請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94010
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 毛明華 | zh_TW |
dc.contributor.advisor | Ming-Hua Mao | en |
dc.contributor.author | 游輝俊 | zh_TW |
dc.contributor.author | Hui-Jun Yu | en |
dc.date.accessioned | 2024-08-14T16:14:06Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-13 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | [1] Vahala, Kerry J. “Optical microcavities. ” nature 424.6950 (2003): 839-846.
[2] Ya-nan Zhang; Tianmin Zhou; Bo Han; Aozhuo Zhang; Yong Zhao, “Optical bio-chemical sensors based on whispering gallery mode resonators,” Nanoscale, 2018,10, 13832-13856 [3] Li, Gaoyuan, et al. "TiO2 microring resonators with high Q and compact footprint fabricated by a bottom-up method." Optics Letters 45.18 (2020): 5012-5015. [4] 陳楷文,「可撓式量子點微碟之製作及其應變引發之模態偏移研究」國立台灣大學碩士論文(2021) [5] S. Hoogland, “The fuss about quantum dots,” Photonics Spectra, vol. 42, pp. 80-+, 2008. [6] Steigerwald, Michael L., et al. "Surface derivatization and isolation of semiconductor cluster molecules." Journal of the American Chemical Society 110.10 (1988): 3046-3050. [7] A. M. Smith, S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering.” Acc. Chem. Res, vol. 43, pp. 190–200, 2010. [8] T. M. Benson, “Micro-optical resonators for microlasers and integrated optoelectronics: recent advances and future challenges.” [9] L. A. Coldren, S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits.” Hoboken, NJ, USA: Wiley, 1995. [10] 鄭智怡,「硒化鎘/硫化鋅膠狀量子點光穩定性及其應用於微碟共振腔雷射之研究」國立台灣大學博士論文 (2017) [11] A. G. Nagy, “Sidewall tapering in reactive ion etching.” Journal of The Electrochemical Society, vol. 132, pp 689-693, 1985. [12] A. I. Rahachou, I. V. Zozoulenko, “Effects of boundary roughness on a Q factor of whispering-gallery-mode lasing microdisk cavities.” Journal of applied physics, vol. 94, pp. 7929-7931, 2003. [13] Gorodetsky, Mikhail L., Anatoly A. Savchenkov, and Vladimir S. Ilchenko. “Ultimate Q of optical microsphere resonators.” Optics letters 21.7 (1996): 453-455. [14] V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A, vol. 137, pp. 393–397, 1989. [15] Ido, Yasuki, et al. “Reduced lasing threshold in thiophene/phenylene co-oligomer crystalline microdisks.” Applied physics express 3.1 (2009): 012702. [16] Aarik, Jaan, et al. "Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition." Thin Solid Films 305.1-2 (1997): 270-273. [17] Bhattacharyya, D., et al. "Spectroscopic ellipsometry of TiO2 layers prepared by ion-assisted electron-beam evaporation." Thin Solid Films 360.1-2 (2000): 96-102. [18] Pjević, D., et al. "Influence of substrate temperature and annealing on structural and optical properties of TiO2 films deposited by reactive e-beam evaporation." Thin Solid Films 591 (2015): 224-229. [19]Abd El-Moula, A. A., M. Raaif, and F. M. El-Hossary. "Optical Properties of Nanocrystalline/Amorphous TiO 2 Thin Film Deposited by rf Plasma Magnetron Sputtering." Acta Physica Polonica, A. 137.6 (2020). [20]Fu, Meicheng, et al. "Ultra-compact titanium dioxide micro-ring resonators with sub-10-μm radius for on-chip photonics." Photonics Research 9.7 (2021): 1416-1422. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94010 | - |
dc.description.abstract | 本論文中,我們利用由下而上的微碟製作方法,成功製作出具有圓周邊緣不被乾蝕刻之二氧化鈦微碟共振腔,圓周邊緣不被乾蝕刻能使光在內部繞行時,較不被邊緣的粗糙面影響,可以完好的在內部進行全反射並減少散射損耗,使品質因子上升,但在實驗過程中我們發現利用此法製作出的微碟會有變形的情況,導致輻射損耗,因此我們會討論不同程度變形下的Q值表現情形。我們以U型錐形光纖耦合的方式進行Q值的量測,以中心波長1330nm超輻射二極體(Super Luminescent Diode, SLD)進行傳輸頻譜量測,其中直徑20μm,厚度400nm二氧化鈦微碟,在傳輸頻譜的量測下,Q值為600。
接著我們將由下而上的微碟製作方法應用於量子點微碟共振腔元件,以硒化鎘/硫化鋅膠狀量子點做為主動層材料,利用二氧化鈦薄膜上下包覆量子點形成三明治結構,製作出不被蝕刻影響的的量子點微碟共振腔。量測上我們使用波長在532nm的Nd:YAG固態雷射作為激發光源,在室溫下以連續式綠光雷射激發微碟共振腔,其中直徑20μm,厚度250nm,在過程中,我們可觀察到迴音廊模態產生,但未能實現紅光雷射。 | zh_TW |
dc.description.abstract | In this paper, we successfully fabricated titanium dioxide microdisk resonators using a bottom-up microfabrication approach to ensure that the circumferential edge was not affected by dry etching. This edge preservation minimizes the impact of rough surfaces on light circulating within the resonator, which enables effective internal total reflection and reduces scattering losses, thus increasing the quality factor (Q). However, during the experiment, we observed deformation in the microdisks produced using this method, resulting in radiation losses. Therefore, we discuss the performance of the Q factor under varying degrees of deformation.
We measured the Q factor using a U-shaped tapered optical fiber coupling method and employed a 1330 nm Super Luminescent Diode (SLD) for transmission spectrum measurements. For a titanium dioxide microdisk with a diameter of 20 μm and a thickness of 400 nm, the Q factor measured in the transmission spectrum was 600. Subsequently, we applied the bottom-up microdisk fabrication method to quantum dot microdisk resonator devices. We also utilized cadmium selenide/zinc sulfide colloidal quantum dots as the active layer material. A sandwich structure of quantum dots encapsulated between titanium dioxide thin films was fabricated to form quantum dot microdisk resonators resistant to etching effects. For measurement, we used a continuous green laser at 532 nm wavelength from a Nd:YAG solid-state laser as the excitation source at room temperature. We observed whispering gallery modes during the excitation of the microdisk resonator with a green laser, but red laser operation did not materialize . | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:14:06Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:14:06Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 v 圖次 vii 第 1 章 簡介 1 1.0 系光子簡介(Silicon Photonics) 1 1.1 光學微共振腔(Optical Microcavities) 1 1.2 消逝波耦合(Evanescent Field Coupling) 2 1.3 由下而上的方法(Bottom-up method) 4 1.4 量子點 5 1.4.1 膠狀量子點(Colloidal Quantum Dots) 6 1.5 量子點微碟共振腔(Quantum-Dot Microdisk Cavities) 7 1.6 論文架構 8 第 2 章 微碟共振腔之迴音廊模態理論 8 2.1 微碟共振腔之迴音廊模態分析 8 2.1.1 幾何光學模型 8 2.1.2 迴音廊模態(Whispering gallery mode) 10 2.2 共振腔之相關參數 19 2.2.1 自由光譜區(Free Spectral Range) 19 2.2.2 品質因子(Q-factor) 20 2.2.3 模態體積(Mode volume,Veff) 21 2.2.4 普色效應 (Purcell effect) 22 第 3章 被動與主動式微碟共振腔製程步驟 24 3.1 共振腔的選擇與設計 24 3.2 被動式微碟共振腔製程步驟 26 3.3 主動式量子點微碟共振腔製程步驟 28 第 4 章 實驗架構與量測數據 31 4.1 傳輸頻譜量測架構 31 4.2 微光激發螢光光譜量測架構 32 4.3 被動式二氧化鈦微碟共振腔 34 4.3.1 不同底襯厚度的二氧化鈦微碟共振腔製程結果 34 4.3.2 不同底襯厚度的二氧化鈦微碟共振腔傳輸頻譜 36 4.4 主動式量子點微碟共振腔 38 4.4.1主動式二氧化鈦微碟的量測結果 39 4.4.2變更量測架構之主動式二氧化鈦微碟量測結果 43 4.4.3主動式二氧化鈦微碟品質探討 49 第 5 章 結論 55 Reference 57 | - |
dc.language.iso | zh_TW | - |
dc.title | 以由下而上的方法製作二氧化鈦量子點微碟共振腔 | zh_TW |
dc.title | Using a bottom-up method to fabricate TiO2 microdisk cavities with embedded quantum dots | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張子璿;林浩雄 | zh_TW |
dc.contributor.oralexamcommittee | Tzu-Hsuan Chang;Hao-Hsiung Lin | en |
dc.subject.keyword | 膠狀量子點,微碟共振腔,品質因子,U型錐形光纖,迴音廊模態, | zh_TW |
dc.subject.keyword | colloidal quantum dot,microdisk microcavity,quality factor,U-shaped tapered optical fiber,whispering gallery mode, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU202404077 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。