Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94084
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高英哲zh_TW
dc.contributor.advisorYing-Jer Kaoen
dc.contributor.author許可zh_TW
dc.contributor.authorKe Hsuen
dc.date.accessioned2024-08-14T16:36:38Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] Lucile Savary and Leon Balents. Quantum spin liquids: a review. Reports on Progress in Physics, 80(1):016502, nov 2016.
[2] Yi Zhou, Kazushi Kanoda, and Tai-Kai Ng. Quantum spin liquid states. Rev. Mod. Phys., 89:025003, Apr 2017.
[3] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil. Quantum spin liquids. Science, 367(6475):eaay0668, 2020.
[4] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003.
[5] Xiaoqing Zhou, Haoxiang Li, J. A. Waugh, S. Parham, Heung-Sik Kim, J. A. Sears, A. Gomes, Hae-Young Kee, Young-June Kim, and D. S. Dessau. Angle-resolved photoemission study of the kitaev candidate α − rucl3. Phys. Rev. B, 94:161106, Oct 2016.
[6] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. Vijay Shankar, Y. F. Hu, K. S. Burch, Hae-Young Kee, and Young-June Kim. α−rucl3: A spin-orbit assisted mott insulator on a honeycomb lattice. Phys. Rev. B, 90:041112, Jul 2014.
[7] Yogesh Singh and P. Gegenwart. Antiferromagnetic mott insulating state in single crystals of the honeycomb lattice material na2iro3. Phys. Rev. B, 82:064412, Aug 2010.
[8] A. Banerjee, C. A. Bridges, J.-Q. Yan, A. A. Aczel, L. Li, M. B. Stone, G. E. Granroth, M. D. Lumsden, Y. Yiu, J. Knolle, S. Bhattacharjee, D. L. Kovrizhin, R. Moessner, D. A. Tennant, D. G. Mandrus, and S. E. Nagler. Proximate kitaev quantum spin liquid behaviour in a honeycomb magnet. Nature Materials, 15(7):733–740, Jul 2016.
[9] Matthias Gohlke, Gideon Wachtel, Youhei Yamaji, Frank Pollmann, and Yong Baek Kim. Quantum spin liquid signatures in kitaev-like frustrated magnets. Phys. Rev. B, 97:075126, Feb 2018.
[10] Andrei Catuneanu, Youhei Yamaji, Gideon Wachtel, Yong Baek Kim, and Hae-Young Kee. Path to stable quantum spin liquids in spin-orbit coupled correlated materials. npj Quantum Materials, 3(1):23, Apr 2018.
[11] Itamar Kimchi and Yi-Zhuang You. Kitaev-heisenberg-J2-J3 model for the iridates A2iro3. Phys. Rev. B, 84:180407, Nov 2011.
[12] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys., 80:1083–1159, Sep 2008.
[13] Matthias Gohlke, Roderich Moessner, and Frank Pollmann. Dynamical and topological properties of the kitaev model in a [111] magnetic field. Phys. Rev. B, 98:014418, Jul 2018.
[14] Shi Feng, Adhip Agarwala, Subhro Bhattacharjee, and Nandini Trivedi. Anyon dynamics in field-driven phases of the anisotropic kitaev model. Phys. Rev. B, 108:035149, Jul 2023.
[15] Shang-Shun Zhang, Gábor B. Halász, and Cristian D. Batista. Theory of the kitaev model in a [111] magnetic field. Nature Communications, 13(1):399, Jan 2022.
[16] Shang-Shun Zhang, Gábor B. Halász, Wei Zhu, and Cristian D. Batista. Variational study of the kitaev-heisenberg-gamma model. Phys. Rev. B, 104:014411, Jul 2021.
[17] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. Phys. Rev. Lett., 101:250602, Dec 2008.
[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.
[19] Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. Differentiable programming tensor networks. Phys. Rev. X, 9:031041, Sep 2019.
[20] J. Ignacio Cirac, David Pérez-García, Norbert Schuch, and Frank Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93:045003, Dec 2021.
[21] Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics, 1(9):538–550, Sep 2019.
[22] Román Orús. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Annals of Physics, 349:117–158, 2014.
[23] Tomotoshi Nishino and Kouichi Okunishi. Corner transfer matrix renormalization group method. Journal of the Physical Society of Japan, 65(4):891–894, 1996.
[24] Román Orús and Guifré Vidal. Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction. Phys. Rev. B, 80:094403, Sep 2009.
[25] M. T. Fishman, L. Vanderstraeten, V. Zauner-Stauber, J. Haegeman, and F. Verstraete. Faster methods for contracting infinite two-dimensional tensor networks. Phys. Rev. B, 98:235148, Dec 2018.
[26] I. V. Lukin and A. G. Sotnikov. Corner transfer matrix renormalization group approach in the zoo of archimedean lattices. Phys. Rev. E, 109:045305, Apr 2024.
[27] Hai-Jun Liao, Jin-Guo Liu, Lei Wang, and Tao Xiang. Differentiable programming tensor networks. Phys. Rev. X, 9:031041, Sep 2019.
[28] Soeren Laue, Matthias Mitterreiter, and Joachim Giesen. Computing higher order derivatives of matrix and tensor expressions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.
[29] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533–536, Oct 1986.
[30] Juraj Hasik, Didier Poilblanc, and Federico Becca. Investigation of the Néel phase of the frustrated Heisenberg antiferromagnet by differentiable symmetric tensor networks. SciPost Phys., 10:12, 2021.
[31] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018.
[32] William S. Moses, Valentin Churavy, Ludger Paehler, Jan Hückelheim, Sri Hari Krishna Narayanan, Michel Schanen, and Johannes Doerfert. Reverse-mode automatic differentiation and optimization of gpu kernels via enzyme. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[33] See https://github.com/FluxML/Zygote.jl.
[34] J. Towns. Differentiating the singular value decomposition, 2016.
[35] Matthias Seeger, Asmus Hetzel, Zhenwen Dai, Eric Meissner, and Neil D. Lawrence. Auto-differentiating linear algebra, 2019.
[36] Yu-Hsueh Chen, Ke Hsu, Wei-Lin Tu, Hyun-Yong Lee, and Ying-Jer Kao. Variational tensor network operator. Phys. Rev. Res., 4:043153, Nov 2022.
[37] Norbert Schuch, Ignacio Cirac, and David Pérez-García. Peps as ground states: Degeneracy and topology. Annals of Physics, 325(10):2153–2192, 2010.
[38] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics, 321(1):2–111, 2006. January Special Issue.
[39] Hyun-Yong Lee, Ryui Kaneko, Tsuyoshi Okubo, and Naoki Kawashima. Gapless kitaev spin liquid to classical string gas through tensor networks. Phys. Rev. Lett., 123:087203, Aug 2019.
[40] V Zauner, D Draxler, L Vanderstraeten, M Degroote, J Haegeman, M M Rams, V Stojevic, N Schuch, and F Verstraete. Transfer matrices and excitations with matrix product states. New Journal of Physics, 17(5):053002, may 2015.
[41] Yu-Hsueh Chen, Jozef Genzor, Yong Baek Kim, and Ying-Jer Kao. Excitation spectrum of spin-1 kitaev spin liquids. Phys. Rev. B, 105:L060403, Feb 2022.
[42] Jutho Haegeman, Bogdan Pirvu, David J. Weir, J. Ignacio Cirac, Tobias J. Osborne, Henri Verschelde, and Frank Verstraete. Variational matrix product ansatz for dispersion relations. Phys. Rev. B, 85:100408, Mar 2012.
[43] Laurens Vanderstraeten, Jutho Haegeman, and Frank Verstraete. Tangent-space methods for uniform matrix product states. SciPost Phys. Lect. Notes, page 7, 2019.
[44] J. Haegeman, V. Zauner, N. Schuch, and F. Verstraete. Shadows of anyons and the entanglement structure of topological phases. Nature Communications, 6(1), oct 2015.
[45] Kasper Duivenvoorden, Mohsin Iqbal, Jutho Haegeman, Frank Verstraete, and Norbert Schuch. Entanglement phases as holographic duals of anyon condensates. Phys. Rev. B, 95:235119, Jun 2017.
[46] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F. Verstraete, and J. Haegeman. Variational optimization algorithms for uniform matrix product states. Phys. Rev. B, 97:045145, Jan 2018.
[47] Bram Vanhecke, Maarten Van Damme, Jutho Haegeman, Laurens Vanderstraeten, and Frank Verstraete. Tangent-space methods for truncating uniform MPS. SciPost Phys. Core, 4:004, 2021.
[48] Julien Vidal, Ronny Thomale, Kai Phillip Schmidt, and Sébastien Dusuel. Self-duality and bound states of the toric code model in a transverse field. Phys. Rev. B, 80:081104, Aug 2009.
[49] Sébastien Dusuel, Michael Kamfor, Román Orús, Kai Phillip Schmidt, and Julien Vidal. Robustness of a perturbed topological phase. Phys. Rev. Lett., 106:107203, Mar 2011.
[50] Alexei Kitaev and John Preskill. Topological entanglement entropy. Phys. Rev. Lett., 96:110404, Mar 2006.
[51] Michael Levin and Xiao-Gang Wen. Detecting topological order in a ground state wave function. Phys. Rev. Lett., 96:110405, Mar 2006.
[52] Elliott Lieb and Derek Robinson. The finite group velocity of quantum spin systems. Communications in Mathematical Physics, 28, 09 1972.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94084-
dc.description.abstract可解的Kitaev模型為已知的拓撲量子自旋液體,即在其基態具有長程量子糾纏和分數激發態的特性。在各向同性的極限下,模型的激發態為具能隙的阿貝爾流和無隙線性色散的馬約拉納費米子。當於外加磁場下時,磁場導致的量子相變產生,並在非各向同性的效果下產生有趣和尚待釐清的量子相結構。在本工作中,我們使用無限投影糾纏對態(iPEPS)來研究熱力學極限下之反鐵磁性Kitaev模型,我們構造無約束的和對稱性約束的無限投影糾纏對態作為變分擬設,使用角轉移矩陣重整群(CTMRG)演算法來進行物理量測量,並以自動微分技術來最小化能量以優化參數。在對稱性的投影糾纏單體態中,虛擬自由度中對於規範以及局部對稱性的分解是直接的,而不需要透過任何規範鎖定步驟,這讓我們可以利用轉移矩陣光譜和低能量激發態的關聯來研究不同任意子激發的動力學。zh_TW
dc.description.abstractThe exactly solvable paradigmatic model introduced by Kitaev is known to be a topologically non-trivial Quantum spin liquid (QSL) that exhibits long-range entanglement in the ground states and the fractionalized excitations. In the isotropic limit, the excitations are gapped abelian fluxes and gapless linearly dispersing Majorana fermions. Upon applying the magnetic field, the magnetic-field-induced quantum phase transition occurred, together with the effect of the anisotropy, resulting in an intriguing and uncertain quantum phase structure. In this work, we study the antiferromagnetic Kitaev model in the thermodynamic limit using the infinite projected entangled-pair states (iPEPS), we constructed the unconstrained and symmetric iPEPS as the variational ansatz, we used the Corner Transfer Matrix Renormalization Group (CTMRG) algorithm to do the physical measurement, and perform the optimization by the energy minimization using Automatic differentiation (AD) technique. In the symmetric iPEPS, a decomposition of the the virtual degrees of freedom into gauge and local symmetries is readily available without any gauge fixing procedure, allowing us to investigate the anyon dynamics using the correspondence between the transfer matrix spectrum and low-lying excitations.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:36:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:36:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 iii
摘要 v
Abstract vii
Contents ix
Chapter 1 Introduction 1
Chapter 2 Method 3
2.1 Variational iPEPS optimization . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 CTMRG iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Differentiable tensor network . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Optimization scheme . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Variational tensor network operator . . . . . . . . . . . . . . . . . . 11
2.2.1 Local symmetry : Dimer gas operator . . . . . . . . . . . . . . . . 12
2.2.1.1 General framework . . . . . . . . . . . . . . . . . . . 12
2.2.1.2 Transverse field Ising model . . . . . . . . . . . . . . 16
2.2.1.3 Honeycomb Kitaev model under magnetic field . . . . 18
2.2.2 Gauge symmetry : Loop gas operator . . . . . . . . . . . . . . . . . 20
2.3 Transfer matrix spectrum . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Fixed point and the excitations . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Classification of anyon excitations . . . . . . . . . . . . . . . . . . 25
Chapter 3 Results 27
3.1 Ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 Energy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Flux operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Quadruple order parameter . . . . . . . . . . . . . . . . . . . . . . 29
3.1.4 Quantum mutual information . . . . . . . . . . . . . . . . . . . . . 30
3.2 Anyon dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Chapter 4 Conclusion 39
References 40
-
dc.language.isozh_TW-
dc.subject量子自旋液體zh_TW
dc.subject拓樸序zh_TW
dc.subjectKitaev 模型zh_TW
dc.subject張量網路zh_TW
dc.subject角轉移矩陣重整群zh_TW
dc.subject自動微分zh_TW
dc.subjectTopological orderen
dc.subjectQuantum spin liquidsen
dc.subjectCorner Transfer Matrix Renormalization Groupen
dc.subjectAutomatic differentiationen
dc.subjectKitaev modelen
dc.subjectTensor networksen
dc.title變分張量網路研究用於磁場下之各向異性 Kitaev 模型zh_TW
dc.titleVariational tensor network study of anisotropic Kitaev model under magnetic fieldsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳柏中;鍾佳民zh_TW
dc.contributor.oralexamcommitteePo-Chung Chen;Chia-Min Chungen
dc.subject.keyword量子自旋液體,拓樸序,Kitaev 模型,張量網路,角轉移矩陣重整群,自動微分,zh_TW
dc.subject.keywordQuantum spin liquids,Topological order,Kitaev model,Tensor networks,Corner Transfer Matrix Renormalization Group,Automatic differentiation,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202403760-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.58 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved