Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94077
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡曜陽zh_TW
dc.contributor.advisorYao-Yang Tsaien
dc.contributor.author梁家銘zh_TW
dc.contributor.authorChia-Ming Liangen
dc.date.accessioned2024-08-14T16:34:33Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationT. G. Biffano, T. A. Dow, R. O. Scattergood, “Ductile-Regime Grinding: A New Technology for machining Brittle Materials” Journal of Engineering for Industry(Transactions of the ASME), vol. 113, pp. 184-189, 1991.
Takao Abe, “A future technology for silicon wafer processing for ULSI” Precision Engineering, vol. 13, pp. 251-255, 1991.
Z. J. Pei, Graham R. Fisher, J. Liu, “Grinding of silicon wafers: A review from historical perspectives”, International Journal of Machine Tools & Manufacture, vol. 48, pp. 1297-1307, 2008.
L. Zhou, Y. B. Tian, H. Huang, H. Sato, J Shimizu, “A study on the diamond grinding of ultra-thin silicon wafers”, Journal of engineering manufacture,vol. 226, pp. 66-75, 2012.
S. Matsui, “Some experimental studies on silicon wafer grinding : Studies on wafer rotation grinding method(1st report)”, Journal of the Japan Society for Precision Engineering, vol. 53, pp. 438-443, 1987.
F. w. Huo, D. M. Guo, R. K. Kang, G. Feng, “Nanogrinding of SiC wafers with high flatness and low subsurface damage”, Trans. Nonferrous Met. Soc. China, vol. 22, pp. 3027−3033, 2012.
Z. J. Chen, S. D. Zhan, Y. H. Zhao, “Electrochemical jet-assisted precision grinding of single-crystal SiC using soft abrasive wheel”, International Journal of Mechanical Sciences, vol. 195, 2021.
K. Yamamura, T. Kakiguchi, M Ueda, H. Deng, A. N. Hattori, N. Zettsu, “Plasma assisted Polishing of single crystal SiC for obtaining atomically flat strain-free surface”, Manufacturing Technology, vol.60, pp. 571-574, 2011.
翁智強,丁嘉仁,張高德,“次世代半導體晶圓複合加工技術”,機械工業雜誌,451期,pp. 11-18,2020.
陳園迪,劉祥益,洪育維,劉祥麟, “雷射輔助碳化矽晶圓快速拋光技術”, 機械工業雜誌,467期,P15-21,2022.
彭英翰,“超音波輔助鑽孔碳化矽之研究”,國立臺灣大學工學院機械工程學研究所,碩士論文,2014.
J. G. Cao, Y. B. Wu, D. Lu, M. Fujimoto, M. Nomura, “Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool”, International Journal of Machine Tools & Manufacture, vol. 79, pp. 49-61, 2014.
黃俊維,“二維超聲振動輔助磨削藍寶石之研究”,國立清華大學動力機械工程研究所,碩士論文,2018.
Z. Q. Liang, Y. B. Wu, X. B. Wang, W. X. Zhao, “A new two-dimensional ultrasonic assisted grinding(2D-UAG) method and its fundamental performance in monocrystal silicon machining”, International Journal of Machine Tools & Manufacture, vol. 50, pp. 728-736, 2010.
K. Ding, Y. C. Fu, H. H. Su, X. B. Gong, K. Q. Wu, “Wear of diamond grinding wheel in ultrasonic grinding of silicon carbide”, The International Journal of Advanced Manufacturing Technology, vol. 71, pp. 1929-1938, 2014.
D. X. Lu, Y. H. Huang, Y. J. Tang, H. X. Wang, “Simulating process of abrasive impacting a workpiece surface based on SPH method”, Jourmal of vibration and shock, vol. 32, pp. 169-174, 2013.
J. Boussinesq, “Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques”, Gauthier Villars, Paris, 1885.
H. Hertz, “Miscellaneous Papers”, MacMillan, New York, 1896.
B.Lawn, R. Wilshaw, “Indentation fracture: principles and applications”, Journal of Materials Science, vol. 10, pp. 1049–1081, 1975.
G. R. Anstis, P. Chantikul, B. R. Lawn, D. B. Marshall, “A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements”, Journal of the American Ceramic Society, vol. 64, pp. 533-538, 1981.
B. R. Lawn, A. G. Evans, D. B. Marshall, “Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System”, Journal of the American Ceramic Society, vol. 63, pp. 574-581, 1980.
D. B. Marshall, B. R. Lawn, A. G. Evans, “Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System”, Journal of the American Ceramic Society, vol. 65, pp. 561-566, 1982.
B. R. Lawn, T. Jensen, A. Arora, “Brittleness as an indentation size effect”, Journal of Materials Science, vol. 11, pp. 573–575, 1976.
D. B. Marshall, B. R. Lawn, "Indentation of Brittle Materials", Microindentation Techniques in Materials Science and Engineering, pp. 26-46, 1985.
W. Lortz, “A model of the cutting mechanism in grinding”, Wear, vol. 53, pp. 115-128, 1979.
G. Bellows, “Low Stress Grinding. For Quality Production”, Machinability Data Center, 1978.
J. L. Sun, P. Chen,F. Qin, T. An, H. P. YU, “A grinding force model in the silicon wafer thinning progress”, Engineering Mechanics, vol. 35, pp. 227-234, 2018.
W. P. Sun, Z. J. Pei, G. R. Fisher, “Fine grinding of silicon wafers: a mathematical model for the wafer shape”, International Journal of Machine Tools and Manufacture, vol. 44, pp. 707-716, 2004.
賴耿陽,超音波工學理論實務,復漢出版社有限公司,2001.
H. Sui, X. Y. Zhang, D. Y. Zhang, X. G. Jiang, R. B. Wu, “Feasibility study of high-speed ultrasonic vibration cutting titanium alloy”, Journal of Materials Processing Technology, vol. 247, pp.111-120, 2017.
T. B. Thoe, D. K. Aspinwall, M. L. H. Wise, “Review on Ultrasonic Machining”, International Journal of Machine Tools and Manufacture, vol. 38, pp. 239-255, 1998.
Z. J. Pei, P. M. Ferreira, S. G. Kapoor, M. Haselkorn, “Rotary ultrasonic machining for face milling of ceramics”, International Journal of Machine Tools and Manufacture, vol. 35, pp. 1033-1046, 1995.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94077-
dc.description.abstract單晶碳化矽(Silicon Carbide, SiC)具有耐高溫,寬能帶的特性,因此作為第三代半導體材料備受市場青睞。然而單晶碳化矽具有高硬度的特性,使加工時容易遭遇許多困難,包含材料去除率低,工具損耗率高等問題,這些加工限制皆會導致最終成本的提高。
過去已有研究證明超音波輔助磨削(UAG)對磨削加工有正面的影響,目前也已經有部份廠商將超音波輔助應用於精磨削碳化矽,然而尚未有廠商將超音波輔助應用於粗磨削領域。過去研究也鮮少提及砂輪硬度對於超音波效果的影響,對於超音波輔助時材料的去除機制也說明得不夠完整。本研究利用超音波輔助磨削單晶碳化矽,比較與傳統磨削(CG)的效果差異,同時以不同硬度之砂輪配合超音波輔助,探討超音波輔助效果隨時間變化之趨勢,並解釋UAG時的材料去除機制,期望研究成果能有助於將超音波應用於粗磨削碳化矽製程。
實驗結果顯示UAG相比於CG,無論是砂輪消耗量,垂直方向力或扭矩皆有所下降,且材料移除率也明顯上升。表面粗糙度方面所有組別的表面粗糙度皆隨實驗進行逐漸上升,初期兩種砂輪在UAG時所磨出的表面粗糙度皆高於傳統磨削,到了後期由於CG的增長幅度大於UAG,因此表面粗糙度大於UAG。而比較不同硬度的砂輪可發現UAG時硬砂輪的效果優於普通砂輪。
UAG時砂輪出現高頻,穩定的週期性振動,此垂直方向的運動使磨粒更好的刺入材料表面,減少磨粒與材料表面的磨擦(Rubbing),達到磨削力降低以及提高材料去除率的效果。隨著實驗的進行由於磨粒因磨削而變鈍,使砂輪與工件之間的接觸面積增加,平均應力下降而使超音波輔助效果隨加工進行逐漸下降。此外週期性的振動也使磨粒於材料表面反覆進行力的負載與卸載,材料次表面會產生密集的側向裂紋使材料表層的硬度降低,有利於加工。
zh_TW
dc.description.abstractMonocrystalline silicon carbide (SiC) has been favored as a third-generation semiconductor material because of its high-temperature resistance and wide energy bandwidth. However, the high hardness of Silicon Carbide (SiC) makes it easy to encounter a lot of difficulties in machining, including low material removal rate and high tool wear rate, and these machining constraints will lead to an increase in the final cost.
In the past, studies have proved that ultrasonic-assisted grinding (UAG) has a positive effect on the grinding process, some manufacturers have already applied UAG to the fine grinding of SiC, however, no manufacturer has yet to apply UAG to the coarse grinding. The effect of grinding wheel hardness on the ultrasonic effect is rarely mentioned in the past studies, and the mechanism of material removal during ultrasonic assisted grinding is not fully explained. In this study, we tried UAG for monocrystalline silicon carbide, compared the effect difference with conventional grinding (CG), also different hardness of grinding wheels were used to investigate the trend of the effect of UAG with the change of time. The material removal mechanism during UAG were also explained, in the hope that the results of this study can be helpful for the application of ultrasonic waves in the rough grinding of silicon carbide process.
The experimental results show that compared with the CG, the UAG shows a decrease in wheel wear, vertical force and torque, and a significant increase in material removal rate. In terms of surface roughness, the surface roughness of all groups increased gradually with the experiment. Initially the surface roughness of both grinding wheels in UAG was higher than that of CG. At a later stage, the surface roughness of CG was higher than that of UAG due to a larger increase in CG than that of UAG. A comparison of different hardnesses of the wheels showed that the hard grinding wheels was better than that of the conventional grinding wheels during UAG.
When UAG, the grinding wheel has high frequency, stable periodic vibration, so that the abrasive can easily pierce through the material surface, reduce the friction between abrasive and material , achieving the effect of reducing the grinding force and improve the material removal rate. As the experiment progresses, the contact area between the grinding wheel and the workpiece increases due to the passivation of the abrasive by grinding, and the average stress decreases, so that the ultrasonic assisting effect gradually decreases with the processing. In addition, the periodic vibration also causes the abrasive grains to load and unload repeatedly on the surface of the material, causeing the material’s subsurface to produce dense lateral cracks, resulting the decrease of the hardness of the material surface, which is conducive to machining.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:34:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:34:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xii
第1章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究目的與方法 8
1.4 本文架構 10
第2章 相關理論 11
2.1 碳化矽的介紹 11
2.1.1 碳化矽之晶體結構 11
2.1.2 碳化矽的歷史與發展 12
2.1.3 碳化矽之材料性質 12
2.2 壓痕應力場理論 13
2.3 壓痕破壞理論 15
2.4 脆性材料移除機制 20
2.4.1 脆性破壞 20
2.4.2 臨界切深 21
2.5 磨削理論 22
2.6 輪磨加工原理 23
2.6.1 晶圓磨削砂輪 24
2.6.2 工件之表面輪廓 26
2.7 超音波振動輔助機制 27
2.7.1 超音波振動致振原理 27
2.7.2 超音波振動方式差異 28
2.7.3 超音波振動輔助加工原理 29
2.7.4 旋轉超音波加工 29
2.8 表面粗糙度 30
2.8.1 中心線平均粗糙度(Ra) 31
2.8.2 算數平均面粗糙度(Sa) 31
第3章 實驗設備、材料與方法 32
3.1 實驗設備 32
3.1.1 立式加工中心機 32
3.1.2 治具 33
3.1.3 超音波產生器 34
3.1.4 超音波刀桿 35
3.1.5 鋁合金鑽石砂輪 35
3.1.6 修整盤 37
3.1.7 旋轉工作台 38
3.2 實驗材料 39
3.2.1 單晶碳化矽晶圓 39
3.2.2 切削液 40
3.3 分析設備 41
3.3.1 雷射位移計 41
3.3.2 雷射共軛焦顯微鏡 42
3.3.3 數位顯微鏡 43
3.3.4 動力計 43
3.3.5 電荷放大器 44
3.3.6 資料擷取模組 46
3.4 實驗架構與規劃 47
3.4.1 實驗規劃 47
3.4.2 實驗設備與架構 48
3.4.3 實驗方法與參數選擇 51
3.4.4 實驗量測方法 53
第4章 實驗結果與討論 57
4.1 砂輪共振模態與振幅 57
4.2 超音波振動之效果 62
4.2.1 試片去除量與砂輪消耗量 62
4.2.2 工件表面形貌與粗糙度 67
4.2.3 垂直力與扭矩 79
第5章 結論與未來展望 97
5.1 結論 97
5.2 未來展望 98
參考文獻 99
-
dc.language.isozh_TW-
dc.subject砂輪zh_TW
dc.subject超音波輔助磨削zh_TW
dc.subject碳化矽zh_TW
dc.subjectSilicon Carbideen
dc.subjectUltrasonic assisted Grindingen
dc.subjectGrinding Wheelen
dc.title超音波振動輔助磨削碳化矽晶圓之研究zh_TW
dc.titleA Study on Ultrasonic Vibration assisted Grinding of Silicon Carbide waferen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖運炫;趙崇禮zh_TW
dc.contributor.oralexamcommitteeYunn-Shiuan Liao;Chung-Li Chaoen
dc.subject.keyword超音波輔助磨削,碳化矽,砂輪,zh_TW
dc.subject.keywordUltrasonic assisted Grinding,Silicon Carbide,Grinding Wheel,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202402519-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-08-03-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
7.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved