請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志平 | zh_TW |
| dc.contributor.advisor | Chih-Ping Wei | en |
| dc.contributor.author | 方思涵 | zh_TW |
| dc.contributor.author | Szu-Han Fang | en |
| dc.date.accessioned | 2024-08-14T16:32:10Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | Alam, M. Z., Rahman, M. S., & Rahman, M. S. (2019). A random forest based predictor for medical data classification using feature ranking. Informatics in Medicine Unlocked, 15, 100180.
Aleenajitpong, N., & Leemakdej, A. (2021). Venture capital networks in Southeast Asia: Network characteristics and cohesive subgroups. International Review of Financial Analysis, 76, 101752. Alexy, O. T., Block, J. H., Sandner, P., & Ter Wal, A. L. (2012). Social capital of venture capitalists and start-up funding. Small Business Economics, 39(4), 835-851. Alperovych, Y., Groh, A., & Quas, A. (2020). Bridging the equity gap for young innovative companies: The design of effective government venture capital fund programs. Research policy, 49(10), 104051. Ang, Y. Q., Chia, A., & Saghafian, S. (2022). Using machine learning to demystify startups’ funding, post-money valuation, and success. In: Babich, V., Birge, J. R., and Hilary, G. (Eds.) Innovative Technology at the Interface of Finance and Operations. Springer Series in Supply Chain Management (Vol. 11): Cham, Switzerland: Springer. Antretter, T., Blohm, I., Grichnik, D., & Wincent, J. (2019). Predicting new venture survival: A Twitter-based machine learning approach to measuring online legitimacy. Journal of Business Venturing Insights, 11, e00109. Arroyo, J., Corea, F., Jimenez-Diaz, G., & Recio-Garcia, J. A. (2019). Assessment of machine learning performance for decision support in venture capital investments. IEEE Access, 7, 124233-124243. Barros, C. D., Mendonça, M. R., Vieira, A. B., & Ziviani, A. (2021). A survey on embedding dynamic graphs. ACM Computing Surveys, 55(1), 1-37. Baum, J. A., & Silverman, B. S. (2004). Picking winners or building them? Alliance, intellectual, and human capital as selection criteria in venture financing and performance of biotechnology startups. Journal of Business Venturing, 19(3), 411-436. Beckman, C. M., Burton, M. D., & O’Reilly, C. (2007). Early teams: The impact of team demography on VC financing and going public. Journal of Business Venturing, 22(2), 147-173. Breznitz, D., Forman, C., & Wen, W. (2018). The role of venture capital in the formation of a new technological ecosystem. MIS Quarterly, 42(4), 1143-1170. Butler, J.S., Garg, R., & Stephens, B. (2020). Social networks, funding, and regional advantages in technology entrepreneurship: An empirical analysis. Information Systems Research, 31(1), 198-216. Cao, L., von Ehrenheim, V., Krakowski, S., Li, X., & Lutz, A. (2022). Using deep learning to find the next unicorn: A practical synthesis. arXiv: 2210.14195. Caruana, R. (1993). Multitask learning: A knowledge-based source of inductive bias. Proceedings of the 10th International Conference on Machine Learning. San Amherst, MA, United States: ACM, 41-48. Caruana, R. (1997). Multitask learning. Machine Learning, 28, 41-75. CB Insights (2021). The top 12 reasons startups fail. Accessed on December 20, 2023, available at: https://www.cbinsights.com/research/report/startup-failure-reasons-top/ CB Insights (2022). State of venture. Accessed on November 28, 2023, available at: https://www.cbinsights.com/reports/CB-Insights_Venture-Report-2021.pdf CB Insights (2023). State of venture. Accessed on January 4, 2023, available at: https://www.cbinsights.com/research/report/venture-trends-2022/ Chang, S. J. (2004). Venture capital financing, strategic alliances, and the initial public offerings of Internet startups. Journal of Business Venturing, 19(5), 721-741. Chen, D., & Mak, B. K. W. (2015). Multitask learning of deep neural networks for low-resource speech recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(7), 1172-1183. Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. Proceedings of the 25th International Conference on Machine Learning (ICML ’08). New York, NY, United States: ACM, 160-167. Czarnitzki, D., Hussinger, K., & Schneider, C. (2011). “Wacky” patents meet economic indicators. Economics Letters, 113(2), 131-134. Davila, A., & Foster, G. (2005). Management accounting systems adoption decisions: Evidence and performance implications from early‐stage/startup companies. The Accounting Review, 80(4), 1039-1068. De Clercq, D., Fried, V. H., Lehtonen, O., & Sapienza, H. J. (2006). An entrepreneur’s guide to the venture capital galaxy. Academy of Management Perspectives, 20(3), 90-112. Dellermann, D., Lipusch, N., Ebel, P., Popp, K. M., & Leimeister, J. M. (2017). Finding the unicorn: Predicting early stage startup success through a hybrid intelligence method. Proceedings of the 38th International Conference on Information Systems (ICIS ’17). Seoul, South Korea: AIS, 5707-5718. Deng, L., Hinton, G., & Kingsbury, B. (2013). New types of deep neural network learning for speech recognition and related applications: An overview. Proceedings of the 38th International Conference on Acoustics, Speech and Signal Processing (ICASSP ’13). Vancouver, Canada: IEEE, 8599-8603. Dhochak, M., Pahal, S., & Doliya, P. (2024). Predicting the Startup Valuation: A deep learning approach. Venture Capital, 26(1), 75-99. Dos Santos, B. L., Patel, P. C., & D’Souza, R. R. (2011). Venture capital funding for information technology businesses. Journal of the Association for Information Systems, 12(1), 57-87. Duong, L., Cohn, T., Bird, S., & Cook, P. (2015). Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP ’15). Beijing, China: Association for Computational Linguistics, 845-850. Eesley, C., & Wu. L. (2020). For startups, adaptability and mentor network diversity can be pivotal: Evidence from a randomized experiment on a MOOC platform. MIS Quarterly, 44(2), 661-697. Ewens, M., & Townsend, R. R. (2020). Are early stage investors biased against women? Journal of Financial Economics, 135(3), 653-677. Ferrati, F., & Muffatto, M. (2020). Using Crunchbase for research in Entrepreneurship: Data content and structure. Proceedings of the 19th European Conference on Research Methodology for Business and Management Studies (ECRM ’20). Aveiro, Portugal: ACI, 342-351. Fitza, M., Matusik, S. F., & Mosakowski, E. (2009). Do VCs matter? The importance of owners on performance variance in start‐up firms. Strategic Management Journal, 30(4), 387-404. Frank, E., Hall., M. A., & Witten, I. H. (2016). The WEKA workbench. Online appendix for Data Mining: Practical Machine Learning Tools and Techniques. Accessed on May 16, 2023, available at: https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf. Freeman, J., Carroll, G. R., & Hannan, M. T. (1983). The liability of newness: Age dependence in organizational death rates. American Sociological Review, 48(5), 692-710. Freiberg, B., & Matz, S. C. (2023). Founder personality and entrepreneurial outcomes: A large-scale field study of technology startups. Proceedings of the National Academy of Sciences, 120(19), e2215829120. Fuertes-Callén, Y., Cuellar-Fernández, B., & Serrano-Cinca, C. (2022). Predicting startup survival using first years financial statements. Journal of Small Business Management, 60(6), 1314-1350. Fukugawa, N. (2012). Impacts of intangible assets on the initial public offering of biotechnology startups. Economics Letters, 116(1), 83-85. Geibel, R. C., & Manickam, M. (2016). Comparison of selected startup ecosystems in Germany and in the USA Explorative analysis of the startup environments. GSTF Journal on Business Review, 4(3), 66-71. Girshick, R. (2015). Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV ’15). Santiago, Chile: IEEE, 1440-1448. Halvardsson, G. (2023). A transformer-based scoring approach for startup success prediction: Utilizing deep learning architectures and multivariate time series classification to predict successful companies. Master Thesis, KTH Royal Institute of Technology, Stockholm, Sweden. Harrigan, K. R., Di Guardo, M. C., Marku, E., & Velez, B. N. (2017). Using a distance measure to operationalise patent originality. Technology Analysis & Strategic Management, 29(9), 988-1001. Hochberg, Y. V., Ljungqvist, A., & Lu, Y. (2007). Whom you know matters: Venture capital networks and investment performance. The Journal of Finance, 62(1), 251-301. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. Hoenen, S., Kolympiris, C., Schoenmakers, W., & Kalaitzandonakes, N. (2014). The diminishing signaling value of patents between early rounds of venture capital financing. Research Policy, 43(6), 956-989. Hong, S., Serfes, K., & Thiele, V. (2020). Competition in the venture capital market and the success of startup companies: Theory and evidence. Journal of Economics & Management Strategy, 29(4), 741-791. Hu, Z., Zhou, J., Wei, W., Zhang, C., & Shi, Y. (2024). Predicting cross-domain collaboration using multi-task learning. Expert Systems with Applications, 124570. Ismail, E. A., & Medhat, M. I. (2019). What determines Venture Capital investment decisions? Evidence from the emerging VC market in Egypt. The Journal of Entrepreneurial Finance, 21(2), 1-25. Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural Computation, 3(1), 79-87. James, A.D., Georghiou, L., & Metcalfe, J.S. (1998). Integrating technology into merger and acquisition decision making. Technovation, 18(8-9), 563-591. Jin, F., Wu, A., & Hitt, L. (2017). Social is the new financial: How startup social media activity influences funding outcomes. Academy of Management Annual Proceedings, 2017(1), 13329. Kapoor, K., Sharma, D., & Srivastava, J. (2013). Weighted node degree centrality for hypergraphs. Proceedings of the 2nd IEEE Network Science Workshop (NSW ’13). West Point, NY, United States: IEEE, 152-155. Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. Proceedings of the IEEE/CVF 2018 Conference on Computer Vision and Pattern Recognition (CVPR ’18). Salt Lake City, UT, United States: IEEE, 7482-7491. Kerr, W. R., Nanda, R., & Rhodes-Kropf, M. (2014). Entrepreneurship as experimentation. Journal of Economic Perspectives, 28(3), 25-48. Kim, H.J., San Kim, T., & Sohn, S.Y. (2020). Recommendation of startups as technology cooperation candidates from the perspectives of similarity and potential: A deep learning approach. Decision Support Systems, 130, 113229. Kim, J., Kim, H., & Geum, Y. (2023). How to succeed in the market? Predicting startup success using a machine learning approach. Technological Forecasting and Social Change, 193, 122614. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv:1609.02907. Ko, E. J., & McKelvie, A. (2018). Signaling for more money: The roles of founders’ human capital and investor prominence in resource acquisition across different stages of firm development. Journal of Business Venturing, 33(4), 438-454. Kokkinos, I. (2017). Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’17). Honolulu, HI, United States: IEEE, 6129-6138. Korunka, C., Kessler, A., Frank, H., & Lueger, M. (2010). Personal characteristics, resources, and environment as predictors of business survival. Journal of Occupational and Organizational Psychology, 83(4), 1025-1051. Lahr, H., & Mina, A. (2016). Venture capital investments and the technological performance of portfolio firms. Research Policy, 45(1), 303-318. Lee, J., & Lee, K. (2021). Is the fourth industrial revolution a continuation of the third industrial revolution or something new under the sun? Analyzing technological regimes using US patent data. Industrial and Corporate Change, 30(1), 137-159. Lefebvre, V., Certhoux, G., & Radu-Lefebvre, M. (2022). Sustaining trust to cross the Valley of Death: A retrospective study of business angels’ investment and reinvestment decisions. Technovation, 109, 102159. Lerner, J. (1994). The importance of patent scope: an empirical analysis. The RAND Journal of Economics, 25(2), 319-333. Li, J. (2020). Prediction of the success of startup companies based on support vector machine and random forest. Proceedings of the 2nd International Workshop on Artificial Intelligence and Education (WAIE ’20). Montreal, Canada: ACM, 5-11. Li, J., Zhao, Y., Zhang, H., LiMember, W. J., Fu, C., Lian, C., & Shan, P. (2024). Image encoding and fusion of multi-modal data enhance depression diagnosis in parkinson’s disease patients. IEEE Transactions on Affective Computing. Liang, Y. E. & Yuan, S. T. D (2016). Predicting investor funding behavior using crunchbase social network features. Internet Research, 26(1), pp. 74-100. Liu, J., Li, X., An, B., Xia, Z., & Wang, X. (2022). Multi-faceted hierarchical multi-task learning for recommender systems. Proceedings of the 31st ACM International Conference on Information & Knowledge Management (CIKM ’22). Atlanta, GA, United States: ACM, 332-3341. Liu, S., Johns, E., & Davison, A. J. (2019). End-to-end multi-task learning with attention. Proceedings of the IEEE/CVF 2019 Conference on Computer Vision and Pattern Recognition (CVPR ’19). Long Beach, CA, USA: IEEE, 1871-1880. Liu, W. (2023). Improved bounds for multi-task learning with trace norm regularization. Proceedings of the 36th Annual Conference on Learning Theory (COLT ’23). Bangalore, India: ACL, 700-714. Liu, X., He, P., Chen, W., & Gao, J. (2019). Multi-task deep neural networks for natural language understanding. arXiv: 1901.11504. Liu, Y., Zhuang, B., Shen, C., Chen, H., & Yin, W. (2019). Auxiliary learning for deep multi-task learning. arXiv: 1909.02214. Lucas, H.C. (1994). Marketing and technology strategy in a “medium-tech” startup. Information & Management, 27(4), 247-257. Lukkarinen, A., Teich, J. E., Wallenius, H., & Wallenius, J. (2016). Success drivers of online equity crowdfunding campaigns. Decision Support Systems, 87, 26-38. Lussier, R. N., & Pfeifer, S. (2001). A crossnational prediction model for business success. Journal of Small Business Management, 39(3), 228-239. Lyu, S., Ling, S., Guo, K., Zhang, H., Zhang, K., Hong, S., Ke, Q., & Gu, J. (2021). Graph neural network based VC investment success prediction. arXiv: 2105.11537. Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., & Chi, E. H. (2018). Modeling task relationships in multi-task learning with multi-gate mixture-of-experts. Proceedings of the 24th International Conference on Knowledge Discovery and Data Mining (KDD ’18). New York, NY, United States: ACM, 1930-1939. Ma, X., Zhao, L., Huang, G., Wang, Z., Hu, Z., Zhu, X., & Gai, K. (2018). Entire space multi-task model: An effective approach for estimating post-click conversion rate. Proceedings of the 41st International Conference on Research and Development in Information Retrieval (SIGIR ’18). Ann Arbor, MI, United States: ACM, 1137-1140. Mann, R. J., & Sager, T. W. (2007). Patents, venture capital, and software start-ups. Research Policy, 36(2), 193-208. Markova, S., & Petkovska-Mirčevska, T. (2010). Entrepreneurial finance: Angel investing as a source of funding high-growth start-up firms. Annals of the University of Petrosani, Economics, 10(3), 217-224. Martí, M., & Maki, A. (2017). A multitask deep learning model for real-time deployment in embedded systems. arXiv: 1711.00146. Maus, C., Greven, A., Kurth, N., & Brettel, M. (2023). How do investor characteristics of business angels and venture capitalists predict the occurrence of co-investments? Journal of Business Economics, 1-49. Michelino, F., Cammarano, A., Lamberti, E., & Caputo, M. (2017). Open innovation for start-ups: A patent-based analysis of bio-pharmaceutical firms at the knowledge domain level. European Journal of Innovation Management, 20(1), 112-134. Miettinen, M. R., & Littunen, H. (2013). Factors contributing to the success of start-up firms using two-point or multiple-point scale models. Entrepreneurship Research Journal, 3(4), 449-481. Miloud, T., Aspelund, A., & Cabrol, M. (2012). Startup valuation by venture capitalists: An empirical study. Venture Capital, 14(2-3), 151-174. Misra, I., Shrivastava, A., Gupta, A., & Hebert, M. (2016). Cross-stitch networks for multi-task learning. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’16). Las Vegas, NV, United States: IEEE, 3994-4003. Munari, F., & Toschi, L. (2015). Do patents affect VC financing? Empirical evidence from the nanotechnology sector. International Entrepreneurship and Management Journal, 11(3), 623-644. Nanda, R., Samila, S., & Sorenson, O. (2020). The persistent effect of initial success: Evidence from venture capital. Journal of Financial Economics, 137(1), 231-248. Niehues, J., & Cho, E. (2017). Exploiting linguistic resources for neural machine translation using multi-task learning. Proceedings of the 2nd Conference on Machine Translation (WMT ’17). Copenhagen, Denmark: ACL, 80-89. Nigam, N., Mbarek, S., & Boughanmi, A. (2021). Impact of intellectual capital on the financing of startups with new business models. Journal of Knowledge Management, 25(1), 227-250. Noguti, V., Ho, H., Padigar, M., & Zhang, S. X. (2021). Do individual ambidexterity and career experience help technological startup founders acquire funding? IEEE Transactions on Engineering Management, 70(12), 4162-4174. Öndas, V., & Akpinar, M. (2021). Understanding high-tech startup failures and their prevention. Proceedings of the 35th Research in Entrepreneurship and Small Business Conference (RENT ’21). Turku, Finland: EIASM. Overall, J., & Wise, S. (2015). An s-curve model of the start-up life cycle through the lens of customer development. The Journal of Private Equity, 18(2), 23-34. Pahari, N., & Shimada, K. (2022). Multi-task learning using Bert with soft parameter sharing between layers. Proceedings of the Joint 12th International Conference on Soft Computing and Intelligent Systems and 23rd International Symposium on Advanced Intelligent Systems (SCIS&ISIS ’22). Ise, Japan: IEEE, 732-737. Parveen, S., & Green P. D. (2003). Multitask learning in connectionist ASR using recurrent neural networks. Proceedings of the 8th European Conference on Speech Communication and Technology (EUROSPEECH ’03). Geneva, Switzerland: ISCA, 1813-1816. Peng, C. H., Wu, L. L., Wei, C. P., & Chang, C. M. (2020). Intrafirm network structure and firm innovation performance: the moderating role of