheng, A. H., Yang, C. C., Wu, H. Y., Chu, S. C., Kuo, C. C., Wu, Y. F., Lin, G. C., Tseng, M. N., Tsai, Y. C., Lin, C. C., Chen, C. Y., Huang, J. W., Lin, H. A. and Chung, C. L. 2016. The Genetic structure, virulence, and fungicide sensitivity of Fusarium fujikuroi in Taiwan. Phytopathology 106:624-635.
Chen, Y. N., Wu, D. H., Chen, M. C. and Chen, P. C. 2021. A simple and economical method to induce sporulation of Pyricularia oryzae. Journal of Taiwan Agricultural Research 70:1-10.
Delourme, R., Bousset, L., Ermel, M., Duffé, P., Besnard, A. L., Marquer, B., Fudal, I., Linglin, J., Chadœuf, J. and Brun, H. 2014. Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. Infection, Genetics and Evolution 27:490-499.
Deng, W. L., Lin, H. A., Shih, Y. C., Kuo, C. C., Tzeng, J. Y., Liu, L. Y. D., Huang, S. T., Huang, C. M. and Chung, C. L. 2016. Genotypic and pathotypic diversity of Xanthomonas oryzae pv. oryzae strains in Taiwan. Journal of Phytopathology 164: 745-759.
Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y. and Zhang, G. 2017. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355:962-965.
Fan, Y., Ma, L., Pan, X., Tian, P., Wang, W., Liu, K., Xiong, Z., Li, C., Wang, Z., Wang, J., Zhang, H. and Bao, Y. 2024. Genome-wide association study identifies rice panicle blast-resistant gene Pb4 encoding a wall-associated kinase. International Journal of Molecular Sciences 25:830.
Fiyaz, R. A., Shivani, D., Chaithanya, K., Mounika, K., Chiranjeevi, M., Laha, G. S., Virakramath, B. C., Rao, L. V. S. and Sundaram, R. M. 2022. Genetic improvement of rice for bacterial blight resistance: present status and future prospects. Rice Science 29:118-132.
Fiyaz, R. A., Yadav, A. K., Krishnan, S. G., Ellur, R. K., Bashyal, B. M., Grover, N., Bhowmick, P. K., Nagarajan, M., Vinod, K. K., Singh, N. K., Prabhu, K. V. and Singh, A. K. 2016. Mapping quantitative trait loci responsible for resistance to bakanae disease in rice. Rice 9:1-10.
Fukuoka, S. and Okuno, K. 2001. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theoretical and Applied Genetics 103:185-190.
Fukuoka, S. and Okuno, K. 2019. Strategies for breeding durable resistance to rice blast using pi21. Crop Breeding, Genetics and Genomics 1:e190013.
Fukuoka, S., Saka, N., Koga, H., Ono, K., Shimizu, T., Ebana, K., Hayashi, N., Takahashi, A., Hirochika, H., Okuno, K. and Yano, M. 2009. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998-1001.
Fukuoka, S., Saka, N., Mizukami, Y., Koga, H., Yamanouchi, U., Yoshioka, Y., Hayashi, N., Ebana, K., Mizobuchi, R. and Yano, M. 2015. Gene pyramiding enhances durable blast disease resistance in rice. Scientific Reports 5:7773.
Khush, G. S., Bacalangco, E and Ogawa, T. 1990. A new gene for resistance to bacterial blight from O. longistaminata. Rice Genetics Newsletter 7:121.
Han, J., Xia, Z., Liu, P., Li, C., Wang, Y., Guo, L., Jiang, G. and Zhai, W. 2020. TALEN-based editing of TFIIAy5 changes rice response to Xanthomonas oryzae pv. oryzae. Scientific Reports 10:2036.
Hangloo, S., Mahdi, G. M. A., Sharma, M., Salgotra, R. K., Sharma, D. and Bhat, R. 2023. Blast resistance (Pi54) introgression in temperate rice (Oryza sativa L.) K343 using marker assisted backcrossing. Archives of Agriculture and Environmental Science 8:55-61.
