Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93996
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柳玗珍zh_TW
dc.contributor.advisorWoo-Jin Yooen
dc.contributor.author林子豪zh_TW
dc.contributor.authorZih-Hao Linen
dc.date.accessioned2024-08-14T16:09:45Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation(1) Brown, N. Bioisosteres and scaffold hopping in medicinal chemistry. Mol. Inform. 2014, 33, 458-462.
(2) Langmuir, I. Isomorphism, isosterism and covalence. J. Am. Chem. Soc. 1919, 41, 1543-1559.
(3) Grimm, H. Structure and size of the non-metallic hydrides. Z. Electrochem. 1925, 31, 474-480.
(4) Erlenmeyer, H.; Leo, M. Über Pseudoatome. Helv. Chim. Acta. 1932, 15, 1171-1186.
(5) Friedman, H. L. Influence of isosteric replacements upon biological activity. NASNRS Publication 1951, 206, 295-358.
(6) Thornber, C. Isosterism and molecular modification in drug design. Chem. Soc. Rev. 1979, 8, 563-580.
(7) Burger, A. Isosterism and bioisosterism in drug design. Progress in Drug Research / Fortschritte der Arzneimittelforschung / Progrès des recherches pharmaceutiques. 1991, 37, 287-371.
(8) Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 2019, 17, 2839-2849.
(9) Taylor, R. D.; MacCoss, M.; Lawson, A. D. Rings in drugs. J. Med. Chem. 2014, 57, 5845-5859.
(10) Gut, I.; Nedelcheva, V.; Soucek, P.; Stopka, P.; Tichavská, B. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Environ. Health. Perspect. 1996, 104, 1211-1218.
(11) Lovering, F.; Bikker, J.; Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 2009, 52, 6752-6756.
(12) Subbaiah, M. A. M.; Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 2021, 64, 14046-14128.
(13) Pellicciari, R.; Raimondo, M.; Marinozzi, M.; Natalini, B.; Costantino, G.; Thomsen, C. (S)-(+)-2-(3‘-Carboxybicyclo[1.1.1]pentyl)-glycine, a structurally new group I metabotropic glutamate receptor antagonist. J. Med. Chem. 1996, 39, 2874-2876.
(14) Pellicciari, R.; Costantino, G.; Giovagnoni, E.; Mattoli, L.; Brabet, I.; Pin, J.-P. Synthesis and preliminary evaluation of (S)-2-(4′-carboxycubyl)glycine, a new selective mGluR1 antagonist. Bioorg. Med. Chem. Lett. 1998, 8, 1569-1574.
(15) Stepan, A. F.; Subramanyam, C.; Efremov, I. V.; Dutra, J. K.; O'Sullivan, T. J.; DiRico, K. J.; McDonald, W. S.; Won, A.; Dorff, P. H.; Nolan, C. E.; et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active gamma-secretase inhibitor. J. Med. Chem. 2012, 55, 3414-3424.
(16) Zhong, M.; Peng, E.; Huang, N.; Huang, Q.; Huq, A.; Lau, M.; Colonno, R.; Li, L. Discovery of functionalized bisimidazoles bearing cyclic aliphatic-phenyl motifs as HCV NS5A inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 5731-5737.
(17) Levterov, V. V.; Panasyuk, Y.; Pivnytska, V. O.; Mykhailiuk, P. K. Water-soluble nonclassical benzene mimetics. Angew. Chem. Int. Ed. 2020, 59, 7161-7167.
(18) Denisenko, A.; Garbuz, P.; Shishkina, S. V.; Voloshchuk, N. M.; Mykhailiuk, P. K. Saturated bioisosteres of ortho-substituted benzenes. Angew. Chem. Int. Ed. 2020, 59, 20515-20521.
(19) Yoon, T. P. Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions. ACS. Catal. 2013, 3, 895-902.
(20) Dembitsky, V. M. Bioactive cyclobutane-containing alkaloids. J. Nat. Med. 2008, 62, 1-33.
(21) Piao, S.-J.; Song, Y.-L.; Jiao, W.-H.; Yang, F.; Liu, X.-F.; Chen, W.-S.; Han, B.-N.; Lin, H.-W. Hippolachnin A, A new antifungal polyketide from the South China Sea sponge Hippospongia lachne. Org. Lett. 2013, 15, 3526-3529.
(22) Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 2008, 108, 1052-1103.
(23) Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. Asymmetric [2 + 2] cycloaddition reaction catalyzed by a chiral titanium reagent. J. Am. Chem. Soc. 1992, 114, 8869-8885.
(24) Sweis, R. F.; Schramm, M. P.; Kozmin, S. A. Silver-Catalyzed [2 + 2] Cycloadditions of Siloxy Alkynes. J. Am. Chem. Soc. 2004, 126, 7442-7443.
(25) Alcaide, B.; Almendros, P.; Aragoncillo, C. Exploiting [2+2] cycloaddition chemistry: achievements with allenes. Chem. Soc. Rev. 2010, 39, 783-816.
(26) Snider, B. B. Intramolecular cycloaddition reactions of ketenes and keteniminium salts with alkenes. Chem. Rev. 1988, 88, 793-811.
(27) Tidwell, T. T. Ketenes; John Wiley & Sons, 2006.
(28) Tidwell, T. T. Ketene chemistry after 100 Years: ready for a new century. Eur. J. Org. Chem. 2006, 2006, 563-576.
(29) Staudinger, H. Ketene, eine neue Körperklasse. Dtsch. Chem. Ges. 1905, 38, 1735-1739.
(30) Staudinger, H. Zur Kenntniss der Ketene. Diphenylketen. Justus Liebigs Ann. Chem. 1907, 356, 51-123.
(31) Gong, L.; McAllister, M. A.; Tidwell, T. T. Substituent effects on ketene structure and stability: an ab initio study. J. Am. Chem. Soc. 1991, 113, 6021-6028.
(32) Allen, A. D.; Andraos, J.; Kresge, A. J.; McAllister, M. A.; Tidwell, T. T. Direct observation and reactivity of transient ketenes generated by flash photolysis. J. Am. Chem. Soc. 1992, 114, 1878-1879.
(33) McAllister, M. A.; Tidwell, T. T. Comparative Cumulene Substituent Effects: Ketenes, Allenes, Diazomethanes, Diazirines, and Cyclopropenes by ab Initio Molecular Orbital Calculations. J. Org. Chem. 1994, 59, 4506-4515.
(34) Isaacs, N. S.; Stanbury, P. Steric factors in (2+ 2)-cycloadditions of ketens to olefins. J. Chem. Soc. D. 1970, 17, 1061-1062.
(35) Rey, M.; Roberts, S.; Dieffenbacher, A.; Dreiding, A. S. Stereochemische Aspekte der Addition von Ketenen an Cyclopentadien. Helv. Chim. Acta. 2004, 53, 417-432.
(36) Huisgen, R.; Otto, P. The mechanism of dimerization of dimethylketene. J. Am. Chem. Soc. 1968, 90, 5342-5343.
(37) Tenud, L.; Weilenmann, M.; Dallwigk, E. 1,3‐Cyclobutandionderivate aus Keten. Helv. Chim. Acta. 1977, 60, 975-977.
(38) Brady, W. T.; Parry, F. H., III; Stockton, J. D. Halogenated ketenes. XVIII. Stereochemistry of some unsymmetrical arylketene cycloadditions. J. Org. Chem. 1971, 36, 1486-1489.
(39) Rasik, C. M.; Brown, M. K. Lewis acid-promoted ketene-alkene [2 + 2] cycloadditions. J. Am. Chem. Soc. 2013, 135, 1673-1676.
(40) Rigsbee, E. M.; Zhou, C.; Rasik, C. M.; Spitz, A. Z.; Nichols, A. J.; Brown, M. K. Lewis acid-promoted [2 + 2] cycloadditions of alkenes with aryl ketenes. Org. Biomol. Chem. 2016, 14, 5477-5480.
(41) Rasik, C. M.; Brown, M. K. Total synthesis of gracilioether F: development and application of Lewis acid promoted ketene-alkene [2+2] cycloadditions and late-stage CH oxidation. Angew. Chem. Int. Ed. 2014, 53, 14522-14526.
(42) Snider, B. B.; Allentoff, A. J.; Walner, M. B. Intramolecular [2 + 2]cycloadditions of dialkylketenes with alkenes. Regiochemistry of intramolecular [2+2]cycloadditions of ketenes with alkenes. Tetrahedron 1990, 46, 8031-8042.
(43) Fan, X.; Zhang, P.; Wang, Y.; Yu, Z. X. Mechanism and regioselectivity of intramolecular [2+2] cycloaddition of ene–ketenes: a DFT study. Eur. J. Org. Chem. 2020, 37, 5985-5994.
(44) Hoshikawa, T.; Tanji, K.; Matsuo, J.-i.; Ishibashi, H. Intramolecular [2+2] cycloaddition of homoallylketenes to bicyclo[2.1.1]hexan-5-ones. Chem. Pharm. Bull. 2012, 60, 548-553.
(45) Mukaiyama, T.; Usui, M.; Shimada, E.; Saigo, K. A convenient method for the synthesis of carboxylic esters. Chem. Lett. 1975, 4, 1045-1048.
(46) Funk, R. L.; Abelman, M. M.; Jellison, K. M. Generation of ketenes from carboxylic acids using the Mukaiyama reagent (1-methyl-2-chloropyridinium iodide). Synlett. 1989, 36-37.
(47) Wu, X.; Wang, H. J.; Huang, Y. S.; Li, W. Z. Intramolecular [2 + 2] cycloadditions of alkyl(phenylthio)ketenes: total synthesis of (+)-sphaerodiol. Org. Lett. 2018, 20, 1871-1874.
(48) Moore, J. T.; Hanhan, N. V.; Mahoney, M. E.; Cramer, S. P.; Shaw, J. T. Enantioselective Synthesis of Isotopically Labeled Homocitric Acid Lactone. Org. Lett. 2013, 15, 5615-5617.
(49) Suzuki, Y.; Wakatsuki, J.; Tsubaki, M.; Sato, M. Imidazolium-based chiral ionic liquids: synthesis and application. Tetrahedron. 2013, 69, 9690-9700.
(50) Miller, E. J.; Zhao, W.; Herr, J. D.; Radosevich, A. T. A Nonmetal Approach to α-Heterofunctionalized Carbonyl Derivatives by Formal Reductive X-H Insertion. Angew. Chem. Int. Ed. 2012, 51, 10605-10609.
(51) Atkinson, D. C.; Leach, E. C. Anti-inflammatory and related properties of 2-(2,4-dichlorophenoxy)phenylacetic acid (fenclofenac). Agents Actions. 1976, 6, 657-666.
(52) Hsu, C.-W.; Lu, Y.-T.; Lin, C.-P.; Yoo, W.-J. Synthesis of Bicyclo[2.1.1]hexan-5-ones via a Sequential Simmons-Smith Cyclopropanation and an Acid-Catalyzed Pinacol Rearrangement of α-Hydroxy Silyl Enol Ethers. Adv. Synth. Catal. 2023, 365, 3082-3087.
(53) Aluri, J. B.; Stavchansky, S. Determination of guaifenesin in human plasma by liquid chromatography in the presence of pseudoephedrine. J. Pharm. Biomed. Anal. 1993, 11, 803-808.
(54) Liu, T. C.; Lin, Z. H.; Yoo, W. J. Intramolecular [2+2] cycloadditions of α-heteroatom substituted γ,δ-unsaturated ketenes. Asian. J. Org. Chem. 2024, accepted. DOI:10.1002/ajoc.20240302
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93996-
dc.description.abstract當今,在藥物化學中,生物等排體的概念仍然是一個關鍵策略,能夠幫助研究人員優化藥物候選化合物的性質,提高其生物活性,同時減少不良反應。苯環經常作為藥物分子中的關鍵組成部分,因其穩定性和與特定生物靶點的互動能力,有助於增強藥物的效能。然而,使用苯環需要特別注意代謝變化可能導致的毒理學風險和代謝活化問題。過去的研究主要集中在對位以及單取代苯環的生物等排體,然而鄰位和間位取代的苯環的生物等排體卻缺乏相關的研究。在本研究中,我們決定將苯環替換為雙環[2.1.1]己烷作為鄰位取代苯環的生物等排體以解決苯環所導致的毒性問題。在本研究中,我們介紹了一種利用烯酮的分子內[2+2]環加成反應來合成1-雜原子取代的雙環[2.1.1]己-5-酮的方法。關鍵在於使用向山試劑(2-氯-N-甲基吡啶碘化物)能夠促進[2+2]環加成反應,並能以較高的產率合成雙環[2.1.1]己烷-5-酮,而這化合物已知是鄰位取代苯的生物等排體衍生物。為了證明這一點,我們利用這種方法成功製備並利用官能基轉換合成非類固醇抗炎藥芬氯芬酸的生物等位變體,顯示了這種雙環酮的合成實用性。zh_TW
dc.description.abstractIn contemporary medicinal chemistry, bioisosterism remains a critical approach, enabling researchers to refine drug candidates by enhancing efficacy and minimizing adverse effects. Benzene rings frequently play a pivotal role in drug molecules due to their stability and targeted biological interactions, thereby bolstering drug effectiveness. However, incorporating benzene rings necessitates caution due to potential metabolic alterations and subsequent toxicological risks from metabolic activation. To circumvent this issue, there is significant interest in the replacement of aromatic rings with constrained polycyclic hydrocarbons, such as bicyclo[2.1.1]hexanes. In this thesis, we introduce a synthetic strategy to 1-heteroatom-substituted bicyclo[2.1.1]hexan-5-ones via the intramolecular [2+2] cycloaddition of homoallyl ketenes. A key advancement involves the utilization of the Mukaiyama reagent (2-chloro-N-methyl-pyridinium iodide), which facilitates the ketene formation with high efficiency. These substrates can be potentially converted into 1,5-disubstituted bicyclo[2.1.1]hexanes, which are known to
be ortho-substituted benzene bioisosteres. To demonstrate this, we prepared a bioisosteric variant of fenclofenac, a nonsteroidal anti-inflammatory drug.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:09:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:09:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
摘要 I
Abstract II
Content III
List of Abbreviation V
List of Figures VIII
List of Schemes IX
List of Tables XII
Chapter 1 Introduction
1.1 Bioisostere
1.1.1 History of Bioisosteres 1
1.1.2 Benzene Bioisosteres 3
1.2 [2+2] Cycloadditions
1.2.1 [2+2] Cycloadditions Promoted by UV Light 20
1.2.2 Ketene[2+2] Cycloadditions 22
1.3 Motivation 30
Chapter 2 Result and Discussion 33
Chapter 3 Experimental Section
3.1 General Information 45
3.2 Physical and Analytical Measurements 49
3.3 Synthetic Methods and Characterization of Compounds 50
References 80
Chapter 4 Supplementary Information
4.1 NMR Spectra 90
-
dc.language.isoen-
dc.subject生物等排體zh_TW
dc.subject烯酮zh_TW
dc.subject[2+2]環加成反應zh_TW
dc.subject向山試劑zh_TW
dc.subjectKeteneen
dc.subjectBioisostereen
dc.subjectMukaiyama reagenten
dc.subject[2+2] Cycloadditionen
dc.title利用向山試劑促進烯酮[2+2]環加成合成雙環[2.1.1]己烷衍生物zh_TW
dc.titleSynthesis of Bicyclo[2.1.1]hexane Derivatives via Ketene [2+2] Cycloaddition Promoted by the Mukaiyama Reagenten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁文傑;吳學亮zh_TW
dc.contributor.oralexamcommitteeMan-Kit Leung;Hsyueh-Liang Wuen
dc.subject.keyword生物等排體,烯酮,[2+2]環加成反應,向山試劑,zh_TW
dc.subject.keywordBioisostere,Ketene,[2+2] Cycloaddition,Mukaiyama reagent,en
dc.relation.page177-
dc.identifier.doi10.6342/NTU202403663-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
12.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved