Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94006
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳希立zh_TW
dc.contributor.advisorSih-Li Chenen
dc.contributor.author莊坤澎zh_TW
dc.contributor.authorKUN-PENG ZHUANGen
dc.date.accessioned2024-08-14T16:12:54Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation[1] The Green New Deal for Europe, "Blueprint-for-Europes-Just-Transition-2nd-Ed," 2019. [Online]. Available:https://report.gndforeurope.com/cms/wp-content/uploads/2020/01/Blueprint-for-Europes-Just-Transition-2nd-Ed.pdf
[2] 國家發展委員會. (2022). 臺灣2050淨零排放路徑及策略總說明. [Online] Available: https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTA0MC8yZTZhZTA0Mi0wYjUyLTQ4OTAtOGY5NC1hYjk5MzgzNWZlZTIucGRm&n=6Ie654GjMjA1MOa3qOmbtuaOkuaUvui3r%2BW%2BkeWPiuetlueVpee4veiqquaYji5wZGY%3D&icon=.pdf
[3] 行政院環境部. (2023). 氣候變遷因應法. [Online] Available: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098
[4] The International Energy Agency. (2023). Electricity Market Report 2023. [Online] Available: https://iea.blob.core.windows.net/assets/255e9cba-da84-4681-8c1f-458ca1a3d9ca/ElectricityMarketReport2023.pdf
[5] 經濟部能源局. (2022). 2022非生產性值行業能源稽核年報. [Online] Available: https://www.ecct.org.tw/Knowledge/knowledge_more?id=62a1b665024e48bbaee45648565110f0
[6] Y.-T. Li, A. P. Yundt Jr, I.-C. Ho, and H. Huang, "Orbital type freezing apparatus and method," ed: Google Patents, 1994.
[7] J. W. Meewisse and C. A. Infante Ferreira, "Validation of the use of heat transfer models in liquid/solid fluidized beds for ice slurry generation," International Journal of Heat and Mass Transfer, vol. 46, no. 19, pp. 3683-3695, 2003/09/01/ 2003, doi: https://doi.org/10.1016/S0017-9310(03)00171-6.
[8] N. E. Wijeysundera, M. N. A. Hawlader, C. W. B. Andy, and M. K. Hossain, "Ice-slurry production using direct contact heat transfer," International Journal of Refrigeration, vol. 27, no. 5, pp. 511-519, 2004/08/01/ 2004, doi: https://doi.org/10.1016/j.ijrefrig.2004.03.007.
[9] M. N. A. Hawlader and M. A. Wahed, "Analyses of ice slurry formation using direct contact heat transfer," Applied Energy, vol. 86, no. 7, pp. 1170-1178, 2009/07/01/ 2009, doi: https://doi.org/10.1016/j.apenergy.2008.11.003.
[10] X. Ji, X. Song, M. Li, J. Liu, and Y. Wang, "Performance investigation of a solar hot water driven adsorption ice-making system," Energy Conversion and Management, vol. 106, pp. 759-765, 2015/12/01/ 2015, doi: https://doi.org/10.1016/j.enconman.2015.10.032.
[11] S. Xua, "Experiment on a New Adsorption Bed about Adsorption Refrigeration Driven by Solar Energy," Energy Procedia, vol. 14, pp. 1542-1547, 2012/01/01/ 2012, doi: https://doi.org/10.1016/j.egypro.2011.12.1130.
[12] D. S. Martínez, J. P. Solano, F. Illán, and A. Viedma, "Analysis of heat transfer phenomena during ice slurry production in scraped surface plate heat exchangers," International Journal of Refrigeration, vol. 48, pp. 221-232, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.ijrefrig.2014.07.020.
[13] L. Erlbeck, D. Wössner, K. Schlachter, T. Kunz, F. J. Methner, and M. Rädle, "Investigation of a novel scraped surface crystallizer with included ice-pressing section as new purification technology," Separation and Purification Technology, vol. 228, p. 115748, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.seppur.2019.115748.
[14] S. Brooks, G. Quarini, M. Tierney, X. Yun, and E. Lucas, "Conditions for continuous ice slurry generation in a nylon helical coiled heat exchanger," Thermal Science and Engineering Progress, vol. 15, p. 100427, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.tsep.2019.100427.
[15] J.-P. Bédécarrats, T. David, and J. Castaing-Lasvignottes, "Ice slurry production using supercooling phenomenon," International Journal of Refrigeration, vol. 33, no. 1, pp. 196-204, 2010/01/01/ 2010, doi: https://doi.org/10.1016/j.ijrefrig.2009.08.012.
[16] X. Yun et al., "Ice formation in the subcooled brine environment," International Journal of Heat and Mass Transfer, vol. 95, pp. 198-205, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.003.
[17] D. Chen, C. Zhang, H. Rong, C. Wei, and S. Gou, "Experimental study on seawater desalination through supercooled water dynamic ice making," Desalination, vol. 476, p. 114233, 2020/02/15/ 2020, doi: https://doi.org/10.1016/j.desal.2019.114233.
[18] A. Kilicarslan and N. Müller, "A comparative study of water as a refrigerant with some current refrigerants," International Journal of Energy Research, vol. 29, no. 11, pp. 947-959, Sep 2005, doi: 10.1002/er.1084.
[19] C. Hongfen, Z. Wenzhuang, H. Weisan, and Z. Xuelai, "Vacuum ice-making technology and characteristic analysis," Journal of Molecular Liquids, vol. 360, p. 119360, 2022/08/15/ 2022, doi: https://doi.org/10.1016/j.molliq.2022.119360.
[20] L. Zou, X. Zhang, and Q. Zheng, "Research progress on preparation of binary ice by vacuum flash evaporation: A review," International Journal of Refrigeration, vol. 121, pp. 72-85, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.ijrefrig.2020.10.005.
[21] H. P. Cheng and C. T. Lin, "The morphological visualization of the water in vacuum cooling and freezing process," Journal of Food Engineering, vol. 78, no. 2, pp. 569-576, 2007/01/01/ 2007, doi: https://doi.org/10.1016/j.jfoodeng.2005.10.025.
[22] X. Zhang, Z. Han, and Z. Li, "Analysis on IPF influencing factors for vacuum binary ice making method," International Journal of Thermal Sciences, vol. 67, pp. 210-216, 2013/05/01/ 2013, doi: https://doi.org/10.1016/j.ijthermalsci.2012.11.006.
[23] Z. Zhou, G. Zhang, W. Lu, M. Luo, and Z. Wu, "Review on high ice packing factor (IPF) ice slurry: Fabrication, characterization, flow characteristics and applications," Journal of Energy Storage, vol. 81, p. 110378, 2024/03/15/ 2024, doi: https://doi.org/10.1016/j.est.2023.110378.
[24] C. Steffan, C. Heinrich, M. Safarik, and M. Honke, Highest Efficiency Ice Storage for Solar Cooling Systems – Experiences with a Vacuum Ice Slurry Cold Thermal Energy Storage. 2017, pp. 1-6.
[25] X. Liu, K. Zhuang, S. Lin, Z. Zhang, and X. Li, "Determination of Supercooling Degree, Nucleation and Growth Rates, and Particle Size for Ice Slurry Crystallization in Vacuum," Crystals, vol. 7, 05/01 2017, doi: 10.3390/cryst7050128.
[26] C. R. Lai, "Performance Analysis of a Continuous Ice Storage Air Conditioning System," 2023.
[27] Z. J. Jiang, "Performance Analysis of Stirring Type Vacuum Ice Slurry Production Equipment," 2023.
[28] A. Kilicarslan and N. Müller, "A comparative study of water as a refrigerant with some current refrigerants," International Journal of Energy Research, vol. 29, pp. 947-959, 09/01 2005, doi: 10.1002/er.1084.
[29] D. T. Shaw, Fundamentals of aerosol science. New York: Wiley (in English), 1978.
[30] W. C. Hinds and Y. Zhu, Aerosol technology : properties, behavior, and measurement of airborne particles, Third edition ed. John Wiley & Sons (in English), 2022.
[31] H. T. Shin, Y. P. Lee, and J. Jurng, "Spherical-shaped ice particle production by spraying water in a vacuum chamber," Applied Thermal Engineering, vol. 20, no. 5, pp. 439-454, 2000/04/01/ 2000, doi: https://doi.org/10.1016/S1359-4311(99)00035-6.
[32] B. S. Kim, H. T. Shin, Y. P. Lee, and J. Jurng, "Study on ice slurry production by water spray," International Journal of Refrigeration, vol. 24, no. 2, pp. 176-184, 2001/03/01/ 2001, doi: https://doi.org/10.1016/S0140-7007(00)00013-X.
[33] 赵凯璇, 赵建福, 陈淑玲, and 杜王芳, "液滴真空闪蒸/冻结过程的热动力学研究," 空间科学学报, vol. 31, no. 1, p. 57, 2011-01-15 2011, doi: 10.11728/cjss2011.01.057.
[34] H. Kumano, T. Asaoka, A. Saito, and S. Okawa, "Formulation of the latent heat of fusion of ice in aqueous solution," International Journal of Refrigeration, vol. 32, no. 1, pp. 175-182, 2009/01/01/ 2009, doi:https://doi.org/10.1016/j.ijrefrig.2008.07.010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94006-
dc.description.abstract本研究主要針對連續式真空製冰泥系統進行性能分析,以提升系統製冰效率。透過調整製冰時間、輸冰管開啟間隔時間、噴霧水泵流量及冷卻水溫度等參數,找出最佳操作條件,從而增加製冰泥的生成量。
首先,本研究設計了一套連續式真空製冰泥系統,包含閃蒸槽、真空微壓縮機、噴霧水泵、冷卻水系統等核心元件。系統使用乙二醇水溶液在真空環境下的閃蒸冷卻形成製冰泥,實驗冷卻水溫度設定為4℃,乙二醇水溶液濃度為2.5%。
研究顯示,隨著製冰時間的延長,製冰泥量顯著增加。當製冰時間從5分鐘延長至20分鐘時,製冰泥量從1,501克增加至4,328克。輸冰管開啟間隔時間2分鐘時製冰泥量最大,間隔時間過長會使冰泥在閃蒸槽中聚合,減少製冰量。噴霧水泵流量2LPM 時製冰泥量最大,流量過大不利於冰泥生成。
此外,冷卻水溫4℃時製冰泥量最大。隨著冷卻水溫度的增加,製冰泥量顯著下降。當冷卻水溫度提升至7℃及9℃時,系統的冷凝能力下降,真空微壓縮機的壓縮比上升,最終減少蒸發量,製冰泥量顯著減少。
總結來說,本研究找到了提高連續式製冰泥系統製冰效率的方法,適當的輸冰管開啟間隔時間和噴霧水泵流量顯著提高了製冰量,這些發現對未來設計更高效的製冰泥系統具有重要參考價值。
zh_TW
dc.description.abstractThis study focuses on the performance analysis of a continuous vacuum slush icemaking system to enhance ice-making efficiency. By adjusting parameters such as ice making time, ice discharge pipe opening interval, spray pump flow rate, and cooling water temperature, the optimal operating conditions were identified to increase the production of slush ice.
Firstly, a continuous vacuum slush ice-making system was designed, including core components such as a flash tank, vacuum micro-compressor, spray pump, and cooling water system. The system uses an ethylene glycol aqueous solution in a vacuum environment to flash cool and form slush ice. The experimental cooling water temperature was set at 4°C, and the ethylene glycol solution concentration was 2.5%.
The study showed that the amount of slush ice significantly increased with the extension of ice-making time. When the ice-making time was extended from 5 minutes to 20 minutes, the amount of slush ice increased from 1,501 grams to 4,328 grams. The maximum amount of slush ice was obtained with a 2-minute ice discharge pipe opening interval. A longer interval caused the slush ice to aggregate in the flash tank, reducing the ice-making amount. The maximum amount of slush ice was obtained with a spray pump flow rate of 2 LPM. An excessively high flow rate was detrimental to slush ice formation.
Moreover, the maximum amount of slush ice was obtained at a cooling water temperature of 4°C. As the cooling water temperature increased, the amount of slush ice significantly decreased. When the cooling water temperature rose to 7°C and 9°C, the system’s condensing capacity decreased, the compression ratio of the vacuum micro-compressor increased, ultimately reducing the evaporation rate and significantly decreasing the amount of slush ice.
In summary, this study identified methods to improve the ice-making efficiency of the continuous slush ice-making system. Appropriate ice discharge pipe opening intervals and spray pump flow rates significantly increased the amount of slush ice.
These findings are valuable references for designing more efficient slush ice-making systems in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:12:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:12:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
謝辭 ii
摘要 iii
ABSTRACT iv
目次 vi
圖次 ix
表次 xii
符號說明 xiii
第一章、 緒論 1
1.1 研究背景 1
1.2 論文回顧 5
1.3 研究動機及目的 12
第二章、 基礎原理 13
2.1 蒸氣壓縮冷凍循環 13
2.2 真空液滴閃蒸模型 18
2.3 添加乙二醇對水的影響 21
2.4 質量守恆及能量守恆定律 23
第三章、 研究方法 26
3.1 系統概述及架構 26
3.1.1 閃蒸槽 27
3.1.2 磁力水泵 28
3.1.3 儲冰泥槽 29
3.1.4 真空微壓縮機 30
3.1.5 油式泵浦 33
3.1.6 殼管式冷凝器 34
3.1.7 節流裝置 34
3.2 量測儀器 35
3.2.1 壓力感測器 35
3.2.2 溫度感測器 36
3.2.1 資料紀錄器 38
3.2.2 流量計 38
3.3 實驗流程及方法 40
3.3.1 連續式真空製冰泥系統實驗流程 40
3.3.2 製冰時間對單一閃蒸槽製冰量影響的實驗 43
3.3.3 輸冰管開啟間隔時間對製冰量影響的實驗 44
3.3.4 噴霧水泵流量對製冰量影響的實驗 46
3.3.5 冷卻水溫對製冰量影響的實驗 47
第四章、 結果與討論 48
4.1 探討製冰時間對單一閃蒸槽製冰量的影響 48
4.2 探討輸冰管開啟間隔時間對製冰量的影響 50
4.3 探討噴霧水泵流量對製冰量的影響 54
4.4 探討冷卻水溫對製冰量的影響 57
第五章、 結論與建議 61
5.1 結論 61
5.2 建議及未來展望 62
參考文獻 63
-
dc.language.isozh_TW-
dc.subject連續式製冰zh_TW
dc.subject添加乙二醇zh_TW
dc.subject冰泥zh_TW
dc.subject真空製冰zh_TW
dc.subject噴霧式製冰zh_TW
dc.subjectspray ice-makingen
dc.subjectslush iceen
dc.subjectcontinuous ice-makingen
dc.subjectethylene glycol additionen
dc.subjectvacuum ice-makingen
dc.title連續式真空製冰泥系統性能分析zh_TW
dc.titlePerformance Analysis of a Continuous Vacuum Slurry Ice Systemen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李文興;江沅晉;王榮昌zh_TW
dc.contributor.oralexamcommitteeWen-Shing Lee ;Yuan-Chin Chiang;Jung-Chang Wangen
dc.subject.keyword連續式製冰,噴霧式製冰,真空製冰,冰泥,添加乙二醇,zh_TW
dc.subject.keywordcontinuous ice-making,spray ice-making,vacuum ice-making,slush ice,ethylene glycol addition,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202402107-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-07-22-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved