請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94070完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾明宗 | zh_TW |
| dc.contributor.advisor | Ming-Tsung Tseng | en |
| dc.contributor.author | 蔡昕芸 | zh_TW |
| dc.contributor.author | Hsin-Yun Tsai | en |
| dc.date.accessioned | 2024-08-14T16:32:27Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257-269.
Adhikari A, Topiwala MA, Gordon JA (2011) Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 71:898-910. Atlas LY, Wager TD (2012) How expectations shape pain. Neurosci Lett 520:140-148. Atlas LY, Wager TD (2014) A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. Handb Exp Pharmacol 225:37-69. Atlas LY, Bolger N, Lindquist MA, Wager TD (2010) Brain mediators of predictive cue effects on perceived pain. J Neurosci 30:12964-12977. Beauregard M, Levesque J, Bourgouin P (2001) Neural correlates of conscious self-regulation of emotion. J Neurosci 21:RC165. Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:8-15. Bingel U, Wanigasekera V, Wiech K, Ni Mhuircheartaigh R, Lee MC, Ploner M, Tracey I (2011) The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci Transl Med 3:70ra14. Boucsein W (2012) Electrodermal Activity, Second Edition. Electrodermal Activity, Second Edition. Brown CA, Seymour B, Boyle Y, El-Deredy W, Jones AKP (2008) Modulation of pain ratings by expectation and uncertainty: Behavioral characteristics and anticipatory neural correlates. Pain 135:240-250. Browning M, Behrens TE, Jocham G, O'Reilly JX, Bishop SJ (2015) Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat Neurosci 18:590-596. Buchel C, Geuter S, Sprenger C, Eippert F (2014) Placebo analgesia: a predictive coding perspective. Neuron 81:1223-1239. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, Weber J, Ochsner KN (2014) Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex 24:2981-2990. Bushnell MC, Ceko M, Low LA (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14:502-511. de Lange FP, Heilbron M, Kok P (2018) How Do Expectations Shape Perception? Trends Cogn Sci 22:764-779. Delgado MR, Gillis MM, Phelps EA (2008a) Regulating the expectation of reward via cognitive strategies. Nat Neurosci 11:880-881. Delgado MR, Nearing KI, Ledoux JE, Phelps EA (2008b) Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59:829-838. Demichelis F, Magni P, Piergiorgi P, Rubin MA, Bellazzi R (2006) A hierarchical Naive Bayes Model for handling sample heterogeneity in classification problems: an application to tissue microarrays. BMC Bioinformatics 7:514. Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118 ( Pt 1):279-306. Dorfel D, Lamke JP, Hummel F, Wagner U, Erk S, Walter H (2014) Common and differential neural networks of emotion regulation by Detachment, Reinterpretation, Distraction, and Expressive Suppression: a comparative fMRI investigation. Neuroimage 101:298-309. Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 113:7900-7905. Ellingsen DM, Wessberg J, Eikemo M, Liljencrantz J, Endestad T, Olausson H, Leknes S (2013) Placebo improves pleasure and pain through opposite modulation of sensory processing. Proc Natl Acad Sci U S A 110:17993-17998. Etkin A, Buchel C, Gross JJ (2015) The neural bases of emotion regulation. Nat Rev Neurosci 16:693-700. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175-191. Frank DW, Dewitt M, Hudgens-Haney M, Schaeffer DJ, Ball BH, Schwarz NF, Hussein AA, Smart LM, Sabatinelli D (2014) Emotion regulation: quantitative meta-analysis of functional activation and deactivation. Neurosci Biobehav Rev 45:202-211. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS (1995) Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping 2:189-210. Fullana MA, Albajes-Eizagirre A, Soriano-Mas C, Vervliet B, Cardoner N, Benet O, Radua J, Harrison BJ (2018) Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants. Neurosci Biobehav Rev 88:16-25. Geuter S, Gamer M, Onat S, Buchel C (2014) Parametric trial-by-trial prediction of pain by easily available physiological measures. Pain 155:994-1001. Goldin PR, McRae K, Ramel W, Gross JJ (2008) The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol Psychiatry 63:577-586. Gottfried JA, O'Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104-1107. Grahl A, Onat S, Buchel C (2018) The periaqueductal gray and Bayesian integration in placebo analgesia. Elife 7. Green SR, Kragel PA, Fecteau ME, LaBar KS (2014) Development and validation of an unsupervised scoring system (Autonomate) for skin conductance response analysis. Int J Psychophysiol 91:186-193. Gupta R (2019) Positive emotions have a unique capacity to capture attention. Prog Brain Res 247:23-46. Hariri AR, Bookheimer SY, Mazziotta JC (2000) Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport 11:43-48. Hariri AR, Mattay VS, Tessitore A, Fera F, Weinberger DR (2003) Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry 53:494-501. Harrison BJ, Fullana MA, Via E, Soriano-Mas C, Vervliet B, Martinez-Zalacain I, Pujol J, Davey CG, Kircher T, Straube B, Cardoner N (2017) Human ventromedial prefrontal cortex and the positive affective processing of safety signals. Neuroimage 152:12-18. Holmes A, Friston K (1998) Generalisability, Random Effects & Population Inference. NeuroImage 7. Iordanova MD, Yau JO, McDannald MA, Corbit LH (2021) Neural substrates of appetitive and aversive prediction error. Neurosci Biobehav Rev 123:337-351. Jepma M, Koban L, van Doorn J, Jones M, Wager TD (2018) Behavioural and neural evidence for self-reinforcing expectancy effects on pain. Nat Hum Behav 2:838-855. Kanske P, Heissler J, Schonfelder S, Bongers A, Wessa M (2011) How to regulate emotion? Neural networks for reappraisal and distraction. Cereb Cortex 21:1379-1388. Kaptchuk TJ, Hemond CC, Miller FG (2020) Placebos in chronic pain: evidence, theory, ethics, and use in clinical practice. BMJ 370:m1668. Kass R, Raftery A (1995) Bayes Factors. Journal of the American Statistical Association 90:773-795. Katahira K, Matsuda YT, Fujimura T, Ueno K, Asamizuya T, Suzuki C, Cheng K, Okanoya K, Okada M (2015) Neural basis of decision making guided by emotional outcomes. J Neurophysiol 113:3056-3068. Keltner JR, Furst A, Fan C, Redfern R, Inglis B, Fields HL (2006) Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J Neurosci 26:4437-4443. Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U (2014) Neural network of cognitive emotion regulation--an ALE meta-analysis and MACM analysis. Neuroimage 87:345-355. Kong J, Jensen K, Loiotile R, Cheetham A, Wey HY, Tan Y, Rosen B, Smoller JW, Kaptchuk TJ, Gollub RL (2013) Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain 154:459-467. Koyama T, McHaffie JG, Laurienti PJ, Coghill RC (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci U S A 102:12950-12955. Kuhn S, Gallinat J (2012) The neural correlates of subjective pleasantness. Neuroimage 61:289-294. LeDoux J (2012) Rethinking the emotional brain. Neuron 73:653-676. Legrain V, Damme SV, Eccleston C, Davis KD, Seminowicz DA, Crombez G (2009) A neurocognitive model of attention to pain: behavioral and neuroimaging evidence. Pain 144:230-232. Levy I, Schiller D (2021) Neural Computations of Threat. Trends Cogn Sci 25:151-171. Lieberman MD, Inagaki TK, Tabibnia G, Crockett MJ (2011) Subjective responses to emotional stimuli during labeling, reappraisal, and distraction. Emotion 11:468-480. Lim M, O'Grady C, Cane D, Goyal A, Lynch M, Beyea S, Hashmi JA (2020) Threat Prediction from Schemas as a Source of Bias in Pain Perception. J Neurosci 40:1538-1548. Lindquist KA, Satpute AB, Wager TD, Weber J, Barrett LF (2016) The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. Cereb Cortex 26:1910-1922. Longo MR, Betti V, Aglioti SM, Haggard P (2009) Visually induced analgesia: seeing the body reduces pain. J Neurosci 29:12125-12130. McLaren DG, Ries ML, Xu G, Johnson SC (2012) A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. Neuroimage 61:1277-1286. Meyer HC, Odriozola P, Cohodes EM, Mandell JD, Li A, Yang R, Hall BS, Haberman JT, Zacharek SJ, Liston C, Lee FS, Gee DG (2019) Ventral hippocampus interacts with prelimbic cortex during inhibition of threat response via learned safety in both mice and humans. Proc Natl Acad Sci U S A 116:26970-26979. Mikkelsen MB, Neumann H, Buskbjerg CR, Johannsen M, O'Toole MS, Arendt-Nielsen L, Zachariae R (2024) The effect of experimental emotion induction on experimental pain: a systematic review and meta-analysis. Pain 165:e17-e38. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1-25. Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci 9:242-249. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci 14:1215-1229. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD, Gross JJ (2004) For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 23:483-499. Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, Spellman TJ, Gordon JA (2016) Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-Related Neural Activity and Behavior. Neuron 89:857-866. Parent MA, Wang L, Su J, Netoff T, Yuan LL (2010) Identification of the hippocampal input to medial prefrontal cortex in vitro. Cereb Cortex 20:393-403. Pessoa L (2009) How do emotion and motivation direct executive control? Trends Cogn Sci 13:160-166. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331-348. Piray P, Ly V, Roelofs K, Cools R, Toni I (2019) Emotionally Aversive Cues Suppress Neural Systems Underlying Optimal Learning in Socially Anxious Individuals. J Neurosci 39:1445-1456. Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S, Wise R, Matthews PM, Rawlins JN, Tracey I (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21:9896-9903. Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, Nichelli P (2002) Does anticipation of pain affect cortical nociceptive systems? J Neurosci 22:3206-3214. Rigoux L, Stephan KE, Friston KJ, Daunizeau J (2014) Bayesian model selection for group studies - revisited. Neuroimage 84:971-985. Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147-156. Roy M, Piche M, Chen JI, Peretz I, Rainville P (2009) Cerebral and spinal modulation of pain by emotions. Proc Natl Acad Sci U S A 106:20900-20905. Saddoris MP, Gallagher M, Schoenbaum G (2005) Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46:321-331. Schenk LA, Sprenger C, Onat S, Colloca L, Buchel C (2017) Suppression of Striatal Prediction Errors by the Prefrontal Cortex in Placebo Hypoalgesia. J Neurosci 37:9715-9723. Schiller D, Levy I, Niv Y, LeDoux JE, Phelps EA (2008) From fear to safety and back: reversal of fear in the human brain. J Neurosci 28:11517-11525. Schmid J, Bingel U, Ritter C, Benson S, Schedlowski M, Gramsch C, Forsting M, Elsenbruch S (2015) Neural underpinnings of nocebo hyperalgesia in visceral pain: A fMRI study in healthy volunteers. Neuroimage 120:114-122. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593-1599. Schwarz KA, Pfister R, Buchel C (2016) Rethinking Explicit Expectations: Connecting Placebos, Social Cognition, and Contextual Perception. Trends Cogn Sci 20:469-480. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK (2007) Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55:325-336. Sergerie K, Chochol C, Armony JL (2008) The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev 32:811-830. Seymour B, O'Doherty JP, Koltzenburg M, Wiech K, Frackowiak R, Friston K, Dolan R (2005) Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nat Neurosci 8:1234-1240. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci 12:154-167. Shih YW, Tsai HY, Lin FS, Lin YH, Chiang CY, Lu ZL, Tseng MT (2019) Effects of Positive and Negative Expectations on Human Pain Perception Engage Separate But Interrelated and Dependently Regulated Cerebral Mechanisms. J Neurosci 39:1261-1274. Simpson JR, Jr., Drevets WC, Snyder AZ, Gusnard DA, Raichle ME (2001) Emotion-induced changes in human medial prefrontal cortex: II. During anticipatory anxiety. Proc Natl Acad Sci U S A 98:688-693. Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev 81:119-145. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ (2012) Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76:804-812. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. Neuroimage 46:1004-1017. Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655-669. Strickland JA, McDannald MA (2022) Brainstem networks construct threat probability and prediction error from neuronal building blocks. Nat Commun 13:6192. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. IEEE Transactions on Neural Networks 9:1054-1054. Tinnermann A, Geuter S, Sprenger C, Finsterbusch J, Buchel C (2017) Interactions between brain and spinal cord mediate value effects in nocebo hyperalgesia. Science 358:105-108. Tovote P, Fadok JP, Luthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16:317-331. Villemure C, Bushnell MC (2009) Mood influences supraspinal pain processing separately from attention. J Neurosci 29:705-715. Vogt BA (2005) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533-544. Vuilleumier P (2005) How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci 9:585-594. Vytal K, Hamann S (2010) Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J Cogn Neurosci 22:2864-2885. Wager TD, Scott DJ, Zubieta JK (2007) Placebo effects on human mu-opioid activity during pain. Proc Natl Acad Sci U S A 104:11056-11061. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD (2004) Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303:1162-1167. Watanabe N, Sakagami M, Haruno M (2013) Reward prediction error signal enhanced by striatum-amygdala interaction explains the acceleration of probabilistic reward learning by emotion. J Neurosci 33:4487-4493. White SF, Geraci M, Lewis E, Leshin J, Teng C, Averbeck B, Meffert H, Ernst M, Blair JR, Grillon C, Blair KS (2017) Prediction Error Representation in Individuals With Generalized Anxiety Disorder During Passive Avoidance. Am J Psychiatry 174:110-117. Wiech K, Tracey I (2009) The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47:987-994. Yoshida W, Seymour B, Koltzenburg M, Dolan RJ (2013) Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. J Neurosci 33:5638-5646. Ziv M, Tomer R, Defrin R, Hendler T (2010) Individual sensitivity to pain expectancy is related to differential activation of the hippocampus and amygdala. Hum Brain Mapp 31:326-338. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94070 | - |
| dc.description.abstract | 人類的知覺會受到認知和情緒因素影響。在痛覺方面,負向預期(預期疼痛增加)和正向預期(預期疼痛減少)分別會加劇和緩解所經歷的疼痛。然而,預期所誘發之疼痛調控其心理機制尚不清楚。在一個以提示作為基礎的預期派典(cue-based expectancy paradigm)結合功能性磁振造影技術(functional magnetic resonance imaging technology)的實驗中,三十一名受試者(包括男性和女性)使用情緒調節(emotion regulation)策略以降低疼痛預期所引發的情緒。皮膚電傳導活動(electrodermal activity)數據顯示,相較於受試者們自然經歷預期所引發的情緒,當他們使用情緒調節策略以減少這些情緒時,負向預期及正向預期所引起的皮膚電導反應(skin conductance response)均會減少,這表示情緒調節策略能有效操弄預期相關情緒。而自我報告的情緒評分更進一步發現,受試者透過情緒調節策略能夠降低負向預期引起的焦慮程度、以及降低正向預期引起的愉悅程度。重要的是,當受試者使用情緒調節策略時,負向預期所誘發的的增痛效果和正向預期所誘發的減痛效果都顯著減少了,並且,此預期誘發之疼痛調控效果的減少程度能夠被情緒評分的變化所預測,這代表了情緒在預期誘發之疼痛調控機制中的關鍵作用。功能性磁振造影(functional magnetic resonance imaging)結果顯示,杏仁核(amygdala)活化程度反應了負向預期所引起的焦慮程度,而內側眶額皮質(medial orbitofrontal cortex)則會紀錄正向預期所引起的主觀愉悅感。在行為和神經層面上發現了預期誘發之疼痛調控機制中的情緒成分後,此研究進一步探討了預期是如何透過這些情緒成分去調控痛覺。第一項機制涉及了預期與感官輸入(sensory input)之間的訊號整合。貝葉斯模型選擇(Bayesian model selection)的結果支持「情緒性整合模型(emotion integration model)」——預期和感官輸入的整合是根據其相對的情緒經驗進行加權——勝過「準確性整合模型(precision integration model)」——預期和感官輸入的整合是依據其相對的準確性進行加權。影像分析近一步發現,負向預期和感官輸入之間的情緒性整合是透過杏仁核和前扣帶皮質(anterior cingulate cortex)兩個腦區之間的功能性連結(functional connectivity)所進行,而正向預期相關的情緒性整合則是由內側眶額皮質和海馬迴(hippocampus)間之連結所負責。第二項機制涉及情緒對學習相關機制的影響,此實驗發現,負向預期所引期的焦慮會抑制前扣帶皮質的預測誤差(prediction error)神經訊號以阻礙負向預期的更新,使負向預期所誘發的的增痛效果得以一直存在。本研究證實了情緒在預期調控人類痛覺此過程中的重要角色。 | zh_TW |
| dc.description.abstract | Human perceptions are substantially shaped by cognitive and emotional factors. In terms of pain perception, negative expectations (i.e., expecting increased pain) and positive expectations (i.e., expecting decreased pain) respectively exacerbate and alleviate experienced pain. However, the psychological mechanisms underlying this modulation are not fully understood. In a cue-based expectancy paradigm, thirty-one participants (both male and female) were instructed to employ emotion regulation (ER) strategies to manage expectancy-elicited emotions. Electrodermal data showed that both negative and positive expectancy-induced skin conductance responses decreased when participants used ER strategies to downregulate their emotions, compared to when they experienced these emotions naturally, suggesting that ER strategies were effective in regulating expectancy-related emotional responses. Self-reported emotion ratings further revealed that participants were able to decrease anticipatory anxiety associated with negative expectations and lessen anticipatory pleasantness associated with positive expectations through ER strategies. Importantly, the pain-enhancing effect of negative expectations and the pain-reducing effect of positive expectations were both diminished when participants used ER strategies. This reduction in expectancy effects was predicted by changes in anticipatory emotions, indicating the crucial role of emotions in pain modulation by stimulus expectation. The functional MRI data revealed that the individual anticipatory anxiety for negative expectations was encoded by the amygdala, while the subjective pleasantness for positive expectations was tracked by the medial orbitofrontal cortex (mOFC). After identifying the emotional components at both behavioral and neural level, the study then explored how these emotional components contribute to expectancy-induced pain modulation. The first mechanism involves integrating prior expectations with incoming sensory inputs. Bayesian model selection favored an emotion integration model, where prior expectations and sensory inputs are weighted by their relative emotional experiences, rather than a precision integration model, which weights the integration according to the precision of the expectancy and sensory information. This finding was supported by functional coupling between the amygdala and anterior cingulate cortex (ACC) for negative expectations and between the mOFC and hippocampus for positive expectations. The second mechanism pertains to emotional modulation on prediction error processing. Anticipatory anxiety appeared to hinder the updating of negative expectations by suppressing prediction error signals in the ACC. Overall, this study highlights the significant role of emotions in shaping pain experiences influenced by stimulus expectancy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:32:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:32:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 圖次(v)
表次(vi) 口試委員會審定書(vii) 誌謝(viii) 中文摘要(ix) 英文摘要ABSTRACT(xi) INTRODUCTION(1) General background(1) Potential emotional components in pain modulation by stimulus expectancy(2) Methodological reviews on emotion regulation strategies(4) Integration between prior expectations and sensory inputs(5) Prediction error mechanism underlying pain modulation by expectations(9) Research aims(11) METHODS(13) Participants(13) Stimuli(15) Experimental procedure(15) Overview(15) Calibration session(16) Emotion regulation strategies training(17) Conditioning session(18) Test session(20) Electrodermal activity(22) Skin conductance acquisition(22) Skin conductance responses analyses(23) Behavioral analyses and computational modeling(24) Pain intensity ratings(24) Computational integration models for stimulus expectancy-induced pain modulation(24) Bayesian model selection(27) Prediction error computing(28) Statistical analyses(29) fMRI data acquisition(30) fMRI analysis(31) Imaging preprocessing(31) General linear model(32) fMRI validations(33) Neural correlates associated with expectancy-induced pain modulation(34) Psychophysiological interaction analysis(37) ROI definitions(38) Additional behavioral experiment(39) Participants(39) Experimental design(39) Computational modeling(40) RESULTS(41) Behavioral validations(41) Pain intensity ratings(41) Skin conductance responses(42) Behavioral results(42) 1. The involvement of emotional components in expectancy-induced pain modulation(42) 2. Emotional components integrate prior expectations and sensory inputs(46) 3. Role of emotion in prediction error mechanisms underlying pain modulation by stimulus expectancy(51) fMRI validations(53) Pain-related activations(53) Emotion regulation-related activations(54) fMRI results(54) 1. Neural substrates associated with pain modulation by stimulus expectancy(54) 2. Neural correlates associated with emotional integration between prior expectations and sensory inputs(57) 3. Emotional modulation on prediction error mechanism underlying expectancy-induced pain modulation(58) DISCUSSION(60) Emotion regulation in the stimulus expectancy paradigm(60) The involvement of emotional components in pain modulation by stimulus expectancy(62) Emotional integration between prior expectations and sensory inputs(65) Emotional modulation on prediction error mechanisms(67) Pain modulation by stimulus expectancy versus treatment expectancy(69) Conclusions(71) FIGURES(72) Figure 1. Hypothetical integration model between expectations and sensory inputs(72) Figure 2. Design of the fMRI experiment(74) Figure 3. Additional behavioral experiment(77) Figure 4. Behavioral validations on pain ratings(79) Figure 5. Skin conductance response(80) Figure 6. Pain modulation by negative expectations(81) Figure 7. Pain modulation by positive expectations(84) Figure 8. Relationship between pain modulation by negative and positive expectancy(87) Figure 9. Integration between negative expectations and sensory inputs(88) Figure 10. Integration between positive expectations and sensory inputs(90) Figure 11. Emotional modulation on prediction error and expectation updating in expectancy-induced pain modulation(92) Figure 12. Anxiety-modulated expectation updating and prediction error neural associates for negative expectations(94) Figure 13. Pain-related activations(95) Figure 14. Emotion regulation-related activations(96) TABLES(97) Table 1. Whole-brain activations during painful stimulation(97) Table 2. Whole-brain activations associated with emotion regulation during the cue period(98) REFERENCES(100) | - |
| dc.language.iso | en | - |
| dc.subject | 痛覺 | zh_TW |
| dc.subject | 疼痛調控 | zh_TW |
| dc.subject | 預期 | zh_TW |
| dc.subject | 情緒調節 | zh_TW |
| dc.subject | 功能性磁振造影 | zh_TW |
| dc.subject | 貝葉斯模型選擇 | zh_TW |
| dc.subject | 預測誤差 | zh_TW |
| dc.subject | Bayesian model selection | en |
| dc.subject | prediction error | en |
| dc.subject | pain | en |
| dc.subject | pain modulation | en |
| dc.subject | expectation | en |
| dc.subject | emotion regulation | en |
| dc.subject | functional MRI | en |
| dc.title | 探討預期調節疼痛之機制中的情緒成分:功能性磁振造影實驗 | zh_TW |
| dc.title | Deciphering emotional components in pain modulations by stimulus expectancy: a functional MRI study | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 李佳穎 | zh_TW |
| dc.contributor.coadvisor | Chia-Ying Lee | en |
| dc.contributor.oralexamcommittee | 吳嫻;陳志成;謝伯讓;謝松蒼;姚皓傑 | zh_TW |
| dc.contributor.oralexamcommittee | Denise Hsien Wu;Chih-Cheng Chen;Po-Jang Hsieh;Sung-Tsang Hsieh;Hau-Jie Yau | en |
| dc.subject.keyword | 痛覺,疼痛調控,預期,情緒調節,功能性磁振造影,貝葉斯模型選擇,預測誤差, | zh_TW |
| dc.subject.keyword | pain,pain modulation,expectation,emotion regulation,functional MRI,Bayesian model selection,prediction error, | en |
| dc.relation.page | 113 | - |
| dc.identifier.doi | 10.6342/NTU202403725 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 跨領域神經科學國際研究生博士學位學程 | - |
| 顯示於系所單位: | 跨領域神經科學國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
