Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94012Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃奎隆 | zh_TW |
| dc.contributor.advisor | Kwei-Long Huang | en |
| dc.contributor.author | 曾富隆 | zh_TW |
| dc.contributor.author | Fu-Long Tseng | en |
| dc.date.accessioned | 2024-08-14T16:14:43Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | Johnson, Selmer Martin. "Optimal two‐and three‐stage production schedules with setup times included." Naval research logistics quarterly 1.1 (1954): 61-68.
Barrett, Robert T., and Sukran N. Kadipasaoglu. "Dispatching rules for a dynamic flow shop." Production and Inventory Management Journal 31.1 (1990): 54. Vallada, Eva, Rubén Ruiz, and Gerardo Minella. "Minimising total tardiness in the m-machine flowshop problem: A review and evaluation of heuristics and metaheuristics." Computers & Operations Research 35.4 (2008): 1350-1373. Lee, Ik Sun. "Minimizing total tardiness for the order scheduling problem." International Journal of Production Economics 144.1 (2013): 128-134. M'Hallah, Rym. "Minimizing total earliness and tardiness on a permutation flow shop using VNS and MIP." Computers & Industrial Engineering 75 (2014): 142-156. Fernandez-Viagas, Victor, and Jose M. Framinan. "NEH-based heuristics for the permutation flowshop scheduling problem to minimise total tardiness." Computers & Operations Research 60 (2015): 27-36. Nawaz, Muhammad, E. Emory Enscore Jr, and Inyong Ham. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem." Omega 11.1 (1983): 91-95. [19] PanQ-K,RuizR.Acomprehensive Zhao, Fuqing, et al. "A hybrid discrete water wave optimization algorithm for the no-idle flowshop scheduling problem with total tardiness criterion." Expert Systems with Applications 146 (2020): 113166. Chen, Zhi-Long, and Warren B. Powell. "A column generation based decomposition algorithm for a parallel machine just-in-time scheduling problem." European Journal of Operational Research 116.1 (1999): 220-232. Xiao, Wendong, et al. "Hybrid flow shop scheduling using genetic algorithms." Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No. 00EX393). Vol. 1. IEEE, 2000. Fan, Jiaxin, et al. "A hybrid evolutionary algorithm using two solution representations for hybrid flow-shop scheduling problem." IEEE Transactions on Cybernetics 53.3 (2021): 1752-1764. Yaurima, Victor, Larisa Burtseva, and Andrei Tchernykh. "Hybrid flowshop with unrelated machines, sequence-dependent setup time, availability constraints and limited buffers." Computers & Industrial Engineering 56.4 (2009): 1452-1463. Yu, Chunlong, Quirico Semeraro, and Andrea Matta. "A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility." Computers & Operations Research 100 (2018): 211-229. Ying, Kuo-Ching, and Shih-Wei Lin. "Multiprocessor task scheduling in multistage hybrid flow-shops: an ant colony system approach." International Journal of Production Research 44.16 (2006): 3161-3177. Wang, Xianpeng, and Lixin Tang. "A tabu search heuristic for the hybrid flowshop scheduling with finite intermediate buffers." Computers & Operations Research 36.3 (2009): 907-918. Ruiz, Rubén, and José Antonio Vázquez-Rodríguez. "The hybrid flow shop scheduling problem." European journal of operational research 205.1 (2010): 1-18. Koulamas, Christos. "The proportionate flow shop total tardiness problem." European Journal of Operational Research 284.2 (2020): 439-444. Gilmore, Paul C., and Ralph E. Gomory. "A linear programming approach to the cutting-stock problem." Operations research 9.6 (1961): 849-859. Belov, Gleb, and Guntram Scheithauer. "A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths." European Journal of Operational Research 141.2 (2002): 274-294. Gradišar, Miro, et al. "A sequential heuristic procedure for one-dimensional cutting." European Journal of Operational Research 114.3 (1999): 557-568. Gradisar, Miro, and Peter Trkman. "A combined approach to the solution to the general one-dimensional cutting stock problem." Computers & Operations Research 32.7 (2005): 1793-1807. Reinertsen, Harald, and Thomas WM Vossen. "The one-dimensional cutting stock problem with due dates." European Journal of Operational Research 201.3 (2010): 701-711. Dagli, Cihan H., and M. Yalcin Tatoglu. "An approach to two-dimensional cutting stock problems." International Journal of Production Research 25.2 (1987): 175-190. Mellouli, Ahmed, and Abdelaziz Dammak. "An algorithm for the two-dimensional cutting-stock problem based on a pattern generation procedure." Inf Manag Sci 19.2 (2008): 201-218. Cintra, Glauber Ferreira, et al. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation." European Journal of Operational Research 191.1 (2008): 61-85. Silva, Elsa, Filipe Alvelos, and JM Valério De Carvalho. "An integer programming model for two-and three-stage two-dimensional cutting stock problems." European Journal of Operational Research 205.3 (2010): 699-708. Furini, Fabio, and Enrico Malaguti. "Models for the two-dimensional two-stage cutting stock problem with multiple stock size." Computers & Operations Research 40.8 (2013): 1953-1962. Nascimento, Douglas Nogueira, et al. "The two-dimensional cutting stock problem with usable leftovers and uncertainty in demand." Computers & Industrial Engineering 186 (2023): 109705. Wang, Weihao, et al. "Integrated optimisation on flow-shop production with cutting stock." International Journal of Production Research 57.19 (2019): 5996-6012. Rebah, Oumaima Ben, Abdelkarim Elloumi, and Racem Mellouli. "A Real-Case Scheduling of Cutting Stock Operations as a Two-Stage Hybrid Flow Shop Problem with Eligible and Common Machines and Job Position Constraints." 2023 IEEE Afro-Mediterranean Conference on Artificial Intelligence (AMCAI). IEEE, 2023. Daniels, Richard L., and Robert J. Chambers. "Multiobjective flow‐shop scheduling." Naval Research Logistics (NRL) 37.6 (1990): 981-995. Zhang, Biao, et al. "A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem." Computers & Industrial Engineering 136 (2019): 325-344. Basseur, Matthieu, Franck Seynhaeve, and El-ghazali Talbi. "Design of multi-objective evolutionary algorithms: Application to the flow-shop scheduling problem." Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). Vol. 2. IEEE, 2002. Arroyo, José Elias Claudio, and Vinícius Amaral Armentano. "Genetic local search for multi-objective flowshop scheduling problems." European journal of operational research 167.3 (2005): 717-738. Varadharajan, T. K., and Chandrasekharan Rajendran. "A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs." European journal of operational research 167.3 (2005): 772-795. Rahimi-Vahed, A. R., and S. M. Mirghorbani. "A multi-objective particle swarm for a flow shop scheduling problem." Journal of combinatorial optimization 13 (2007): 79-102. Minella, Gerardo, Rubén Ruiz, and Michele Ciavotta. "Restarted Iterated Pareto Greedy algorithm for multi-objective flowshop scheduling problems." Computers & Operations Research 38.11 (2011): 1521-1533. Saber, Reza Ghorbani, and Mohammad Ranjbar. "Minimizing the total tardiness and the total carbon emissions in the permutation flow shop scheduling problem." Computers & Operations Research 138 (2022): 105604. Neufeld, Janis S., Sven Schulz, and Udo Buscher. "A systematic review of multi-objective hybrid flow shop scheduling." European Journal of Operational Research 309.1 (2023): 1-23. Gen, Mitsuo, and Runwei Cheng. Genetic algorithms and engineering optimization. Vol. 7. John Wiley & Sons, 1999. Mirabi, Mohammad, S. M. T. Fatemi Ghomi, and F. Jolai. "A novel hybrid genetic algorithm to solve the make-to-order sequence-dependent flow-shop scheduling problem." Journal of Industrial Engineering International 10 (2014): 1-9. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94012 | - |
| dc.description.abstract | 隨著企業間的競爭日益激烈,生產排程與原料分配的結合對於降低成本和提高獲利有著顯著的幫助。雖然在混合流線型生產排程與原料分配的研究領域已有許多成果,但多數研究僅針對單一議題進行探討,將兩者同時納入考量的研究在近幾年才開始逐漸發展。
在機械加工領域中,一些大型工件在加工後會產生體積較大的餘料,這些餘料可供製造較小型的工件,取代原先用於該工件而需採購的新料,從而有效降低原料成本。而工件該選擇新料或餘料來加工,及餘料的最佳化分配以降低原料成本,則是本研究中的研究主題。本研究探討原料分配與混合流線型生產排程,考慮餘料再利用與最小化排程總延遲時間,以找出在有效利用原料情況下的最佳生產排程。這個問題包括兩階段製程的非等效平行機台,在第一階段製程結束後會產生加工餘料,而不同工件的加工順序會影響餘料的產生時間點,從而改變可使用的原料選項。 本研究首先建立適用於此問題的混合整數規劃模型,並根據模型的一些特性提出具有兩階段的基因演算法,此演算法在計算目標式的部分結合整數模型進行求解,以提高面對大規模問題時的可行性。最後通過不同規模問題的測試,探討了模型與演算法各自的優劣。 | zh_TW |
| dc.description.abstract | With the increasing competition among enterprises, the integration of production scheduling and material allocation has a significant impact on reducing costs and improving profitability. Although there have been many achievements in the research field of hybrid flow shop scheduling and material allocation, most studies focus on a single issue. Research that considers both aspects simultaneously has begun to develop in recent years.
In the field of machining, large workpieces often produce substantial amounts of residual material after processing. This residual material can be used to manufacture smaller workpieces, thereby reducing the need to purchase new material and effectively lowering material costs. The focus of this study is on determining whether to use new material or residual material for machining and optimizing the allocation of residual material to minimize material costs. This study explores material allocation and hybrid flow shop scheduling, considering leftover reuse and minimizing total tardiness to find the optimal production schedule under effective material utilization. This problem involves a two-stage process with unrelated parallel machines. Residual material are generated after the first stage of processing, and the processing order of different workpieces affects the timing of residual material generation, thereby altering the available material options. This study first establishes a mixed integer programming model applicable to this problem. Based on some characteristics of the model, a two-stage genetic algorithm is proposed. This algorithm combines the integer model in the objective function calculation to improve feasibility when dealing with large-scale problems. Finally, through testing on problems of different scales, the advantages and disadvantages of the model and algorithm are explored. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:14:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:14:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
摘要 I ABSTRACT II 目次 III 圖次 V 表次 VI 第一章 緒論 1 1.1研究背景 1 1.2 研究動機與目的 2 1.3 研究架構 3 第二章 文獻探討 5 2.1 流線型生產排程(FSP) 5 2.2 混合流線型生產排程(HFSP) 6 2.3 原料分配問題 8 2.4 多目標最佳化 10 第三章 問題描述與研究方法 11 3.1 問題描述 11 3.1.1 混合流線型生產排程 11 3.1.2 工件之交期與原料需求 11 3.2 問題假設與限制 13 3.3 混合整數線性規劃模型 14 3.3.1 參數設定 14 3.3.2 決策變數 14 3.3.3 數學規劃模型 15 3.3.4 限制式說明 16 3.4模型求解範例與數值測試 18 3.4.1 範例資料說明 18 3.4.2 數值測試說明 22 3.4.3 數值測試分析 23 第四章 基因演算法 25 4.1 GA1_具兩種解碼的排列(PERMUTATION)編碼染色體 26 4.1.1 染色體設計 26 4.1.2 交配與突變 27 4.1.3 解碼 29 4.1.4 適應值計算及子代選擇 30 4.2 GA2_同時包含加工順序與機台指派之染色體 32 4.2.1染色體設計 32 4.2.2交配與突變 33 第五章 數值測試 35 5.1 實驗設計 35 5.2 實驗分析 37 5.3 實驗探討 39 5.4 實務案例 41 5.5 結論 43 第六章 結論 44 6.1 研究總結 44 6.2 未來研究方向 44 參考文獻 46 附錄 50 附錄一. 測試資料參數 50 附錄二. 測試資料整數規劃模型求解結果 52 附錄三. XGBOOST測試資料集 54 附錄四. 演算法求解結果 56 附錄五. 實務案例工件資料 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 餘料分配 | zh_TW |
| dc.subject | 混合流線型生產排程 | zh_TW |
| dc.subject | 雙目標最佳化 | zh_TW |
| dc.subject | 基因演算法 | zh_TW |
| dc.subject | 混整數線性規劃 | zh_TW |
| dc.subject | Mixed-Integer Linear Programming | en |
| dc.subject | Genetic Algorithm | en |
| dc.subject | Bi-objective Optimization | en |
| dc.subject | Residual Material Allocation | en |
| dc.subject | Hybrid Flow Shop Scheduling | en |
| dc.title | 考量原料分配下之混合流線型生產排程 | zh_TW |
| dc.title | Hybrid Flow-Shop Scheduling with Considering Material Allocation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳政翰;黃道宏 | zh_TW |
| dc.contributor.oralexamcommittee | Gen-Han Wu;Dao-Hong Huang | en |
| dc.subject.keyword | 混合流線型生產排程,餘料分配,混整數線性規劃,基因演算法,雙目標最佳化, | zh_TW |
| dc.subject.keyword | Hybrid Flow Shop Scheduling,Residual Material Allocation,Mixed-Integer Linear Programming,Genetic Algorithm,Bi-objective Optimization, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202403675 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| Appears in Collections: | 工業工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 3.82 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