Hayashi, N., Inoue, H., Kato, T., Funao, T., Shirota, M., Shimizu, T.,Kanamori, H. Yamane, H., Hayano-Saito, Y., Matsumoto, T., Yano, M. and Takatsuji, H. 2010. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal 64:498-510.
Herawati, R., Herlinda, S., Ganefianti, D. W., Bustamam, H. and Sipriyadi 2022. Improving broad spectrum blast resistance by introduction of the Pita2 gene: encoding the NB-ARC domain of blast-resistant proteins into upland rice breeding programs. Agronomy 12:2373.
Hu, K., Cao, J., Zhang, J., Xia, F., Ke, Y., Zhang, H., Xie, W., Liu, H., Cui, Y., Cao, Y., Sun, X., Xiao, J., Li, X., Zhang, Q. and Wang, S. 2017. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants 3:17009.
Huang, S., Antony, G., Li, T., Liu, B., Obasa, K., Yang, B. and White, F.F. 2016. The broadly effective recessive resistance gene xa5 of rice is a virulence effector-dependent quantitative trait for bacterial blight. The Plant Journal 86:186-194.
Hur, Y. J., Lee, S. B., Kim, T. H., Kwon, T., Lee, J. H., Shin, D. J., Song, Y., Kwon, Y. U. and Lee, J. H. 2015. Mapping of qBK1, a major QTL for bakanae disease resistance in rice. Molecular Breeding 35:1-9.
IRRI. 2013. Standard evaluation system for rice. 5th ed. International Rice Research Institute, Manila, Philipine.
Ishikawa, K., Kuroda, T., Hori, T., Iwata, D., Matsuzawa, S., Nakabayashi, J., Sasaki, A. and Ashizawa, T. 2022. Long-term blast control in high eating quality rice using multilines. Scientific Reports 12:14880.
Ishizaki, K., Hoshi, T., Abe, S. I., Sasaki, Y., Kobayashi, K., Kasaneyama, H., Matsui, T. A and Azuma, S. 2005. Breeding of blast resistant isogenic lines in rice variety “Koshihikari” and evaluation of their characters. Breeding Science 55:371-377.
Iyer, A. S. and McCouch, S. R. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant-Microbe Interactions 17:1348-1354.
Ji, H., Kim, T. H., Lee, G. S., Kang, H. J., Lee, S. B., Suh, S. C., Kim, S. L.,Choi, I., Baek, J. and Kim, K. H. 2018. Mapping of a major quantitative trait locus for bakanae disease resistance in rice by genome resequencing. Molecular Genetics and Genomics 293:579–586.
Kang, D. Y., Cheon, K. S., Oh, J., Oh, H., Kim, S. L., Kim, N., Lee, E., Choi, I., Baek, J., Kim, K. H., Chung, N. J. and Ji, H. 2019. Rice genome resequencing reveals a major quantitative trait locus for resistance to bakanae disease caused by Fusarium fujikuroi. International Journal of Molecular Sciences 20:2598.
Kanzaki, H., Yoshida, K., Saitoh, H., Fujisaki, K., Hirabuchi, A., Alaux, L., Fournier, E., Tharreau, D. and Terauchi, R. 2012. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. The Plant Journal 72:894-907.
Kiyosawa, S. and Murty, V. V. S. 1969. The inheritance of blast-resistance in Indian rice variety, HR-22. Japanese Journal of Breeding 19:269-276.
Kotasthane, A. and Gaikwad, N. 2021. Marker assisted selection of xa5, xa13 and Xa21 gene in breeding populations derived from Karma Mahsuri x IRBB 59. Plantae Scientia 4:108-116.
Kristoffersen, R., Jørgensen, L. N., Eriksen, L. B., Nielsen, G. C. and Kiær, L. P. 2020. Control of Septoria tritici blotch by winter wheat cultivar mixtures: meta-analysis of 19 years of cultivar trials. Field Crops Research 249:107696.
Kushwaha, A. K., Ellur, R. K., Maurya, S. K., Krishnan S., G., Bashyal, B. M., Bhowmick, P. K., Vinod,K. K., Bollinedi,H., Singh,N. K. and Singh, A. K. 2023. Fine mapping of qBK1.2, a major QTL governing resistance to bakanae disease in rice. Frontiers in Plant Science 14:1265176.
Lasserre-Zuber, P., Caffier, V., Stievenard, R., Lemarquand, A., Le Cam, B. and Durel, C. E. 2018. Pyramiding quantitative resistance with a major resistance gene in apple: From ephemeral to enduring effectiveness in controlling scab. Plant Disease 102: 2220-2223.
Lee, S. B., Hur, Y. J., Cho, J. H., Lee, J. H., Kim, T. H., Cho, S. M., Song, Y. C., Seo, Y. S., Lee, J., Kim, T., Park, Y. J., Oh, M. K. and Park, D. S. 2018. Molecular mapping of qBK1 WD, a major QTL for bakanae disease resistance in rice. Rice 11: 1-8.
Lee, S. B., Kim, N., Jo, S., Hur, Y. J., Lee, J. Y., Cho, J. H., Lee, J. H., Kang, J. W., Song, Y. C., Bombay, M., Kim, S. R., Lee, J., Seo, Y. S., Ko, J. M. and Park, D. S. 2021. Mapping of a major QTL, qBK1Z, for bakanae disease resistance in rice. Plants 10: 434.
Lee, S. B., Lee, J. Y., Kang, J. W., Mang, H., Kabange, N. R., Seong, G. U., Kwon, Youngho., Lee, S. M., Shin, D., Lee, J. H., Cho, J. H., Oh, K. W. and Park, D. S. 2022. A novel locus for bakanae disease resistance, qBK4T, identified in rice. Agronomy 12:2567.
Liu, G., Lu, G., Zeng, L. and Wang, G. L. 2002. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Molecular Genetics and Genomics 267:472-480.
Luo, Y., Sangha, J. S., Wang, S., Li, Z., Yang, J. and Yin, Z. 2012. Marker-assisted breeding of Xa4, Xa21 and Xa27 in the restorer lines of hybrid rice for broad-spectrum and enhanced disease resistance to bacterial blight. Molecular Breeding 30:1601-1610.
Lv, Q., Xu, X., Shang, J., Jiang, G., Pang, Z., Zhou, Z., Wang, J., Liu, Y., Li, T. and Li, X. 2013. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology 103: 594-599.
Ma, J., Lei, C., Xu, X., Hao, K., Wang, J., Cheng, Z., Ma, X., Ma, J., Zhou, K. and Zhang, X. 2015. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Molecular Plant-Microbe Interactions 28:558-568.
Ma, L., Yu, Y., Li, C., Wang, P., Liu, K., Ma, W., Wang, W., Fan, Y., Xiong, Z., Jiang, T., Zhang, J., Wang, Z., Wang, J., Zhang, H. and Bao, Y. 2022. Genome-wide association study identifies a rice panicle blast resistance gene Pb3 encoding NLR protein. International Journal of Molecular Sciences 23: 14032.
Mackill, D. J., and Bonman, J. M. 1992. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology 82:746-749.
Meng, X., Xiao, G., Telebanco-Yanoria, M. J., Siazon, P. M., Padilla, J., Opulencia, R., Bigirimana, J., Habarugira, G., Wu, J., Li, M., Wang, B., Lu, G. D. and Zhou, B. 2020. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice 13:19.
Miyamoto, M., Yano, M. and Hirasawa, H. 2001. Mapping of quantitative trait loci conferring blast field resistance in the Japanese upland rice variety Kahei. Breeding Science 51:257-261.
Nadeem, M. A., Nawaz, M. A., Shahid, M. Q., Doğan, Y., Comertpay, G., Yıldız, M., Hatipoğlu, R., Ahmad, F., Alsaleh, A., Labhane, N., Özkan, H.,Chung, G. and Baloch, F. S. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment 32:261-285.
Nagai, K. 1966. Rice breeding for blast resistance in Japan, a role of foreign varieties. Japan Agricultural Research Quarterly 1:1-3.
Nguyen, H. T., Vu, Q. H., Van Mai, T., Nguyen, T. T., Vu, L. D., Nguyen, T. T., Nguyen, L. V., Vu, H. T. T., Nong, H. T. and Dinh, T. N. 2018. Marker-assisted selection of Xa21 conferring resistance to bacterial leaf blight in indica rice cultivar LT2. Rice Science 25:52-56.
Nguyen, T. T., Koizumi, S., La, T. N., Zenbayashi, K. S., Ashizawa, T., Yasuda, N., Imazaki, I., and Miyasaka, A. 2006. Pi35(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. Theoretical and Applied Genetics 113:697-704.
Ning, X., Yunyu, W. and Aihong, L. 2020. Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Science 27:263-277.
Niks, R., Qi, X. and Marcel, T. 2015. Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annual Review of Phytopathology 53:445-470.
Peng, P., Jiang, H., Luo, L., Ye, C. and Xiao, Y. 2023. Pyramiding of multiple genes to improve rice blast resistance of photo-thermo sensitive male sterile line, without yield penalty in hybrid rice production. Plants 12:1389.
Pruitt, R. N., Schwessinger, B., Joe, A., Thomas, N., Liu, F., Albert, M., Robinson, M. R.,Chan, L. J. G., Luu, D. D. and Chen, H. 2015. The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances 1:e1500245.
Rai, A. K., Kumar, S. P., Gupta, S. K., Gautam, N., Singh, N. K. and Sharma, T. R. 2011. Functional complementation of rice blast resistance gene Pik-h (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Journal of Plant Biochemistry and Biotechnology 20:55-65.
Ramalingam, J., Palanisamy, S., Alagarasan, G., Renganathan, V. G., Ramanathan, A. and Saraswathi, R. 2020a. Improvement of stable restorer lines for blast resistance through functional marker in rice (Oryza sativa L.). Genes 11:1266.
Ramalingam, J., Raveendra, C., Savitha, P., Vidya, V., Chaithra, T. L., Velprabakaran, S., Saraswathi, R., Ramanathan, A., Arumugam Pillai, M. P., Arumugachamy, S. and Vanniarajan, C. 2020b. Gene pyramiding for achieving enhanced resistance to bacterial blight, blast, and sheath blight diseases in rice. Frontiers in Plant Science 11: 591457.
Simon, E. V., Hechanova, S. L., Hernandez, J. E., Li, C. P., Tülek, A., Ahn, E. K. Jairin, J., Choi, I. R., Sundaram, R. M., Jena, K. K., and Kim, S. R. 2023. Available cloned genes and markers for genetic improvement of biotic stress resistance in rice. Frontiers in Plant Science 14:1247014.
Singh, A. K., Ponnuswamy, R., Srinivas Prasad, M., Sundaram, R. M., Hari Prasad, A. S., Senguttuvel, P., Kempa Raju, K. B. and Sruthi, K. 2023. Improving blast resistance of maintainer line DRR 9B by transferring broad spectrum resistance gene Pi2 by marker assisted selection in rice. Physiology and Molecular Biology of Plants 29:253-262.
Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X., Zhu, L. H., Fauquet, C. and Ronald, P. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804-1806.
Soujanya, T., Madamsetty, S. P., Sandeep, G., Hemalatha, V., Yamini, K. N., Bandela, E., Hari Prasad, A.S., Meenakshi Sundaram, R., and Revathi P. 2023. Improving hybrid rice parental lines for blast resistance by introgression of broad-spectrum resistance genes Pi54 and Pi9 by marker-assisted selection. Plant Breeding 142: 300-311.
Suh, J. P., Jeung, J. U., Noh, T. H., Cho, Y. C., Park, S. H., Park, H. S., Shin, M. S., Kim, C. K., and Jena, K. 2013. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6:5.
Syauqi, J., Chen, R. K., Cheng, A. H., Wu, Y. F., Chung, C. L., Lin, C. C., Chou, H. P., Wu, H. Y., Jian, J. Y., Liao, C. T., Kuo, C. C., Chu, S. C., Tsai, Y. C., Liao, D. J., Wu, Y. P., Abadi, A. L., Sulistyowati, L. and Shen, W. C. 2022. Surveillance of rice blast resistance effectiveness and emerging virulent isolates in Taiwan. Plant Disease 106:3187-3197.
Terashima, T., Fukuoka, S., Saka, N. and Kudo, S. 2008. Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breeding 127:485-489.
Tian, D., Guo, X., Zhang, Z., Wang, M. and Wang, F. 2019. Improving blast resistance of the rice restorer line, Hui 316, by introducing Pi9 or Pi2 with marker-assisted selection. Biotechnology & Biotechnological Equipment 33:1195-1203.
Volante, A., Tondelli, A., Aragona, M., Valente, M. T., Biselli, C., Desiderio, F., Bagnaresi, P., Matic, S., Gullino, M. L., Infantino, A., Spadaro, D. and Valè, G. 2017. Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice 10:1-16.
Wang, G. L., Song, W. Y., Ruan, D. L., Sideris, S. and Ronald, P. C. 1996. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Molecular Plant-Microbe Interactions 9:850-855.
Wang, Y., Tang, S., Guo, N., An, R., Ren, Z., Hu, S., Wei, X., Jiao, G., Xie, L., Wang, L., Chen, Y., Zhao, F., Tang, S., Hu, P. and Sheng, Z. 2023. Pyramiding rice blast resistance gene Pi2 and fragrance gene badh2. Agronomy 13:589.
Wu, Y., Chen, Y., Pan, C., Xiao, N., Yu, L., Li, Y., Zhang, X., Pan, X., Chen, X., Liang, C., Dai, Z. and Li, A. 2017. Development and evaluation of near-isogenic lines with different blast resistance alleles at the Piz locus in japonica rice from the lower region of the Yangtze river, China. Plant Disease 101:1283-1291.
Wu, Y., Xiao, N., Chen, Y., Yu, L., Pan, C., Li, Y., Zhang, X., Huang, N., Ji, H., Dai, Z., Chen, X. and Li, A. 2019. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice (Oryza sativa L.). Rice 12:11.
Wu, Y., Yu, L., Pan, C., Dai, Z., Li, Y., Xiao, N., Zhang, X., Ji, H., Huang, N., Zhao, B., Zhou, C., Liu, G., Liu, X., Pan, X., Liang, C. and Li, A. 2016. Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Molecular Breeding 36:12.
Xiao, G., Laksanavilat, N., Cesari, S., Lambou, K., Baudin, M., Jalilian, A., Telebanco-Yanoria, M. J., Chalvon, V., Meusnier, I., Fournier, E., Tharreau, D., Zhou, B., Wu, J. and Kroj, T. 2024. The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele-specific manner. Nature Plants 10:994-1004.
Xiao, W. M., Luo, L. X., Wang, H., Guo, T., Liu, Y. Z., Zhou, J. Y., Zhu, X. Y., Yang, Q. Y. and Chen, Z. Q. 2016. Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. Journal of Integrative Agriculture 15:2290-2298.
Yanchang, L., Tingchen, M., Teo, J., Zhixiang, L., Zefu, L., Jianbo, Y. and Yin, Zhongchao. 2021. Marker-assisted breeding of thermo-sensitive genic male sterile line 1892S for disease resistance and submergence tolerance. Rice Science 28:89-98.
Yang, C. D., Guo, L. B., Li, X. M., Ji, Z. J., Ma, L. Y. and Qian, Q. 2006. Analysis of QTLs for resistance to rice bakanae disease. Chinese Journal of Rice Science 6: 657-659.
Yang, D., Li, S., Lu, L., Fang, J., Wang, W., Cui, H. and Tang, D. 2020. Identification and application of the Pigm-1 gene in rice disease resistance breeding. Plant Biology 22:1022-1029.
Yasuda, N., Mitsunaga, T., Hayashi, K., Koizumi, S. and Fujita, Y. 2015. Effects of pyramiding quantitative resistance genes pi21, Pi34, and Pi35 on rice leaf blast disease. Plant Disease 99:904-909.
Yokoo, M. and Fujimaki, H. 1971. Tight linkage of blast-resistance with late maturity observed in different indica varieties of rice. Japanese Journal of Breeding 21:35-39.
Younas, M. U., Wang, G., Du, H., Zhang, Y., Ahmad, I., Rajput, N., Li, M., Feng, Z., Hu, K., Khan, N. U., Xie, W., Qasim, M., Chen, Z. and Zuo, S. 2023. Approaches to reduce rice blast disease using knowledge from host resistance and pathogen pathogenicity. International Journal of Molecular Sciences, 24: 4985.
Yu, M. M., Dai, Z. Y., Pan, C. H., Chen, X. J., Yu Ling, Zhang, X. X., Li Y. H., Xiao, N., Gong, H. B., Sheng, S. L., Pan X. B., Zhang, H. X. and Li, A. H. 2013. Resistance spectrum difference between two broad-spectrum blast resistance genes, Pigm and Pi2, and their interaction effect on Pi1. Acta Agronomica Sinica 39:1927-1934.
Yu, Y., Ma, L., Wang, X., Zhao, Z., Wang, W., Fan, Y., Liu, K., Jiang, T., Xiong, Z., Song, Q., Li, C., Wang, P., Ma, W., Xu, H., Wang, X., Zhao, Z., Wang, J.Zhang, H., and Bao, Y. 2022. Genome-wide association study identifies a rice panicle blast resistance gene, Pb2, encoding NLR protein. International Journal of Molecular Sciences 23:5668.
Zampieri, E., Volante, A., Marè, C., Orasen, G., Desiderio, F., Biselli, C., Canella, M., Carmagnola, L., Milazzo, J., Adreit, H., Tharreau, D., Poncelet, N., Vaccino, P. and Valè, G. 2023. Marker-assisted pyramiding of blast-resistance genes in a japonica elite rice cultivar through forward and background selection. Plants 12:757.
Zenbayashi-Sawata, K., Fukuoka, S., Katagiri, S., Fujisawa, M., Matsumoto, T., Ashizawa, T. and Koizumi, S. 2007. Genetic and physical mapping of the partial resistance gene, pi34, to blast in rice. Phytopathology 97:598-602.
Zeng, S., Li, C., Du, C., Sun, L., Jing, D., Lin, T., Yu, B., Qian, H., Yao, W., Zhou, Y. and Gong, H. 2018. Development of specific markers for Pigm in marker-assisted breeding of panicle blast resistant japonica rice. Chinese Journal of Rice Science 32:453-461.
Zhao, H., Wang, X., Jia, Y., Minkenberg, B., Wheatley, M., Fan, J., Jia, M. H., Famoso, A., Edwards, J. D., Wamishe, Y., Valent, B., Wang, G. L. and Yang, Y. 2018. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nature Communications 9:2039.
Zhuang, J., Wu, J., Fan, Y., Rao, Z. and Zheng, K. 2001. Genetic drag between a blast resistance gene and QTL conditioning yield trait detected in a recombinant inbred line population in rice. Rice Genetics Newsletter 18:67-69.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94090-
dc.description.abstract病害是水稻生長過程中重要的限制因子,若發生嚴重會導致產量損失,並對糧食安全造成威脅。稻熱病、白葉枯病及徒長病為重要的水稻病害,在各種防治方法中,使用抗病品種被認為是有效、經濟且環保的方式。抗病品種若只帶有單一主效抗病基因,對於田間病原菌的菌株之抗性不夠持久,且抗性只侷限於單一病害。本研究以多系品種及基因堆疊兩策略,期望增加田間抗病基因多樣性,藉此延長抗病品種的田間抗性,並擴增其抗性幅度。本研究於2021-2023年以帶有不同抗病基因的高雄145號單基因系KHY5508 (Pi9)、KHY5496 (Pik-h)、KHY5491 (Ptr) 進行田間混植試驗,結果顯示混植品系對於葉稻熱病及穗稻熱病皆具有良好抗性,且其農藝性狀與米質亦與高雄145號相似。本研究同時以高雄145號單基因系作為親本,透過分子標誌輔助選拔,將Pi9、Pik-h、Ptr分別導入高雄147號中,選出7個抗性及農藝性狀皆優良之BC4F4單基因系;建立帶有Pi2、Pik-h、Ptr之高雄145號三基因堆疊品系,選出5個性狀優良之品系;將部分抗性基因gene pi21導入帶有Pi9、Pik-h、Ptr之基因堆疊品系KHY5697,降低主效基因被克服之風險。本研究亦建立以臺稉16號及台農71號為背景,帶有抗稻熱病基因Ptr、抗白葉枯病基因Xa4、xa5、Xa21及抗徒長病QTLs qBK1.8、qBK2.1的堆疊品系。本研究所選育具有優良農藝性狀之抗病品系,未來有機會推廣種植,亦可作為其他抗病育種計畫的親本,加速育種流程。zh_TW
dc.description.abstractDisease is an important limiting factor in rice production. It may cause yield loss, threatening food security. Rice blast, bacterial blight, and bakanae disease are important rice diseases. Among various control measures, the use of resistant varieties is considered effective, economical, and eco-friendly. However, a disease-resistant variety carrying a single major-effect resistance gene may not provide durable field resistance to the pathogen, and the resistance is limited to a single disease. This study aims to increase the diversity of resistance genes in the field with the strategies of multiline varieties and gene pyramiding, hoping to prolong field resistance of resistant varieties and broaden their resistance spectrum. In 2021 to 2023, a mixture of three rice Kaohsiung 145 (KH145) monogenic lines carrying different R genes, KHY5508 (Pi9)、KHY5496 (Pik-h)、KHY5491 (Ptr), were tested in the field. The mixture showed good leaf and panicle blast resistance and similar agronomic traits and rice quality to KH145. Using KH145 monogenic lines as resistance donors and marker-assisted selection, Pi9, Pik-h, and Ptr were introduced into rice Kaohsiung 147 (KH147), and seven BC4F4 monogenic lines with excellent resistance and agronomic traits were selected; KH145 three-gene pyramided lines carrying Pi2, Pik-h, and Ptr were developed, and 5 lines with excellent traits were selected; to reduce the risk of major-effect genes being overcome in the field, partial resistance gene pi21 was introduced into KHY5697 (carrying Ptr, Pik-h, Pi9). This study also developed a multi-disease resistant line carrying rice blast resistance gene Ptr, bacterial blight resistance genes Xa4, xa5, Xa21, and bakanae disease resistance QTLs qBK1.8 and qBK2.1 in the backgrounds of rice Taikeng 16 and Tainung 71. The disease-resistant varieties bred in this study have excellent agronomic traits and may be promoted for planting in farmers’ fields. They can also be used as resistance donors for other breeding programs to accelerate the breeding process.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:38:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:38:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 ................................................................................................................................... I
摘要 ................................................................................................................................. II
Abstract ......................................................................................................................... III
表次 ............................................................................................................................. VIII
圖次 ................................................................................................................................ IX
Chapter 1 前人研究 ........................................................................................................ 1
1.1 水稻重要病害及其危害 ............................................................................................ 1
1.2 水稻抗病基因 ............................................................................................................ 3
1.3 分子標誌輔助育種 .................................................................................................... 4
1.4 持久抗病性 ............................................................................................................... 5
1.5 親本來源及特性 ........................................................................................................ 6
1.6 本研究使用之抗病基因/基因座 ............................................................................... 8
1.6.1 pi21 ................................................................................................................... 8
1.6.2 Pi9 .................................................................................................................... 8
1.6.3 Pi2 .................................................................................................................... 9
1.6.4 Ptr .................................................................................................................... 9
1.6.5 Pik-h ................................................................................................................ 10
1.6.6 Xa4、xa5、Xa21 ............................................................................................ 10
1.6.7 qBK1.8、qBK2.1 ............................................................................................ 11
Chapter 2 研究動機 ...................................................................................................... 13
Chapter 3 材料方法 ...................................................................................................... 14
3.1 植物材料 ............................................................................................................. 14
3.1.1 高雄145號多品系 ........................................................................................ 14
3.1.2 高雄147號抗性改良 .................................................................................... 14
3.1.3 高雄145號基因堆疊品系 ............................................................................ 15
3.1.4 抗多重病害基因堆疊品系 ............................................................................ 15
3.2 水稻基因型分析 ...................................................................................................... 16
3.2.1 水稻DNA萃取 ............................................................................................. 16
3.2.2 抗稻熱病基因座定序 .................................................................................... 17
3.2.3 前景選拔 ........................................................................................................ 17
3.2.4 重組篩選 ........................................................................................................ 18
3.3 水稻抗病性分析 ...................................................................................................... 19
3.3.1 稻熱病人工接種抗性檢定 ............................................................................ 19
3.3.2 徒長病人工接種抗性檢定 ............................................................................ 20
3.3.3 稻熱病圃抗性檢定 ........................................................................................ 20
3.3.4 初級產量比較試驗 ........................................................................................ 21
3.4 多品系之田間試驗 .................................................................................................. 21
3.5 統計分析 ............................................................................................................. 23
Chapter 4 結果 .............................................................................................................. 24
4.1 高雄147號之抗稻熱病基因座 .............................................................................. 24
4.2 分子標誌測試 .......................................................................................................... 24
4.3 水稻基因型分析 ...................................................................................................... 25
4.3.1 高雄147號雜交世代基因型篩選結果 ........................................................ 25
4.3.2 高雄145號基因堆疊品系基因型篩選結果 ................................................ 26
4.3.3 抗多重病害基因堆疊品系篩選 .................................................................... 27
4.4 水稻表現型分析 ...................................................................................................... 28
4.4.1 稻熱病人工接種抗性檢定 ............................................................................ 28
4.4.2 徒長病人工接種抗性檢定 ............................................................................ 29
4.4.3 病圃抗性檢定 ................................................................................................ 29
4.4.4 初級產量比較試驗 ........................................................................................ 30
4.5 多品系之田間試驗 .................................................................................................. 30
Chapter 5 討論 .............................................................................................................. 33
5.1 多品系之田間表現及未來應用 .............................................................................. 33
5.2 基因堆疊品系之選育及展望 .................................................................................. 35
參考文獻 ......................................................................................................................... 39
附表 ................................................................................................................................. 56
附圖 ................................................................................................................................. 79
附錄 ................................................................................................................................. 97
-
dc.language.isozh_TW-
dc.subject分子標誌輔助選拔zh_TW
dc.subject基因堆疊zh_TW
dc.subject多品系zh_TW
dc.subject白葉枯病zh_TW
dc.subject稻熱病zh_TW
dc.subject水稻zh_TW
dc.subject徒長病zh_TW
dc.subjectgene pyramidingen
dc.subjectOryza sativaen
dc.subjectrice blasten
dc.subjectbacterial blighten
dc.subjectbakanae diseaseen
dc.subjectmultilineen
dc.subjectmarker-assisted selectionen
dc.title水稻抗病單基因系及堆疊品系之選育與應用zh_TW
dc.titleBreeding and application of monogenic and pyramid lines for disease resistance in riceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee沈偉強;賴明信;張芳瑜zh_TW
dc.contributor.oralexamcommitteeWei-Chiang Shen;Ming-Hsin Lai;Fang-Yu Changen
dc.subject.keyword水稻,稻熱病,白葉枯病,徒長病,基因堆疊,多品系,分子標誌輔助選拔,zh_TW
dc.subject.keywordOryza sativa,rice blast,bacterial blight,bakanae disease,gene pyramiding,multiline,marker-assisted selection,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202403501-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物醫學碩士學位學程-
dc.date.embargo-lift2029-08-05-
顯示於系所單位:植物醫學碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-05
4.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved