Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94024
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲zh_TW
dc.contributor.advisorCheng-Che Hsuen
dc.contributor.author張柏謙zh_TW
dc.contributor.authorPo-Chien Changen
dc.date.accessioned2024-08-14T16:18:23Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation1. D. Pappas, "Status and potential of atmospheric plasma processing of materials," Journal of Vacuum Science & Technology A, 29 (2)(2011).
2. Y. X. Duan, C. Huang, and Q. S. Yu, "Cold plasma brush generated at atmospheric pressure," Review of Scientific Instruments, 78 (1)(2007).
3. K. Tachibana, "Current status of microplasma research," Ieej Transactions on Electrical and Electronic Engineering, 1 (2), 145-155 (2006).
4. K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and applications," Journal of Physics D-Applied Physics, 39 (3), R55-R70 (2006).
5. R. H. Stark, and K. H. Schoenbach, "Direct current high-pressure glow discharges," Journal of Applied Physics, 85 (4), 2075-2080 (1999).
6. A. I. Saifutdinov, and S. S. Sysoev, "Diagnostics and comparative analyzes of plasma parameters in micro hollow cathode discharges with an open and covered external surface of cathode in helium using an additional electrode," Plasma Sources Science & Technology, 30 (1)(2021).
7. G. Niu, A. Knodel, S. Burhenn, S. Brandt, and J. Franzke, "Review: Miniature dielectric barrier discharge (DBD) in analytical atomic spectrometry," Anal Chim Acta, 1147, 211-239 (2021).
8. D. Staack, B. Farouk, A. Gutsol, and A. Fridman, "Characterization of a dc atmospheric pressure normal glow discharge," Plasma Sources Science & Technology, 14 (4), 700-711 (2005).
9. U. Kogelschatz, "Applications of microplasmas and microreactor technology," Contributions to Plasma Physics, 47 (1-2), 80-88 (2007).
10. M. Gorska, K. Greda, and P. Pohl, "Determination of bismuth by optical emission spectrometry with liquid anode/cathode atmospheric pressure glow discharge," Journal of Analytical Atomic Spectrometry, 36 (1), 165-177 (2021).
11. J. G. Eden, S. J. Park, J. H. Cho, M. H. Kim, T. J. Houlahan, B. Li, E. S. Kim, T. L. Kim, S. K. Lee, K. S. Kim, J. K. Yoon, S. H. Sung, P. Sun, C. M. Herring, and C. J. Wagner, "Plasma Science and Technology in the Limit of the Small: Microcavity Plasmas and Emerging Applications," Ieee Transactions on Plasma Science, 41 (4), 661-675 (2013).
12. Q. Li, J. Liu, Y. Dai, W. Xiang, M. Zhang, H. Wang, and L. Wen, "Fabrication of SiN(x) Thin Film of Micro Dielectric Barrier Discharge Reactor for Maskless Nanoscale Etching," Micromachines (Basel), 7 (12)(2016).
13. K. H. Schoenbach, and K. Becker, "20 years of microplasma research: a status report," European Physical Journal D, 70 (2)(2016).
14. J. Golda, J. Held, and V. Schulz-von der Gathen, "Comparison of electron heating and energy loss mechanisms in an RF plasma jet operated in argon and helium," Plasma Sources Science & Technology, 29 (2)(2020).
15. P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. F. Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. M. Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, and G. Zvereva, "Plasma-liquid interactions: a review and roadmap," Plasma Sources Science & Technology, 25 (5)(2016).
16. C. Y. Wang, and C. C. Hsu, "Characterization of plasma in aqueous solution using bipolar pulsed power: Tailoring plasma and optical emission with implication for detecting lead," Plasma Process. Polym., 17 (2)(2019).
17. T. Wang, J. Q. Liu, L. P. Shi, X. Q. Zhang, L. Lv, G. T. Zhang, and J. Wang, "Maskless atmospheric pressure PECVD of SiOx films on both planar and nonplanar surfaces using a flexible atmospheric microplasma generation device," Plasma Processes and Polymers, 17 (1)(2020).
18. S. Yick, Z. J. Han, and K. Ostrikov, "Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing," Chemical Communications, 49 (28), 2861-2863 (2013).
19. T. Ichiki, R. Taura, and Y. Horiike, "Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets," Journal of Applied Physics, 95 (1), 35-39 (2004).
20. J. X. Zhou, L. Zhao, Q. Wang, L. X. Zuo, A. Zhao, H. M. Yu, X. Jiang, and X. L. Xiong, "Plasma-induced chemical etching generating Ni3S2 for formaldehyde detection," Chinese Chemical Letters, 33 (6), 3035-3038 (2022).
21. Y. J. Yeh, and W. H. Chiang, "Ag Microplasma-Engineered Nanoassemblies on Cellulose Papers for Surface-Enhanced Raman Scattering and Catalytic Nitrophenol Reduction," Acs Applied Nano Materials, 4 (6), 6364-6375 (2021).
22. H. Nolan, D. Y. Sun, B. G. Falzon, P. Maguire, D. Mariotti, L. Zhang, and D. Sun, "Thermoresponsive nanocomposites incorporating microplasma synthesized magnetic nanoparticles-Synthesis and potential applications," Plasma Processes and Polymers, 16 (2)(2019).
23. E. R. Kavitha, S. Meiyazhagan, S. Yugeswaran, and K. Suresh, "Expeditious and single step synthesis of ceria quantum dots by microplasma discharge method for supercapacitor applications," Materials Chemistry and Physics, 318(2024).
24. Q. Wang, Y. L. Chen, R. X. Zhu, M. F. Luo, Z. R. Zou, H. M. Yu, X. Jiang, and X. L. Xiong, "One-step synthesis of Co(OH)F nanoflower based on micro-plasma: As an effective non-enzymatic glucose sensor," Sensors and Actuators B-Chemical, 304(2020).
25. G. Jenkins, J. Franzke, and A. Manz, "Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip," Lab on a Chip, 5 (7), 711-718 (2005).
26. V. Karanassios, K. Johnson, and A. T. Smith, "Micromachined, planar-geometry, atmospheric-pressure, battery-operated microplasma devices (MPDs) on chips for analysis of microsamples of liquids, solids, or gases by optical-emission spectrometry," Analytical and Bioanalytical Chemistry, 388 (8), 1595-1604 (2007).
27. M. Miclea, K. Kunze, J. Franzke, and K. Niemax, "Plasmas for lab-on-the-chip applications," Spectrochimica Acta Part B-Atomic Spectroscopy, 57 (10), 1585-1592 (2002).
28. X. M. Pan, Y. Lin, Y. B. Su, J. H. Yang, L. B. He, Y. R. Deng, X. D. Hou, and C. B. Zheng, "Methanol-Enhanced Liquid Electrode Discharge Microplasma-Induced Vapor Generation of Hg, Cd, and Zn: The Possible Mechanism and Its Application," Analytical Chemistry, 93 (23), 8257-8264 (2021).
29. J. Goree, B. Liu, D. Drake, and E. Stoffels, "Killing of S-mutans bacteria using a plasma needle at atmospheric pressure," Ieee Transactions on Plasma Science, 34 (4), 1317-1324 (2006).
30. T. Iqbal, A. U. Rehman, M. A. Khan, M. Shafique, P. Ahmad, H. Mahmood, M. Naeem, and J. Iqbal, "Copper oxide nanosheets prepared by facile microplasma electrochemical technique with photocatalytic and bactericidal activities," Journal of Materials Science-Materials in Electronics, 31 (19), 16649-16660 (2020).
31. S. B. Chen, S. Y. Wang, A. N. Zhu, and R. X. Wang, "Multiple chemical warfare agent simulant decontamination by self-driven microplasma," Plasma Science & Technology, 25 (11)(2023).
32. A. G. Yahaya, T. Okuyama, J. Kristof, M. G. Blajan, and K. Shimizu, "Direct and Indirect Bactericidal Effects of Cold Atmospheric-Pressure Microplasma and Plasma Jet," Molecules, 26 (9)(2021).
33. J. G. Eden, S. J. Park, N. P. Ostrom, S. T. McCain, C. J. Wagner, B. A. Vojak, J. Chen, C. Liu, P. von Allmen, F. Zenhausern, D. J. Sadler, C. Jensen, D. L. Wilcox, and J. J. Ewing, "Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: arrays, emitters and photodetectors," Journal of Physics D-Applied Physics, 36 (23), 2869-2877 (2003).
34. A. El-Habachi, W. H. Shi, M. Moselhy, R. H. Stark, and K. H. Schoenbach, "Series operation of direct current xenon chloride excimer sources," Journal of Applied Physics, 88 (6), 3220-3224 (2000).
35. S. Park, A. E. Mironov, J. Kim, S. J. Park, and J. G. Eden, "194 nm microplasma lamps driven by excitation transfer: optical sources for the Hg-199 ion atomic clock and photochemistry," Plasma Sources Science & Technology, 31 (4), 15 (2022).
36. R. W. Zhou, T. Q. Zhang, R. S. Zhou, A. Mai-Prochnow, S. B. Ponraj, Z. Fang, H. Masood, J. Kananagh, D. McClure, D. Alam, K. Ostrikov, and P. J. Cullen, "Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants," Science of the Total Environment, 750(2021).
37. A. Hafeez, Z. Shamair, N. Shezad, F. Javed, T. Fazal, S. U. Rehman, A. A. Bazmi, and F. Rehman, "Solar powered decentralized water systems: A cleaner solution of the industrial wastewater treatment and clean drinking water supply challenges," Journal of Cleaner Production, 289(2021).
38. S. Meiyazhagan, S. Yugeswaran, P. V. Ananthapadmanabhan, P. R. Sreedevi, and K. Suresh, "Relative Potential of Different Plasma Forming Gases in Degradation of Rhodamine B Dye by Microplasma Treatment and Evaluation of Reuse Prospectus for Treated Water as Liquid Fertilizer," Plasma Chemistry and Plasma Processing, 40 (5), 1267-1290 (2020).
39. J. R. Roth, "Industrial Plasma Engineering ", (1995), pp.
40. X. Aubert, G. Bauville, J. Guillon, B. Lacour, V. Puech, and A. Rousseau, "Analysis of the self-pulsing operating mode of a microdischarge," Plasma Sources Science and Technology, 16 (1), 23-32 (2007).
41. O. Taylan, and H. Berberoglu, "Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor," Journal of Applied Physics, 116 (4)(2014).
42. C. Lazzaroni, and P. Chabert, "Discharge resistance and power dissipation in the self-pulsing regime of micro-hollow cathode discharges," Plasma Sources Science and Technology, 20 (5)(2011).
43. P. Chabert, C. Lazzaroni, and A. Rousseau, "A model for the self-pulsing regime of microhollow cathode discharges," Journal of Applied Physics, 108 (11)(2010).
44. D. D. Hsu, and D. B. Graves, "Microhollow cathode discharge stability with flow and reaction," Journal of Physics D-Applied Physics, 36 (23), 2898-2907 (2003).
45. B. Dokić, and B. Blanusa, "Power Electronics ", (2015), pp.
46. Electronics Tutorials, in AC Circuits, Vol. 2023.
47. R. Epping, and M. Koch, "On-Site Detection of Volatile Organic Compounds (VOCs)," Molecules, 28 (4)(2023).
48. F. Röck, N. Barsan, and U. Weimar, "Electronic nose:: Current status and future trends," Chemical Reviews, 108 (2), 705-725 (2008).
49. L. Spinelle, M. Gerboles, G. Kok, S. Persijn, and T. Sauerwald, "Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds," Sensors, 17 (7)(2017).
50. X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, and H. S. Ning, "A Survey on Gas Sensing Technology," Sensors, 12 (7), 9635-9665 (2012).
51. B. Zabiegala, E. Przyk, A. Przyjazny, and J. Namiesnik, "Evaluation of indoor air quality on the basis of measurements of VOC concentrations," Chemia Analityczna, 45 (1), 11-26 (2000).
52. S. O. Agbroko, and J. Covington, "A novel, low-cost, portable PID sensor for the detection of volatile organic compounds," Sensors and Actuators B-Chemical, 275, 10-15 (2018).
53. X. B. Pang, H. J. Nan, J. P. Zhong, D. Q. Ye, M. D. Shaw, and A. C. Lewis, "Low-cost photoionization sensors as detectors in GC x GC systems designed for ambient VOC measurements," Science of the Total Environment, 664, 771-779 (2019).
54. A. Spadi, G. Angeloni, L. Guerrini, F. Corti, F. Maioli, L. Calamai, A. Parenti, and P. Masella, "A Conventional VOC-PID Sensor for a Rapid Discrimination among Aromatic Plant Varieties: Classification Models Fitted to a Rosemary Case-Study," Applied Sciences-Basel, 12 (13)(2022).
55. N. R. Stradiotto, H. Yamanaka, and M. V. B. Zanoni, "Electrochemical sensors: A powerful tool in analytical chemistry," J. Braz. Chem. Soc., 14 (2), 159-173 (2003).
56. P. Kumar, K. H. Kim, P. K. Mehta, L. Ge, and G. Lisak, "Progress and challenges in electrochemical sensing of volatile organic compounds using metal-organic frameworks," Critical Reviews in Environmental Science and Technology, 49 (21), 2016-2048 (2019).
57. D. S. Silvester, "New innovations in ionic liquid-based miniaturised amperometric gas sensors," Current Opinion in Electrochemistry, 15, 7-17 (2019).
58. M. R. Miah, M. H. Yang, S. Khandaker, M. M. Bashar, A. K. D. Alsukaibi, H. M. A. Hassan, H. Znad, and M. R. Awual, "Polypyrrole-based sensors for volatile organic compounds (VOCs) sensing and capturing: A comprehensive review," Sensors and Actuators a-Physical, 347(2022).
59. H. Meixner, and U. Lampe, "Metal oxide sensors," Sensors and Actuators B-Chemical, 33 (1-3), 198-202 (1996).
60. C. X. Wang, L. W. Yin, L. Y. Zhang, D. Xiang, and R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, 10 (3), 2088-2106 (2010).
61. A. Dey, "Semiconductor metal oxide gas sensors: A review," Materials Science and Engineering B-Advanced Functional Solid-State Materials, 229, 206-217 (2018).
62. J. G. Bartosz Szulczyński, "Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air," (2017).
63. C. K. Ho, E. R. Lindgren, K. S. Rawlinson, L. K. McGrath, and J. L. Wright, "Development of a surface acoustic wave sensor for in-situ monitoring of volatile organic compounds," Sensors, 3 (7), 236-247 (2003).
64. M. C. Horrillo, M. J. Fernández, J. L. Fontecha, I. Sayago, M. García, M. Aleixandre, J. P. Santos, L. Arés, J. Gutiérrez, I. Gràcia, and C. Cané, "Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings," Thin Solid Films, 467 (1-2), 234-238 (2004).
65. F. Gao, F. Boussaid, W. P. Xuan, C. Y. Tsui, and A. Bermak, "Dual Transduction Surface Acoustic Wave Gas Sensor for VOC Discrimination," Ieee Electron Device Letters, 39 (12), 1920-1923 (2018).
66. C. K. O'Sullivan, and G. G. Guilbault, "Commercial quartz crystal microbalances - theory and applications," Biosensors & Bioelectronics, 14 (8-9), 663-670 (1999).
67. R. E. Speight, and M. A. Cooper, "A Survey of the 2010 Quartz Crystal Microbalance Literature," Journal of Molecular Recognition, 25 (9), 451-473 (2012).
68. K. W. Liu, and C. Zhang, "Volatile organic compounds gas sensor based on quartz crystal microbalance for fruit freshness detection: A review," Food Chemistry, 334(2021).
69. E. D. McNaghten, A. M. Parkes, B. C. Griffiths, A. I. Whitehouse, and S. Palanco, "Detection of trace concentrations of helium and argon in gas mixtures by laser-induced breakdown spectroscopy," Spectrochimica Acta Part B-Atomic Spectroscopy, 64 (10), 1111-1118 (2009).
70. R. K. Jha, "Non-Dispersive Infrared Gas Sensing Technology: A Review," Ieee Sensors Journal, 22 (1), 6-15 (2022).
71. S. Esfahani, A. Tiele, S. O. Agbroko, and J. A. Covington, "Development of a Tuneable NDIR Optical Electronic Nose," Sensors, 20 (23)(2020).
72. T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction," Sensors and Actuators B-Chemical, 231, 529-538 (2016).
73. M. Kneissl, T. Y. Seong, J. Han, and H. Amano, "The emergence and prospects of deep-ultraviolet light-emitting diode technologies," Nature Photonics, 13 (4), 233-244 (2019).
74. J. Hue, M. Dupoy, T. Bordy, R. Rousier, S. Vignoud, B. Schaerer, T. H. Tran-Thi, C. Rivron, L. Mugherli, and P. Karpe, "Benzene and xylene detection by absorbance in the range of 10-100 ppb application: Quality of indoor air," Sensors and Actuators B-Chemical, 189, 194-198 (2013).
75. Y. Q. Zhao, J. P. Zhou, Y. Song, Z. D. Li, X. Liu, M. M. Zhang, H. C. Zang, X. Cao, and C. X. Lv, "An environment-friendly device for rapid determination of chemical oxygen demand in waters based on ozone-induced chemiluminescence technology," Analytical Methods, 11 (12), 1707-1714 (2019).
76. S. Toby, "Chemi-luminescence in the reactions of ozone," Chemical Reviews, 84 (3), 277-285 (1984).
77. A. M. Jimenez, M. J. Navas, and G. Galan, "Air analysis: Determination of ozone by chemiluminescence," Applied Spectroscopy Reviews, 32 (1-2), 141-149 (1997).
78. W. Li, Z. Yin, X. Cheng, W. Hang, J. Li, and B. Huang, "Pulsed microdischarge with inductively coupled plasma mass spectrometry for elemental analysis on solid metal samples," Anal Chem, 87 (9), 4871-4878 (2015).
79. Z. Machala, M. Janda, K. Hensel, I. Jedlovský, L. Leštinská, V. Foltin, V. Martišovitš, and M. Morvová, "Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications," Journal of Molecular Spectroscopy, 243 (2), 194-201 (2007).
80. M. A. Lieberman, and A. J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing, 2nd Edition ", (2005), pp.
81. W. C. Hughes, "Molecular beam epitaxy growth and properties of GaN films on GaN/SiC substrates," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 13 (4)(1995).
82. Y. Yang, Y. Wang, X. Hou, Y. Lin, L. Yang, X. Hou, and C. Zheng, "Can low-temperature point discharge Be used as atomic emission source for sensitive determination of cyclic volatile methylsiloxanes?," Anal Chim Acta, 1124, 121-128 (2020).
83. F. Meng, and Y. Duan, "Nitrogen microplasma generated in chip-based ingroove glow discharge device for detection of organic fragments by optical emission spectrometry," Anal Chem, 87 (3), 1882-1888 (2015).
84. B. Mitra, B. Levey, and Y. B. Gianchandani, "Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing," Ieee Transactions on Plasma Science, 36 (4), 1913-1924 (2008).
85. A. J. McCormack, S. C. Tong, and W. D. Cooke, "Sensitive selective gas chromatography detector based on emission spectrometry of organic compounds," Analytical Chemistry, 37 (12), 1470-+ (1965).
86. R. S. Braman, and A. Dynako, "Direct current discharge spectral emission-type detector," Analytical Chemistry, 40 (1), 95-& (1968).
87. R. S. Braman, "Direct current discharge emission spectra for detection and identification of some air pollutant compounds," Atmospheric Environment, 5 (8), 669-& (1971).
88. J. C. T. Eijkel, H. Stoeri, and A. Manz, "A dc microplasma on a chip employed as an optical emission detector for gas chromatography," Analytical Chemistry, 72 (11), 2547-2552 (2000).
89. Z. Jin, Y. X. Su, and Y. X. Duan, "A low power, atmospheric pressure, pulsed plasma source for molecular emission spectrometry," Analytical Chemistry, 73 (2), 360-365 (2001).
90. Y. X. Duan, Y. X. Su, and Z. Jin, "Capillary-discharge-based portable detector for chemical vapor monitoring," Review of Scientific Instruments, 74 (5), 2811-2816 (2003).
91. R. Guchardi, and P. C. Hauser, "A capacitively coupled microplasma in a fused silica capillary," Journal of Analytical Atomic Spectrometry, 18 (9), 1056-1059 (2003).
92. R. Guchardi, and P. C. Hauser, "Determination of organic compounds by gas chromatography using a new capacitively coupled microplasma detector," Analyst, 129 (4), 347-351 (2004).
93. B. Mitra, and Y. B. Gianchandani, "The detection of chemical vapors in air using optical emission spectroscopy of pulsed microdischarges from two- and three-electrode microstructures," Ieee Sensors Journal, 8 (7-8), 1445-1454 (2008).
94. A. R. Hoskinson, J. Hopwood, N. W. Bostrom, J. A. Crank, and C. Harrison, "Low-power microwave-generated helium microplasma for molecular and atomic spectrometry," Journal of Analytical Atomic Spectrometry, 26 (6), 1258-1264 (2011).
95. W. Li, C. B. Zheng, G. Y. Fan, L. Tang, K. L. Xu, Y. Lv, and X. D. Hou, "Dielectric Barrier Discharge Molecular Emission Spectrometer as Multichannel GC Detector for Halohydrocarbons," Analytical Chemistry, 83 (13), 5050-5055 (2011).
96. R. L. V. Wal, J. H. Fujiyama-Novak, C. K. Gaddam, D. Das, A. Hariharan, and B. Ward, "Atmospheric Microplasma Jet: Spectroscopic Database Development and Analytical Results," Applied Spectroscopy, 65 (9), 1073-1082 (2011).
97. C. K. Eun, and Y. B. Gianchandani, "Microdischarge-Based Sensors and Actuators for Portable Microsystems: Selected Examples," IEEE J. Quantum Electron., 48 (6), 814-826 (2012).
98. X. Yuan, X. L. Ding, Z. J. Zhao, X. F. Zhan, and Y. X. Duan, "Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry," Journal of Analytical Atomic Spectrometry, 27 (12), 2094-2101 (2012).
99. Y. F. Tian, P. Wu, X. Wu, X. M. Jiang, K. L. Xu, and X. D. Hou, "Corona discharge radical emission spectroscopy: a multi-channel detector with nose-type function for discrimination analysis," Analyst, 138 (8), 2249-2253 (2013).
100. J. H. Fujiyama-Novak, C. K. Gaddam, D. Das, R. L. Vander Wal, and B. Ward, "Detection of explosives by plasma optical emission spectroscopy," Sensors and Actuators B-Chemical, 176, 985-993 (2013).
101. B. J. Han, X. M. Jiang, X. D. Hou, and C. B. Zheng, "Dielectric Barrier Discharge Carbon Atomic Emission Spectrometer: Universal GC Detector for Volatile Carbon-Containing Compounds," Analytical Chemistry, 86 (1), 936-942 (2014).
102. D. B. Luo, Y. X. Duan, Y. He, and B. Gao, "A Novel DC Microplasma Sensor Constructed in a Cavity PDMS Chamber with Needle Electrodes for Fast Detection of Methanol-containing Spirit," Scientific Reports, 4(2014).
103. F. Y. Meng, X. M. Li, and Y. X. Duan, "Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement," Scientific Reports, 4(2014).
104. R. L. Vander Wal, C. K. Gaddam, and M. J. Kulis, "An Investigation of Micro-Hollow Cathode Glow Discharge Generated Optical Emission Spectroscopy for Hydrocarbon Detection and Differentiation," Applied Spectroscopy, 68 (6), 649-656 (2014).
105. B. Wang, W. Q. Cao, and Y. X. Duan, "Selective detection of organophosphate nerve agents using microplasma device," Analytical Methods, 6 (6), 1848-1854 (2014).
106. X. Jiang, C. H. Li, Z. Long, and X. D. Hou, "Selectively enhanced molecular emission spectra of benzene, toluene and xylene with nano-MnO2 in atmospheric ambient temperature dielectric barrier discharge," Analytical Methods, 7 (2), 400-404 (2015).
107. C. H. Li, X. Jiang, and X. D. Hou, "Dielectric barrier discharge molecular emission spectrometer as gas chromatographic detector for amines," Microchemical Journal, 119, 108-113 (2015).
108. F. Y. Meng, and Y. X. Duan, "Nitrogen Microplasma Generated in Chip-Based Ingroove Glow Discharge Device for Detection of Organic Fragments by Optical Emission Spectrometry," Analytical Chemistry, 87 (3), 1882-1888 (2015).
109. H. B. Zhu, M. L. Zhou, J. Lee, R. Nidetz, K. Kurabayashi, and X. D. Fan, "Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection," Analytical Chemistry, 88 (17), 8780-8786 (2016).
110. X. Jiang, Z. M. Hu, H. W. He, J. Luo, Y. F. Tian, and X. D. Hou, "A two-dimensional sensor based on dielectric barrier discharge molecular optical emission and chemiluminescence for discrimination analysis of volatile halohydrocarbons," Microchemical Journal, 129, 16-22 (2016).
111. T. Yang, D. X. Gao, Y. L. Yu, M. L. Chen, and J. H. Wang, "Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath," Talanta, 146, 603-608 (2016).
112. D. B. Luo, D. C. Ma, Y. He, X. S. Li, S. Wang, and Y. X. Duan, "Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling," Microchemical Journal, 130, 33-39 (2017).
113. M. T. Li, S. X. Huang, K. L. Xu, X. M. Jiang, and X. D. Hou, "Miniaturized point discharge-radical optical emission spectrometer: A multichannel optical detector for discriminant analysis of volatile organic sulfur compounds," Talanta, 188, 378-384 (2018).
114. B. Qian, J. Zhao, Y. He, L. X. Peng, H. L. Ge, and B. J. Han, "Miniaturized dielectric barrier discharge-molecular emission spectrometer for determination of total sulfur dioxide in food," Food Chemistry, 317(2020).
115. J. Q. Mao, Y. Atwa, Z. X. Wu, D. McNeill, and H. Shakeel, "Identification of Different Classes of VOCs Based on Optical Emission Spectra Using a Dielectric Barrier Helium Plasma Coupled with a Mini Spectrometer," Acs Measurement Science Au, 4 (2), 201-212 (2024).
116. P. Dimitrakellis, M. Giannoglou, A. Zeniou, E. Gogolides, and G. Katsaros, "Food container employing a cold atmospheric plasma source for prolonged preservation of plant and animal origin food products," MethodsX, 8, 101177 (2021).
117. P. Osmokrovic, M. Vujisic, K. Stankovic, A. Vasic, and B. Loncar, "Mechanism of electrical breakdown of gases for pressures from 10<SUP>-9</SUP> to 1 bar and inter-electrode gaps from 0.1 to 0.5mm," Plasma Sources Science & Technology, 16 (3), 643-655 (2007).
118. A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, "Deviations from the Paschen's law at short gap distances from 100 nm to 10 μm in air and nitrogen," Applied Physics Letters, 105 (12)(2014).
119. G. Nersisyan, and W. G. Graham, "Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium," Plasma Sources Science & Technology, 13 (4), 582-587 (2004).
120. I. G. Koo, J. H. Cho, and W. M. Lee, "Influence of the gas humidity on the uniformity of rf-powered atmospheric-pressure low-temperature DBD plasmas," Plasma Processes and Polymers, 5 (2), 161-167 (2008).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94024-
dc.description.abstract電漿是物質的第四態,將電漿的尺度控制在微米等級的微電漿會有體積小、功耗低等優勢,電漿光譜在分析化學上擁有高靈敏度與可用於檢測的潛力,然而若是要將電漿光譜的分析方式,實地運用於空氣環境下的檢測仍有一定的困難度,因此本研究希望設計出一套氣體檢測平台用於偵測揮發性有機氣體,為了測試其偵測表現,本研究將使用乙醇蒸氣作為待測氣體,並研究和調控實驗參數,期望可用於分析與定量。
本研究所使用的氣體檢測平台,為自激振盪的升壓模組產生高壓直流電,以驅動微電漿。實驗中,以檢測平台的性能測試與穩定性和再現性作為研究的基礎,進而將實驗參數納入檢測平台最適化的考量,以期望可以找出在空氣環境中有利於有機氣體檢測的條件。影響程度最大的是迴路中串聯鎮流電阻值的改變,在間距400 μm的選擇下,測試0.5到400 kΩ等不同阻值,發現電阻會影響系統的操作線,使其有不同的放電模式與不同的電漿光譜,在調控為自脈衝的模式下,當鎮流電阻值越小,峰值功率越大,電漿光譜上,乙醇造成的CN特徵峰也會越明顯,將有利於此平台的檢測能力。其他參數,如電極間距、氣體流速、環境濕度,亦會有不同程度的影響。
本研究將電性特徵,光譜表現,與特徵峰的穩定度等實驗結果進行評估。最終將電極間距控制在400 μm,氣體流速為1.84 slm,並在常溫常壓下將相對濕度調控在50-55%左右以模擬在含有水氣的真實空氣環境下,進行檢測三種揮發性有機氣體,結果顯示直流微電漿系統具有良好的線性響應,R2皆大於0.97,甲醇、乙醇、異丙醇的偵測極限可達81.8、26.0、13.9 ppm。
zh_TW
dc.description.abstractPlasma is the fourth state of matter. Microplasma, which controls plasma on a micron scale, has the advantages of small size and low power consumption. Plasma spectroscopy is highly sensitive and holds significant potential for analytical chemistry. However, applying plasma spectroscopy for detection in an air environment remains challenging. Therefore, this study aims to design a gas detection platform for volatile organic gases. To test this detection platform, ethanol vapor will be used as the target gas. Experimental parameters will be studied and regulated, with the goal of achieving effective analysis and quantification.
The gas detection platform used in this study generates high-voltage direct current for the self-oscillating boost module to drive microplasma. In the experiment, the performance, stability, and reproducibility of the detection platform were evaluated, and experimental parameters were optimized to improve the detection of organic gases in the air. The value of the series ballast resistor in the circuit has the greatest impact. With an electrode gap of 400 μm, different resistance values ranging from 0.5 to 400 kΩ were tested. It was found that the resistance affects the system's operating line, resulting in different discharge modes. In self-pulse mode, a smaller ballast resistance value and higher peak power enhance the CN characteristic peak caused by ethanol in the plasma spectrum, improving the platform's detection capabilities. Other parameters, such as electrode gap, gas flow rate, and environmental humidity, also influence the results.
This study evaluates experimental results, including electrical characteristics, spectral performance, and the stability of characteristic peaks. Ultimately, the optimal conditions were identified: an electrode gap of 400 μm, a gas flow rate of 1.84 slm, and a relative humidity of 50-55% under room temperature and atmospheric pressure. These conditions were used to simulate the detection of three volatile organic compounds in a real air environment containing water vapor. The results demonstrate that the DC microplasma system has a good linear response, with R² values greater than 0.97, and detection limits for methanol, ethanol, and isopropyl alcohol reaching 81.8, 26.0, and 13.9 ppm, respectively.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:18:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:18:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 ix
表次 xvi
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第 2 章 文獻回顧 3
2.1 電漿簡介 3
2.1.1 電漿產生機制與反應 3
2.1.2 帕邢定律 4
2.1.3 壓力對電漿系統之影響 5
2.2 微電漿簡介 6
2.2.1 微電漿系統之簡介 6
2.2.2 微電漿系統之應用 13
2.3 直流放電系統 22
2.3.1 直流放電系統之特徵曲線 22
2.3.2 自脈衝放電現象 25
2.3.3 自激震盪高壓模組 30
2.4 氣體檢測器 36
2.4.1 常見氣體檢測器 36
2.4.2 電漿系統之氣體檢測器 49
第 3 章 實驗設備 61
3.1 微電漿產生裝置與檢測系統 61
3.1.1 高壓產生裝置 62
3.1.2 電極與鎮流電阻選擇 63
3.1.3 檢測腔體之設計 64
3.1.4 檢測氣氛之調控 65
3.2 光學檢測 67
3.3 電性檢測 69
3.4 電漿光譜模擬 70
3.5 化學藥品與氣體成分 71
第 4 章 實驗結果與討論 73
4.1 電漿光譜模擬與實驗結果 73
4.2 實驗裝置之性能測試 77
4.2.1 裸光纖測試 77
4.2.2 積分時間選擇之影響 81
4.2.3 響應速度、壽命與穩定性之測試 84
4.3 直流微電漿之放電特性 87
4.3.1 鎮流電阻與電性統整 87
4.3.2 直流模式與自脈衝模式比較 100
4.4 系統參數對分析之影響 104
4.4.1 電極間距之影響 104
4.4.2 氣體流速之影響 109
4.4.3 水氣之影響 114
4.5 定量分析 119
4.5.1 不同揮發性有機物之分析 119
4.5.2 光譜處理方式 122
4.5.3 檢量線之建立 125
第 5 章 結論與未來展望 129
第 6 章 參考文獻 131
-
dc.language.isozh_TW-
dc.subject微電漿zh_TW
dc.subject電漿發射光譜zh_TW
dc.subject直流微電漿zh_TW
dc.subject氣體檢測器zh_TW
dc.subject空氣電漿zh_TW
dc.subject自脈衝放電zh_TW
dc.subject水氣干擾zh_TW
dc.subjectplasma emission spectrumen
dc.subjectwater vapor interferenceen
dc.subjectself-pulse dischargeen
dc.subjectair plasmaen
dc.subjectVOC gas detectoren
dc.subjectDC microplasmaen
dc.subjectmicroplasmaen
dc.title開發用於檢測空氣中揮發性有機物的直流驅動針板式微電漿zh_TW
dc.titleDevelopment of DC-Driven Needle-to-Plane Microplasmas for Detection of VOC in Airen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建彰;陳奕君zh_TW
dc.contributor.oralexamcommitteeJian-Zhang Chen;I-Chun Chengen
dc.subject.keyword微電漿,電漿發射光譜,直流微電漿,氣體檢測器,空氣電漿,自脈衝放電,水氣干擾,zh_TW
dc.subject.keywordmicroplasma,plasma emission spectrum,DC microplasma,VOC gas detector,air plasma,self-pulse discharge,water vapor interference,en
dc.relation.page138-
dc.identifier.doi10.6342/NTU202403134-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
7.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved