請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94086完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周苡嘉 | zh_TW |
| dc.contributor.advisor | Yi-Chia Chou | en |
| dc.contributor.author | 陳怡蓁 | zh_TW |
| dc.contributor.author | Yi-Chen Chen | en |
| dc.date.accessioned | 2024-08-14T16:37:15Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] D. P. Adams, Reactive multilayers fabricated by vapor deposition: A critical review, Thin Solid Films. 576 (2015) 98-128.
[2] T. Weihs, Fabrication and characterization of reactive multilayer films and foils, in: Metallic films for electronic, optical and magnetic applications, Elsevier, 2014, pp. 160-243. [3] A. Rogachev, S. Vadchenko, A. Mukasyan, Self-sustained waves of exothermic dissolution in reactive multilayer nano-foils, Applied physics letters. 101.6 (2012). [4] L. A. Clevenger, C. V. Thompson, K. N. Tu, Explosive silicidation in nickel/amorphous‐silicon multilayer thin films, Journal of Applied Physics. 67.6 (1990) 2894-2898. [5] X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing, Nature communications. 5.1 (2014) 4908. [6] S. Barron, S. Kelly, J. Kirchhoff, R. Knepper, K. Fisher, K. Livi, E. Dufresne, K. Fezzaa, T. Barbee, T. Hufnagel, Self-propagating reactions in Al/Zr multilayers: anomalous dependence of reaction velocity on bilayer thickness, Journal of Applied Physics. 114.22 (2013). [7] R. V. Reeves, M. A. Rodriguez, E. D. Jones Jr, D. P. Adams, Condensed-phase and oxidation reaction behavior of Ti/2B foils in varied gaseous environments, The Journal of Physical Chemistry C. 116.33 (2012) 17904-17912. [8] J. Trenkle, L. Koerner, M. Tate, N. Walker, S. Gruner, T. Weihs, T. Hufnagel, Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils, Journal of Applied Physics. 107.11 (2010). [9] B. Boettge, J. Braeuer, M. Wiemer, M. Petzold, J. Bagdahn, T. Gessner, Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology, Journal of Micromechanics and Microengineering. 20.6 (2010) 064018. [10] Y. Ma, D. Bridges, Y. Yu, J. Han, H. Li, A. Hu, Joining of carbon fiber reinforced plastic to aluminum alloy by reactive multilayer films and low power semiconductor laser heating, Applied Sciences. 9.2 (2019) 319. [11] B. Rheingans, I. Spies, A. Schumacher, S. Knappmann, R. Furrer, L. P. Jeurgens, J. Janczak-Rusch, Joining with reactive nano-multilayers: influence of thermal properties of components on joint microstructure and mechanical performance, Applied Sciences. 9.2 (2019) 262. [12] S. Hertel, K. Vogel, M. Wiemer, T. Otto, Electroplating of Pd/Sn multilayers for reactive bonding in packaging and assembly applications. in 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), IEEE, 2020. [13] K. Vogel, R. Schachler, F. Roscher, M. Wiemer, H. Kuhn, Reactive chip level bonding based on CuO/Al reactive multilayer systems. in 2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC), IEEE, 2021. [14] M. Glaser, S. Matthes, J. Hildebrand, J. P. Bergmann, P. Schaaf, Hybrid Thermoplastic-Metal joining based on Al/Ni multilayer foils–Analysis of the joining zone, Materials & Design. 226 (2023) 111561. [15] P. Zhu, R. Shen, Y. Ye, X. Zhou, Y. Hu, Energetic igniters realized by integrating Al/CuO reactive multilayer films with Cr films, Journal of Applied Physics. 110.7 (2011). [16] Y. Zhang, Y. Wang, M. Ai, H. Jiang, Y. Yan, X. Zhao, L. Wang, W. Zhang, Y. Li, Reactive B/Ti nano-multilayers with superior performance in plasma generation, ACS applied materials & interfaces. 10.25 (2018) 21582-21589. [17] H. Zhou, H. Liu, G. Qian, H. Yu, X. Gong, X. Li, J. Zheng, Geometrical optimization and transverse thermoelectric performances of Fe/Bi2Te2.7Se0.3 artificially tilted multilayer thermoelectric devices, Micromachines. 13.2 (2022) 233. [18] Y. Li, P. Wei, H. Zhou, X. Mu, W. Zhu, X. Nie, X. Sang, W. Zhao, Geometrical structure optimization design of high-performance Bi2Te3-based artificially tilted multilayer thermoelectric devices, Journal of Electronic Materials. 49 (2020) 5980-5988. [19] E. Colgan, M. Mäenpää, M. Finetti, M. Nicolet, Electrical characteristics of thin Ni2Si, NiSi, and NiSi2 layers grown on silicon, Journal of Electronic Materials. 12 (1983) 413-422. [20] Y. Li, Y. Gao, Y. Yao, S. Sun, D. Khatiwada, S. Pouladi, E. Galstyan, M. Rathi, P. Dutta, A. P. Litvinchuk, Direct synthesis of biaxially textured nickel disilicide thin films by magnetron sputter deposition on low-cost metal tapes for flexible silicon devices, Applied Physics Letters. 114.8 (2019). [21] T. Arai, H. Nakaie, K. Kamimura, H. Nakamura, S. Ariizumi, S. Ashizawa, K. Arimoto, J. Yamanaka, T. Sato, K. Nakagawa, Selective Heating of Transition Metal Usings Hydrogen Plasma and Its Application to Formation of Nickel Silicide Electrodes for Silicon Ultralarge-Scale Integration Devices, Journal of Materials Science and Chemical Engineering. 4.1 (2016) 29-33. [22] L. W. W. Fang, R. Zhao, E. G. Yeo, K. G. Lim, H. Yang, L. Shi, T. C. Chong, Y. C. Yeo, Phase change random access memory devices with nickel silicide and platinum silicide electrode contacts for integration with CMOS technology, Journal of The Electrochemical Society. 158.3 (2011) H232. [23] P. Ryabchuk, G. Agostini, M. M. Pohl, H. Lund, A. Agapova, H. Junge, K. Junge, M. Beller, Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst, Science advances. 4.6 (2018) eaat0761. [24] D. Bhowmik, S. Bhattacharjee, D. Lavanyakumar, V. Naik, B. Satpati, P. Karmakar, Synthesis of nano-patterned and Nickel Silicide embedded amorphous Si thin layer by ion implantation for higher efficiency solar devices, Applied Surface Science. 422 (2017) 11-16. [25] K. Yamamoto, T. Nakamura, K. Fujimoto, R. Tamura, K. Nishio, Preparation of NiSi2 and application to thermoelectric silicide elements used as electrodes, MRS Advances. 3 (2018) 1361-1365. [26] D. Wolansky, T. Grabolla, T. Lenke, S. Schulze, P. Zaumseil, Impact of nickel silicide on SiGe BiCMOS devices, Semiconductor Science and Technology. 33.12 (2018) 124003. [27] R. Schwarz, W. Johnson, Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals, Physical Review Letters. 51.5 (1983) 415. [28] A. Y. Hou, Y. H. Ting, K. L. Tai, C. Y. Huang, K. C. Lu, W. W. Wu, Atomic-scale silicidation of low resistivity Ni-Si system through in-situ TEM investigation, Applied Surface Science. 538 (2021) 148129. [29] J. Lindroos, D. P. Fenning, D. J. Backlund, E. Verlage, A. Gorgulla, S. K. Estreicher, H. Savin, T. Buonassisi, Nickel: A very fast diffuser in silicon, Journal of applied physics. 113.20 (2013). [30] Y. W. Chang, K. H. Lam, C. Chang, H. R. Chen, K. W. Su, Y. C. Chou, Control of Large‐Scale Single‐Phase Ni Silicide Formation from Reactive Multilayers, Advanced Engineering Materials. 24.12 (2022) 2200534. [31] D. P. Adams, V. C. Hodges, M. Bai, E. Jones, M. A. Rodriguez, T. Buchheit, J. Moore, Exothermic reactions in Co/Al nanolaminates, Journal of Applied Physics. 104.4 (2008). [32] T. Dyer, Z. Munir, The synthesis of nickel aluminides by multilayer self-propagating combustion, Metallurgical and Materials Transactions B. 26 (1995) 603-610. [33] D. Adams, M. Rodriguez, J. McDonald, M. Bai, E. Jones, L. Brewer, J. Moore, Reactive Ni/Ti nanolaminates, Journal of Applied Physics. 106.9 (2009). [34] A. S. Rogachev, S. G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N. V. Sachkova, M. D. Grapes, T. P. Weihs, A. S. Mukasyan, Combustion in reactive multilayer Ni/Al nanofoils: Experiments and molecular dynamic simulation, Combustion and Flame. 166 (2016) 158-169. [35] R. Armstrong, Models for gasless combustion in layered materials and random media, Combustion Science and Technology. 71.4-6 (1990) 155-174. [36] S. Jayaraman, A. B. Mann, M. Reiss, T. P. Weihs, O. M. Knio, Numerical study of the effect of heat losses on self-propagating reactions in multilayer foils, Combustion and flame. 124.1-2 (2001) 178-194. [37] J. P. Holman, Heat transfer, 10th ed. McGraw-Hill series in mechanical engineering. McGraw Hill Higher Education, Boston, 2010. [38] N. A. Manesh, S. Basu, R. Kumar, Experimental flame speed in multi-layered nano-energetic materials, Combustion and Flame. 157.3 (2010) 476-480. [39] N. Amini Manesh, S. Basu, R. Kumar, Modeling of a reacting nanofilm on a composite substrate, Energy. 36.3 (2011) 1688-1697. [40] B. Liu, X. Yu, X. Jiang, Y. Qiao, L. You, Y. Wang, F. Ye, Effect of deposition substrates on surface topography, interface roughness and phase transformation of the Al/Ni multilayers, Applied Surface Science. 546 (2021) 149098. [41] E. Vardo, Y. H. Sauni Camposano, S. Matthes, M. Glaser, H. Bartsch, J. Hildebrand, J. P. Bergmann, P. Schaaf, Impact of substrate thickness and surface roughness on Al/Ni multilayer reaction kinetics, Advanced Engineering Materials. (2024). [42] Y. H. Sauni Camposano, H. Bartsch, S. Matthes, M. Oliva-Ramirez, K. Jaekel, P. Schaaf, Microstructural Characterization and Self‐Propagation Properties of Reactive Al/Ni Multilayers Deposited onto Wavelike Surface Morphologies: Influence on the Propagation Front Velocity, physica status solidi (a). 220.7 (2023) 2200765. [43] K. Barmak, K. Coffey, Metallic films for electronic, optical and magnetic applications: Structure, processing and properties. Woodhead Publishing, 2014. [44] M. Quirk, J. Serda, Semiconductor manufacturing technology. Prentice Hall Upper Saddle River, NJ,Vol. 1, 2001. [45] J. Wang, J. Cai, Y. H. Lin, C. W. Nan, Room-temperature ferromagnetism observed in Fe-doped NiO, Applied Physics Letters. 87.20 (2005). [46] E. Ma, C. V. Thompson, L. A. Clevenger, K. N. Tu, Self‐propagating explosive reactions in Al/Ni multilayer thin films, Applied physics letters. 57.12 (1990) 1262-1264. [47] G. M. Fritz, S. J. Spey, M. D. Grapes, T. P. Weihs, Thresholds for igniting exothermic reactions in Al/Ni multilayers using pulses of electrical, mechanical, and thermal energy, Journal of Applied Physics. 113.1 (2013). [48] C. Wickersham Jr, J. Poole, Explosive crystallization in zirconium/silicon multilayers, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 6.3 (1988) 1699-1702. [49] C. Wei, V. Nesterenko, T. Weihs, B. Remington, H.-S. Park, M. Meyers, Response of Ni/Al laminates to laser-driven compression, Acta materialia. 60.9 (2012) 3929-3942. [50] Y. N. Picard, D. P. Adams, J. A. Palmer, S. M. Yalisove, Pulsed laser ignition of reactive multilayer films, Applied Physics Letters. 88.14 (2006). [51] A. Mendez Vilas, J. Díaz, Microscopy: Science, technology, applications and education. Formatex Research Center Badajoz,Vol. 3, 2010. [52] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, D. C. Joy, Scanning electron microscopy and X-ray microanalysis. springer, 2017. [53] 陳力俊(1994)。材料電子顯微鏡學。新竹市:國科會精儀中心。 [54] 王進威(2021)。中子粉末繞射簡介及其應用:台灣物理學會-物理雙月刊。 [55] D. B. Williams, C. B. Carter, Transmission electron microscopy a textbook for materials science / by David B. Williams, C. Barry Carter, 2nd ed. Springer US, Boston, MA, 2009. [56] C. Lavoie, C. Detavernier, P. Besser, Nickel Silicide Technology, in: Silicide Technology for Integrated Circuits, British Institution of Electrical Engineers (IEE), 2004, pp. 95-151. [57] S. W. Kuk, J. Yu, H. J. Ryu, Stationary self-propagation combustion with variations in the total layer thickness of compression-bonded Ni-sputtered Al foil multilayers, Journal of Alloys and Compounds. 626 (2015) 16-19. [58] T. Namazu, H. Takemoto, H. Fujita, Y. Nagai, S. Inoue, Self-propagating explosive reactions in nanostructured Al/Ni multilayer films asalocalized heat process technique formems. in 19th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, 2006. [59] P. Panjan, A. Drnovšek, P. Gselman, M. Čekada, M. Panjan, Review of growth defects in thin films prepared by PVD techniques, Coatings. 10.5 (2020) 447. [60] Y. Yan, S. C. King, M. Li, T. Galy, M. Marszewski, J. S. Kang, L. Pilon, Y. Hu, S. H. Tolbert, Exploring the effect of porous structure on thermal conductivity in templated mesoporous silica films, The Journal of Physical Chemistry C. 123.35 (2019) 21721-21730. [61] A. Mann, A. Gavens, M. Reiss, D. Van Heerden, G. Bao, T. Weihs, Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils, Journal of applied physics. 82.3 (1997) 1178-1188. [62] D. J. Howe, B. Morgan, Thermal characterization of thin films for MEMS applications. Army Research Laboratory, 2008. [63] K. Azar, J. Graebner, Experimental determination of thermal conductivity of printed wiring boards. in Twelfth Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Proceedings, IEEE, 1996. [64] 孫允萱(2022)。Self-propagation characteristic and application of Ni/ amorphous-Si reactive multilayers。國立陽明交通大學電子物理系所。 [65] J. R. Fried, Polymer science and technology. Prentice Hall PTR, Englewood Cliffs, N.J, 1995. [66] Y. A. Çengel, J. M. Cimbala, Fluid mechanics : fundamentals and applications / Yunus A. Çengel, John M. Cimbala ; adapted by Mehmet Kanoğlu, Fourth edition in SI units. ed. McGraw-Hill Education, Singapore, 2020. [67] W. Wang, H. Bai, Y. Zhang, W. Wang, Phase selection in interfacial reaction of Ni/amorphous Si multilayers, Journal of applied physics. 73.9 (1993) 4313-4318. [68] T. Luo, M. Bertoglio, C. Girardeaux, D. Mangelinck, Evolution of early formed NiSi2 during the reaction between Ni (W, Pt) films and Si (001), Micro and Nano Engineering. 1 (2018) 49-55. [69] K. N. Tu, G. Ottaviani, U. Gösele, H. Föll, Intermetallic compound formation in thin‐film and in bulk samples of the Ni‐Si binary system, Journal of applied physics. 54.2 (1983) 758-763. [70] A. Noya, M. B. Takeyama, Low‐Temperature Formation of NiSi2 Phase in Ni/Si System, Electronics and Communications in Japan. 99.9 (2016) 85-91. [71] D. Connétable, O. Thomas, First-principles study of nickel-silicides ordered phases, Journal of Alloys and Compounds. 509.6 (2011) 2639-2644. [72] S. Sen, M. Lake, P. Schaaf, Experimental investigation of high temperature oxidation during self-propagating reaction in Zr/Al reactive multilayer films, Surface and Coatings Technology. 340 (2018) 66-73. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94086 | - |
| dc.description.abstract | 反應性多層膜由交替排列的奈米級放熱材料組成,能在局部能量激發後以光和熱的形式釋放儲存的能量。本研究聚焦於1:1原子比例的鎳矽多層膜,探討雙層總數、粗糙度和基板對自蔓延反應和產物相的影響。利用磁控濺鍍在-20 ℃環境下製備鎳矽多層膜,雙層厚度分別固定為50 nm、65 nm和170 nm,並透過紅外線雷射激發與高速攝影機觀察到兩階段的自蔓延波前。固定雙層厚度下增加雙層數量,將減少輻射熱損失並提升自蔓延速度。對於獨立式多層膜,FR4基板的表面起伏導致激發前多層膜的粗糙度上升,相較於製備在矽基板上的平坦多層膜,其自蔓延速度較慢。透過去除光阻層和增加FR4表面起伏,成功實現了雙層厚度50 nm、總厚度3.34 μm的多層膜在FR4基板上的自蔓延反應。爆炸性矽化反應的產物相取決於雙層厚度和多層膜的整體組成。在超薄雙層厚度下,最終產物相受介面處的非晶態Ni-Si固溶體組成主導;50 nm雙層厚度有利於單相NiSi2形成,而65 nm雙層厚度則有利於θ-Ni2Si。在較厚雙層厚度下,如170 nm,有利於形成多層膜整體組成的平衡相,通過精確控制Si原子比例達到50 at.%,促進了單相NiSi的生成。 | zh_TW |
| dc.description.abstract | Reactive multilayers (RMLs) are alternating nanoscale exothermic materials that release stored energy upon localized energy ignition. This study investigated the effects of the number of bilayers, roughness, and substrate on self-propagating reactions and product phases in equiatomic Ni/Si RMLs. The Ni/Si RMLs, either freestanding or on FR4 substrates, were fabricated with bilayer thicknesses of 50 nm, 65 nm, and 170 nm by magnetron sputtering at -20 ℃. Using infrared laser ignition and a high-speed camera, two-step self-propagation wavefronts were observed. With a fixed bilayer thickness, increasing the number of bilayers reduced radiative heat loss and enhanced self-propagation velocity. Surface undulations on FR4 substrates caused rough freestanding RMLs to have slower self-propagation velocities than flat freestanding RMLs. RMLs with a 50 nm bilayer and a total thickness of 3.34 μm enabled successful self-propagating reactions on FR4 substrates. The product phase of the explosive silicidation reaction in Ni/Si RMLs depended on the bilayer thickness and overall composition of the multilayers. In ultra-thin bilayers, the final product phase was determined by the composition of the amorphous Ni-Si solid solution at the interface. Experimental results indicated that a bilayer thickness of 50 nm favored the formation of single-phase NiSi2, while increasing the bilayer thickness to 65 nm favored the formation of θ-Ni2Si. In thicker bilayers, the equilibrium phase corresponding to the overall composition of the multilayers was favored, specifically NiSi in this study. In RMLs with a bilayer thickness of 170 nm, precisely controlling the Si atomic ratio to 50 at.% facilitated the formation of single-phase NiSi. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:37:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:37:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT iv 目次 v 圖次 vii 表次 x 第一章 導論 1 1.1 反應性多層膜簡介及其應用 1 1.2 矽化鎳的應用及Ni/Si反應性多層膜 2 1.3 自蔓延反應的影響因素 3 1.4 研究動機 4 第二章 實驗方法 5 2.1 實驗流程與樣品製備 5 2.1.1 製程前基板處理 5 2.1.2 鎳矽反應性多層膜之製備 6 2.1.3 雷射激發與高速攝影技術 8 2.1.4 顯微觀測試片的製備 9 2.2 微結構觀察與結晶相分析 11 2.2.1 掃描式電子顯微鏡之薄膜橫截面觀測 11 2.2.2 X光繞射儀之結晶相鑑定 12 2.2.3 穿透式電子顯微鏡之微結構分析 13 第三章 結果與討論 14 3.1 鎳矽多層膜之結構與自蔓延反應 14 3.1.1 反應前的橫截面與沉積相 14 3.1.2 自蔓延反應的巨觀現象、速率變化及機制 15 3.2 雙層厚度50 nm鎳矽多層膜的反應速率與產物:雙層總數、薄膜粗糙度、基板的影響 18 3.2.1 雙層總數對自蔓延速率之影響 18 3.2.2 不同雙層總數的產物相分析 20 3.2.3 粗糙度對自蔓延速率之影響 20 3.2.4 FR4 (玻璃纖維板) 基板對自蔓延速率之影響 22 3.2.5 粗糙度以及基板對產物相之影響 25 3.3 雙層厚度65 nm鎳矽多層膜的反應速率與產物 27 3.3.1 雙層總數、粗糙度、基板對自蔓延速率之影響 27 3.3.2 產物相分析 28 3.3.3 極薄雙層厚度下產物相形成的機制 30 3.4 雙層厚度170 nm鎳矽多層膜的反應速率與產物 33 3.4.1 雙層總數對自蔓延速率之影響 33 3.4.2 雷射能量與雙層總數對反應起始時間的影響 34 3.4.3 產物相分析 35 3.4.4 較厚雙層厚度下產物相形成的機制 35 第四章 結論 36 第五章 參考文獻 38 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自蔓延反應 | zh_TW |
| dc.subject | 鎳矽反應性多層膜 | zh_TW |
| dc.subject | 基板效應 | zh_TW |
| dc.subject | 多層膜粗糙度 | zh_TW |
| dc.subject | 鎳矽化合物 | zh_TW |
| dc.subject | nickel silicide | en |
| dc.subject | roughness of multilayers | en |
| dc.subject | substrate effect | en |
| dc.subject | self-propagating reaction | en |
| dc.subject | Ni/Si reactive multilayers | en |
| dc.title | 鎳矽反應性多層膜中矽化鎳形成的控制及自蔓延反應的特性 | zh_TW |
| dc.title | Control of Nickel Silicide Formation and Characteristics of Self-Propagating Reactions in Ni/Si Reactive Multilayers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳美杏;李耀仁 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Hsin Chen;Yao-Jen Lee | en |
| dc.subject.keyword | 鎳矽反應性多層膜,自蔓延反應,鎳矽化合物,多層膜粗糙度,基板效應, | zh_TW |
| dc.subject.keyword | Ni/Si reactive multilayers,self-propagating reaction,nickel silicide,roughness of multilayers,substrate effect, | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202402874 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