environmental uncertainty. IEEE Transactions on Engineering Management, 69(4), 1173-1184. Phan, H., Tran, L., Tran, N. N., Ho, N., Phung, D., & Le, T. (2023). Improving multi-task learning via seeking task-based flat regions. arXiv: 2211.13723. Pinelli, M., Cappa, F., Franco, S., Peruffo, E., & Oriani, R. (2020). Too much of two good things: Effects of founders’ educational level and heterogeneity on start-up funds raised. IEEE Transactions on Engineering Management, 69(4), 1502-1516. Rose, J., Jones, M., & Furneaux, B. (2016). An integrated model of innovation drivers for smaller software firms. Information & Management, 53(3), 307-323. Ross, G., Das, S., Sciro, D., & Raza, H. (2021). CapitalVX: a machine learning model for startup selection and exit prediction. The Journal of Finance and Data Science, 7, 94-114. Ruder, S. (2017). An overview of multi-task learning in deep neural networks. arXiv: 1706.05098. Sener, O., & Koltun, V. (2018). Multi-task learning as multi-objective optimization. Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS ’18). Montreal, Canada: Neural Information Processing Systems Foundation, 525-536. Setty, R., Elovici, Y., & Schwartz, D. (2024). Cost‐sensitive machine learning to support startup investment decisions. Intelligent Systems in Accounting, Finance and Management, 31(1), e1548. Sharchilev, B., Roizner, M., Rumyantsev, A., Ozornin, D., Serdyukov, P., & de Rijke, M. (2018). Web-based startup success prediction. Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM ’18). Torino, Italy: ACM, 2283-2291. Shetty, S., & Sundaram, R. (2019). Funding acquisition drivers for new venture firms: Diminishing value of human capital signals in early rounds of funding. Problems and Perspectives in Management, 17(1), 78-94. Shi, Y., Ekaterina E., & Long, W. (2020). Comparison of reinforcement and supervised learning algorithms on startup success prediction. International Journal of Computer Science and Network Security, 20(7), 86-97. Solodoha, E., Rosenzweig, S., & Harel, S. (2023). Incentivizing angels to invest in start-ups: Evidence from a natural experiment. Research Policy, 52(1), 104634. Startup Genome (2020). The global startup ecosystem report. Accessed on May 16, 2023, available at: https://startupgenome.com/reports/gser2020. Startup Genome (2022). The global startup ecosystem report. Accessed on May 16, 2023, available at: https://startupgenome.com/reports/gser2022. Sterzi, V. (2013). Patent quality and ownership: An analysis of UK faculty patenting. Research Policy, 42(2), 564-576. Streletzki, J. G., & Schulte, R. (2013). Which venture capital selection criteria distinguish high-flyer investments? Venture Capital, 15(1), 29-52. Talaia, M., Pisoni, A., & Onetti, A. (2016). Factors influencing the fund raising process for innovative new ventures: An empirical study. Journal of Small Business and Enterprise Development, 23(2), 363-378. Tang, H., Liu, J., Zhao, M., & Gong, X. (2020). Progressive layered extraction (PLE): A novel multi-task learning (MTL) model for personalized recommendations. Proceedings of the 14th ACM Conference on Recommender Systems (RecSys ’20). Bari, Italy: ACM, 269-278. Thursby, J., Fuller, A.W., & Thursby, M. (2009). US faculty patenting: Inside and outside the university. Research Policy, 38(1), 14-25. Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on the basicness of invention. Economics of Innovation and New Technology, 5(1), 19-50. Tripathi, N., Seppänen, P., Boominathan, G., Oivo, M., & Liukkunen, K. (2019). Insights into startup ecosystems through exploration of multi-vocal literature. Information and Software Technology, 105, pp. 56-77. U.S. Small Business Administration, Office of Advocacy (2023). Frequently asked questions about small business. Accessed on Dec. 14, 2023, available at: https://advocacy.sba.gov/wp-content/uploads/2023/03/Frequently-Asked-Questions-About-Small-Business-March-2023-508c.pdf. Vafaeikia, P., Namdar, K., & Khalvati, F. (2020). A brief review of deep multi-task learning and auxiliary task learning. arXiv: 2007.01126. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., & Van Gool, L. (2021). Multi-task learning for dense prediction tasks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), 3614-3633. Venugopal, B., & Yerramilli, V. (2022). Seed-stage success and growth of angel co-investment networks. The Review of Corporate Finance Studies, 11(1), 169-210. Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A. J., & Shen, L. (2011). Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. Proceedings of the 2011 International Conference on Computer Vision (ICCV ’11). Barcelona, Spain: IEEE, 557-562. Wang, T., Zhuang, F., Sun, Y., Zhang, X., Lin, L., Xia, F., He, L., & He, Q. (2022). Adaptively sharing multi-levels of distributed representations in multi-task learning. Information Sciences, 591, 226-234. Wang, Y., Lam, H. T., Wong, Y., Liu, Z., Zhao, X., Wang, Y., Chen, B., Guo, H., & Tang, R. (2023). Multi-task deep recommender systems: A survey. arXiv: 2302.03525. Wang, Z., Zhou, Y., Tang, J., & Luo, J.-D. (2016). The prediction of venture capital co-investment based on structural balance theory. IEEE Transactions on Knowledge and Data Engineering, 28(2), 537-550. Wise, S., Yeganegi, S., & Laplume, A. O. (2022). Startup team ethnic diversity and investment capital raised. Journal of Business Venturing Insights, 17, e00314. World Intellectual Property Organization (2022). International Patent Classification (IPC). Accessed on May 16, 2023, available at: https://www.wipo.int/edocs/pubdocs/en/wipo-rn2022-7-en-international-patent-classification-ipc.pdf. Wu, Z., Valentini-Botinhao, C., Watts, O., & King, S. (2015). Deep neural networks employing multi-task learning and stacked bottleneck features for speech synthesis. Proceedings of the 40th International Conference on Acoustics, Speech and Signal Processing (ICASSP ’15). South Brisbane, Australia: IEEE, 4460-4464. Xia, R., & Liu, Y. (2015). A multi-task learning framework for emotion recognition using 2D continuous space. IEEE Transactions on Affective Computing, 8(1), 3-14. Xu, R., Chen, H., & Zhao, J. L. (2023). SocioLink: Leveraging relational information in knowledge graphs for startup recommendations. Journal of Management Information Systems, 40(2), 655-682. Yang, C. S., Wei, C. P., & Chiang, Y. H. (2014). Exploiting technological indicators for effective technology merger and acquisition (M&A) predictions. Decision Sciences, 45(1), 147-174. Yang, Y., & Hospedales, T. M. (2016). Trace norm regularised deep multi-task learning. arXiv: 1606.04038. Yankov, B., Ruskov, P., & Haralampiev, K. (2014). Models and tools for technology start-up companies success analysis. Economic Alternatives, 3, 15-24. Żbikowski, K., & Antosiuk, P. (2021). A machine learning, bias-free approach for predicting business success using Crunchbase data. Information Processing & Management, 58(4), 102555. Zhang, M., Yin, R., Yang, Z., Wang, Y., & Li, K. (2023). Advances and challenges of multi-task learning method in recommender system: A survey. arXiv: 2305.13843. Zhang, R., Tian, Z., McCarthy, K. J., Wang, X., & Zhang, K. (2023). Application of machine learning techniques to predict entrepreneurial firm valuation. Journal of Forecasting, 42(2), 402-417. Zhang, X., & Lau, R. Y. (2023). Leveraging emotional features and machine learning for predicting startup funding success. Proceedings of the 2023 IEEE Region 10 Technical Conference (TENCON ’23). Chiang Mai, Thailand: IEEE, 387-392. Zhang, Y., & Yang, Q. (2018). An overview of multi-task learning. National Science Review, 5(1), 30-43. Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2014). Facial landmark detection by deep multi-task learning. Proceedings of the 13th European Conference on Computer Vision (ECCV ’14). Zurich, Switzerland: Springer, 94-108. Zhao, J., Du, B., Sun, L., Lv, W., Liu, Y., & Xiong, H. (2021). Deep multi-task learning with relational attention for business success prediction. Pattern Recognition, 110, 107469. Zhao, Z., Hong, L., Wei, L., Chen, J., Nath, A., Andrews, S., Kumthekar, A., Sathiamoorthy, M., Yi, X., & Chi, E. (2019). Recommending what video to watch next: A multitask ranking system. Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19). Copenhagen, Denmark: ACM, 43-51. Zheng, Y., Liu, J., & George, G. (2010). The dynamic impact of innovative capability and inter-firm network on firm valuation: A longitudinal study of biotechnology start-ups. Journal of Business Venturing, 25(6), 593-609. Zhong, H., Liu, C., Zhong, J., & Xiong, H. (2018). Which startup to invest in: A personalized portfolio strategy. Annals of Operations Research, 263, 339-360. Zhou, H., Sandner, P. G., Martinelli, S. L., & Block, J. H. (2016). Patents, trademarks, and their complementarity in venture capital funding. Technovation, 47, 14-22. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94069 | - |
| dc.description.abstract | 全球商業格局因新創的興起而經歷深遠的變革。這些新創在製藥、生物技術、資訊與通信技術及軟體等多個產業中,扮演推動創新與經濟增長的關鍵角色。儘管擁有顯著潛力,新創仍面臨技術不確定性、市場陌生與資源有限等挑戰。因此,對於創業者、投資者及政策制定者等利益關係人而言,預測新創企業的成功與募資金額顯得尤為重要。本論文針對這些研究議題,通過開發有效的新創分析技術,旨在支援創業生態系統中利益關係人的投資決策與策略制定。
本研究第一章闡述研究背景,探討新創在全球經濟中日益增長的影響力以及新創數據分析在其中的重要性。此章為專注於預測高科技新創成功與募資金額的研究重點奠定基礎。 第二章提出創新的新創成功預測方法。該研究不僅利用常見的基本變數(如新創公司概況及募資輪次相關資訊),還融入了與高科技新創密切相關的技術及創投相關變數。研究利用SDC VentureXpert資料庫及USPTO資料庫所收集的4,415個新創案例及其相關變數值,對兩個時間點(即新創成立年份與成立三年後)的預測模型進行評估。結果顯示,將技術和創投相關變數納入模型能顯著提升預測準確性,其中創投相關特徵的影響尤為突出。此外,對深度學習方法的探索研究指出,雖然在新創早期階段使用深度學習(如圖卷積網絡,GCN)自動提取創投相關變數未能提升預測效果,但在後期預測中,由於投資新創的創投增加,深度學習方法表現出相較於傳統統計及機器學習方法的潛在優勢。 第三章將重點轉向新創募資金額的預測。現有文獻主要採用解釋性模型,而非預測性模型,且多數集中於新創早期階段。因此,本研究提出一種基於機器學習的方法,旨在預測高科技新創各輪次的募資金額。此方法綜合考量了基本變數、募資相關變數及創投相關變數,所使用的數據來自VentureXpert資料庫,涵蓋11,365家新創的23,201輪募資。實驗結果顯示,所提方法相比僅依賴基本變數的基線方法具有更佳之預測性能。此外,募資相關變數在預測中展現出比創投相關特徵和基本特徵更高的影響力。 第四章於第三章提出的傳統機器學習方法之基礎上,探討多任務學習框架與深度學習模型在提升新創募資金額預測的效能。本研究利用長短期記憶網絡來處理時間序列數據,以捕捉募資輪次間的時間依賴性,同時採用兩項輔助任務:預測創投的數量和創投的再投資率。該多任務學習框架透過硬參數共享,實現對相關任務同步訓練,藉由知識共享和降低過擬合風險來增強主任務之預測表現。本章納入公司概況、募資輪次資訊、資金相關以及VC相關之變數,評估該模型相較於傳統方法是否提供更優越的預測性能。實驗結果顯示,雖然所提出之模型在均方根誤差(RMSE)與平均絕對誤差(MAE)未具優勢,但其平均絕對百分比誤差(MAPE)較基準模型表現更佳,顯示該模型在相對準確性上的提升。 第五章進行總結並探討其學術與實務意涵。總體而言,本研究透過開發高效的新創成功及募資金額預測模型,為新創數據分析領域做出顯著的貢獻。這些模型不僅提升利益相關人在複雜且多變的創業生態系統中進行決策之準確性與前瞻性,還為策略制定提供重要的依據和洞見。此舉有助於各方更為精準地掌握創業風險與機遇,進而促進創業活動的成功與可持續性發展。 | zh_TW |
| dc.description.abstract | The global business landscape has been significantly transformed by the emergence of startups, which drive innovation and economic growth across diverse industries such as pharmaceuticals, biotechnology, information and communications technology (ICT), and software. Despite their potential, startups often face considerable risks due to technological uncertainties, unfamiliar markets, and limited resources. Consequently, predicting startup success and startup funding size has become crucial for stakeholders, including entrepreneurs, investors, and policymakers. This dissertation addresses these research challenges by developing effective startup analytics methods, aiming to guide investment decisions and facilitating strategy formulation for stakeholders within the entrepreneurial ecosystem.
The first chapter establishes the context by discussing the growing importance of startups in the global economy and the critical role of startup analytics. The chapter also sets the stage for the research focus on predicting startup success and startup funding size, particularly within high-tech sectors. Chapter 2 is dedicated to the prediction of startup success. The study leverages not only commonly used basic features (e.g., company profile and funding information) but also integrates the proposed technological and venture-capital-related (VC-related) features that are particularly relevant to high-tech startups. Drawing on a dataset comprising 4,415 startup cases and their corresponding feature values collected from the SDC’s VentureXpert database and the USPTO database, the study evaluates prediction models across two time points (i.e., startup’s founding year and three years after). Results indicate that integrating technological and VC-related features enhances prediction performance, with VC-related features proving particularly influential. Moreover, the exploratory study of the deep learning approach suggests that employing deep learning (e.g., graph convolutional network, GCN) to automatically extract VC features may not improve prediction effectiveness at the very early stages of startups. However, it demonstrates a potential advantage over statistical and machine learning approaches at a later prediction time point due to the increased number of VCs investing in the startups. Chapter 3 shifts focus to the prediction of startup funding size. Existing research primarily adopts an explanatory approach rather than a predictive one, often concentrating on early rounds. To fill these gaps, this study propose a machine learning-based method to predict funding size across various rounds for high-tech startups, by using basic, funding-related and VC-related features. A dataset comprising 23,201 funding rounds from 11,365 startups is collected from the VentureXpert database. The proposed method outperforms the baseline (comprising solely the basic features), suggesting its predictive value. Additionally, the funding-related features emerge as more salient compared to VC-related and basic features. Chapter 4 builds on the traditional machine-learning approach introduced in Chapter 3 by exploring a multi-task learning (MTL) framework with deep learning model to enhance effectiveness of the startup funding size prediction. this study leverages LSTM to handle time-series data, capturing temporal dependencies across funding rounds and integrating two auxiliary tasks: predicting the number of VCs and the VC reinvestment rate. The MTL framework, using hard parameter sharing, allows for simultaneous training on these related tasks, enhancing the primary prediction task through shared knowledge and reduced overfitting risks. By incorporating features related to company profiles, round information, funding-related, and VC-related, the chapter evaluates whether this model offers superior predictive performance compared to traditional methods. The experimental results demonstrate that although the proposed model does not outperform the benchmark in terms of RMSE and MAE, it exhibits better performance in MAPE. This indicates an improvement in the model’s relative predictive accuracy. This dissertation concludes in Chapter 5 with a summary and discussion of contributions. Overall, it contributes to the field of startup analytics by developing effective predictive models of startup success and funding size that empower stakeholders to navigate the dynamic landscape of startup ecosystem with greater precision and foresight. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:32:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:32:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
摘要 ii Abstract iv Table of Contents vii List of Tables x List of Figures xii Chapter 1 Introduction 1 Chapter 2 Startup Success Prediction 5 2.1 Introduction 5 2.2 Literature Review 9 2.2.1 Startup Lifecycle and Success Exits of Startups 9 2.2.2 Existing Startup Success Prediction Studies 10 2.3. Design of the Proposed Startup Success Prediction Method 19 2.3.1 Basic Features 22 2.3.2 Technological Features 23 2.3.3 VC-related Features 26 2.4 Empirical Evaluation 31 2.4.1 Data Collection 31 2.4.2 Evaluation Design 36 2.4.3 Evaluation Results and Discussions 37 2.4.3.1 Comparative Evaluation Results 37 2.4.3.2 Experiments on Effects of Feature Categories and Feature Importance 40 2.4.3.3 Exploration of Deep Learning Approach for Startup Success Prediction 44 2.5 Conclusion 47 Chapter 3 Startup Funding Size Prediction: A Machine Learning Approach 52 3.1 Introduction 52 3.2 Literature Review 55 3.3 Design of the Proposed Startup Funding Size Prediction Method 63 3.3.1 Core Features 65 3.3.2 Funding-related Features 67 3.3.3 VC-related Features 68 3.4 Empirical Evaluation 74 3.4.1 Data Collection 74 3.4.2 Evaluation Design 77 3.4.3 Evaluation Results 77 3.5 Conclusion 85 Chapter 4 Startup Funding Size Prediction: A Multi-Task Learning Framework with Deep Learning Approach 87 4.1 Introduction 87 4.2 Literature Review 91 4.2.1 Rationale for Using MTL 91 4.2.2 MTL Model Architectures 94 4.2.3 Auxiliary Tasks in Startup Funding Size Prediction 99 4.3 Design of the Proposed Startup Funding Size Prediction: A Multi-Task Learning Framework with Deep Learning Approach 101 4.3.1 Features Employed for the Proposed Startup Funding Size Prediction: A Multi-Task Learning Framework with Deep Learning Approach 106 4.4 Empirical Evaluation 108 4.4.1 Data Collection 108 4.4.2 Evaluation Design 109 4.4.3 Evaluation Results 110 4.5 Conclusion 112 Chapter 5 Conclusion 115 References 117 | - |
| dc.language.iso | en | - |
| dc.subject | 新創成功預測 | zh_TW |
| dc.subject | 新創募資金額預測 | zh_TW |
| dc.subject | 技術能力 | zh_TW |
| dc.subject | 專利分析 | zh_TW |
| dc.subject | 創業投資 | zh_TW |
| dc.subject | 新創數據分析 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 多任務學習 | zh_TW |
| dc.subject | Technological Capability | en |
| dc.subject | Startup Success Prediction | en |
| dc.subject | Startup Funding Size Prediction | en |
| dc.subject | Multi-Task Learning | en |
| dc.subject | Deep Learning | en |
| dc.subject | Machine Learning | en |
| dc.subject | Startup Analytics | en |
| dc.subject | Venture Capitals | en |
| dc.subject | Patent Analysis | en |
| dc.title | 新創數據分析:新創成功預測與新創募資金額預測技術 | zh_TW |
| dc.title | Development of Startup Analytics Methods for Predicting Startup Success and Startup Funding Size | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 黃三益;劉敦仁;胡雅涵;林永松;陳建錦 | zh_TW |
| dc.contributor.oralexamcommittee | San-Yih Hwang ;Duen-Ren Liu;Ya-Han Hu;Yeong-Sung Lin;Chien-Chin Chen | en |
| dc.subject.keyword | 新創成功預測,新創募資金額預測,技術能力,專利分析,創業投資,新創數據分析,機器學習,深度學習,多任務學習, | zh_TW |
| dc.subject.keyword | Startup Success Prediction,Startup Funding Size Prediction,Technological Capability,Patent Analysis,Venture Capitals,Startup Analytics,Machine Learning,Deep Learning,Multi-Task Learning, | en |
| dc.relation.page | 133 | - |
| dc.identifier.doi | 10.6342/NTU202404091 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
