Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93963
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎zh_TW
dc.contributor.advisorSeng-Cho Chouen
dc.contributor.author陳柏言zh_TW
dc.contributor.authorPo-Yen Chenen
dc.date.accessioned2024-08-09T16:45:32Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationAchiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., ... & McGrew, B. (2023). GPT-4 technical report. arXiv preprint arXiv:2303.08774.
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press.
Bisong, E. (2019). The multilayer perceptron (MLP). In Bisong, E (Eds.), Building Machine Learning and Deep Learning Models on Google Cloud Platform (pp. 401-405). Apress.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30(1-7), 107-117.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
Catherine, R., & Cohen, W. (2017, August). TransNets: Learning to transform for recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems (pp. 288-296).
Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794).
Cheng, Z., Chang, X., Zhu, L., Kanjirathinkal, R. C., & Kankanhalli, M. (2019). MMALFM: Explainable recommendation by leveraging reviews and images. ACM Transactions on Information Systems (TOIS), 37(2), 1-28.
Chu, W. T., & Tsai, Y. L. (2017). A hybrid recommendation system considering visual information for predicting favorite restaurants. World Wide Web, 20, 1313-1331.
86
Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., ... & Wei, J. (2022). Scaling instruction-finetuned language models. Journal of Machine Learning Research, 25(70), 1-53.
Covington, P., Adams, J., & Sargin, E. (2016, September). Deep neural networks for YouTube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (pp. 191-198).
Cremonesi, P., Koren, Y., & Turrin, R. (2010, September). Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the Fourth ACM Conference on Recommender Systems (pp. 39-46).
Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM Transactions on Information Systems (TOIS), 22(1), 143-177.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Dezfouli, P. A. B., Momtazi, S., & Dehghan, M. (2021). Deep neural review text interaction for recommendation systems. Applied Soft Computing, 100, 106985.
Feng, X., & Zeng, Y. (2019). Neural collaborative embedding from reviews for recommendation. IEEE Access, 7, 103263-103274.
Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., & Zhang, J. (2023). Chat-Rec: Towards interactive and explainable LLMs-augmented recommender system. arXiv preprint arXiv:2303.14524
Geng, S., Liu, S., Fu, Z., Ge, Y., & Zhang, Y. (2022, September). Recommendation as language processing (RLP): A unified pretrain, personalized prompt & predict paradigm (P5). In Proceedings of the 16th ACM Conference on Recommender Systems (pp. 299-315).
87
Hadi, M. U., Qureshi, R., Shah, A., Irfan, M., Zafar, A., Shaikh, M. B., ... & Mirjalili, S. (2023). A survey on large language models: Applications, challenges, limitations, and practical usage. Authorea Preprints.
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020, July). LightGCN: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 639-648).
Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet?. Journal of Interactive Marketing, 18(1), 38-52.
IBM. (n.d.). What Is Random Forest? IBM. https://www.ibm.com/topics/random-forest
IBM. (n.d.). What Is XGBoost? IBM. https://www.ibm.com/topics/xgboost
Karypis, G. (2001, October). Evaluation of item-based top-n recommendation algorithms. In Proceedings of the Tenth International Conference on Information and Knowledge Management (pp. 247-254).
Koren, Y. (2008, August). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 426-434).
Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 30-37.
Kula, M. (2015). Metadata embeddings for user and item cold-start recommendations. arXiv preprint arXiv:1507.08439.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
Li, Z., Jin, D., & Yuan, K. (2023). Attentional factorization machine with review-based
88
user–item interaction for recommendation. Scientific Reports, 13(1), 13454.
Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76-80.
Liu, J., Liu, C., Lv, R., Zhou, K., & Zhang, Y. (2023). Is ChatGPT a good recommender? A preliminary study. arXiv preprint arXiv:2304.10149.
Liu, Y., & Miyazaki, J. (2023). Knowledge-aware attentional neural network for review-based movie recommendation with explanations. Neural Computing and Applications, 35(3), 2717-2735.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.
Lu, Y., Bao, J., Song, Y., Ma, Z., Cui, S., Wu, Y., & He, X. (2021). RevCore: Review-augmented conversational recommendation. arXiv preprint arXiv:2106.00957.
Luong, M. T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025.
Lyu, H., Jiang, S., Zeng, H., Xia, Y., & Luo, J. (2023). LLM-Rec: Personalized recommendation via prompting large language models. arXiv preprint arXiv:2307.15780.
Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neurocomputing, 2(5-6), 183-197.
NVIDIA. (n.d.). Recommendation System. NVIDIA. https://www.nvidia.com/en-us/glossary/recommendation-system/
OpenAI. (n.d.). API Reference. OpenAI. https://platform.openai.com/docs/api-reference/introduction
OpenAI. (n.d.). ChatGPT. OpenAI. https://openai.com/chatgpt
89
OpenAI. (n.d.). GPT-4. OpenAI. https://openai.com/index/gpt-4-research/
OpenAI. (n.d.). Models. OpenAI. https://platform.openai.com/docs/models/
Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. Stanford InfoLab.
Patel, K., & Patel, H. B. (2020). A state-of-the-art survey on recommendation system and prospective extensions. Computers and Electronics in Agriculture, 178, 105779.
Rendle, S. (2010, December). Factorization machines. In 2010 IEEE International Conference on Data Mining (pp. 995-1000). IEEE.
Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
Rixwew. (2019). pytorch-fm. Github. https://github.com/rixwew/pytorch-fm
Rogers, A., Kovaleva, O., & Rumshisky, A. (2021). A primer in BERTology: What we know about how BERT works. Transactions of the Association for Computational Linguistics, 8, 842-866.
Seo, S., Huang, J., Yang, H., & Liu, Y. (2017, August). Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In Proceedings of the Eleventh ACM Conference on Recommender Systems (pp. 297-305).
Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., & Tang, J. (2019, November). AutoInt: Automatic feature interaction learning via self-attentive neural networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 1161-1170).
Taud, H., & Mas, J. F. (2018). Multilayer perceptron (MLP). In Olmedo, M. C., Paegelow, M., Mas, J. F., & Escobar, F (Eds.), Geomatic Approaches for Modeling Land Change Scenarios (pp. 451-455). Springer.
90
Tay, Y., Luu, A. T., & Hui, S. C. (2018, July). Multi-pointer co-attention networks for recommendation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2309-2318).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong, L., & Chi, E. (2021, April). DCN V2: Improved deep & cross network and practical lessons for web-scale learning to rank systems. In Proceedings of the Web Conference 2021 (pp. 1785-1797).
Wu, L., Zheng, Z., Qiu, Z., Wang, H., Gu, H., Shen, T., ... & Chen, E. (2023). A survey on large language models for recommendation. arXiv preprint arXiv:2305.19860.
Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., & Chua, T. S. (2017). Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617.
Xiong, K., Ye, W., Chen, X., Zhang, Y., Zhao, W. X., Hu, B., ... & Zhou, J. (2021, October). Counterfactual review-based recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 2231-2240).
Yang, Z., Li, L., Lin, K., Wang, J., Lin, C. C., Liu, Z., & Wang, L. (2023). The dawn of LMMs: Preliminary explorations with GPT-4V (ision). arXiv preprint arXiv:2309.17421, 9(1).
Yelp. (n.d.). Yelp Open Dataset. Yelp. https://www.yelp.com/dataset
Zhang, J., Xie, R., Hou, Y., Zhao, W. X., Lin, L., & Wen, J. R. (2023). Recommendation as instruction following: A large language model empowered recommendation
91
approach. arXiv preprint arXiv:2305.07001.
Zhao, C., Li, C., Xiao, R., Deng, H., & Sun, A. (2020, July). CATN: Cross-domain recommendation for cold-start users via aspect transfer network. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 229-238).
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., ... & Wen, J. R. (2023). A survey of large language models. arXiv preprint arXiv:2303.18223.
Zheng, L., Noroozi, V., & Yu, P. S. (2017, February). Joint deep modeling of users and items using reviews for recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (pp. 425-434).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93963-
dc.description.abstract本研究以用戶對於餐廳評分之預測任務為例,提出運用大型語言模型(LLM)基於線上評論生成有用的用戶和餐廳文本資訊,探討所生成的文本資訊對於基於評論之推薦模型的預測表現的影響。本研究設計摘要和推薦提示策略,分別使 GPT-3.5 Turbo 基於評論生成用戶和餐廳的描述與推薦資訊。透過預訓練模型,將文本轉換為模型的輸入特徵向量,並以不同方式將 LLM 所生成的文本資訊整合至模型輸入中進行實驗。挑選常見及相關研究的預測模型作為實驗的推薦模型,並針對各模型以使用評論作為輸入資料時的預測表現作為比較基準線。研究結果顯示,相較於使用評論文本,整合 LLM 基於評論所生成的文本資訊,並針對每個模型採用適合的輸入特徵向量生成方法後,能提升各推薦模型的預測表現。此外,對於擁有特定或足夠評論數量的用戶或餐廳,整合 LLM 基於評論所生成的文本資訊可提升各推薦模型的預測表現。另外,整合 LLM 基於評論所生成的文本資訊可提升各推薦模型對低評分餐廳預測的準確性,使預測結果更接近於用戶實際給出的低評分,較可避免推薦用戶不喜歡的餐廳。zh_TW
dc.description.abstractThis study proposes leveraging a large language model (LLM) to generate useful textual information about users and restaurants based on online reviews to explore the impacts of the generated textual information on the predictive performance of review-based recommendation models, using the prediction task of users’ ratings for restaurants as an example. Summarization and recommendation prompt strategies were designed to enable GPT-3.5 Turbo to generate descriptions and recommendation information about users and restaurants based on reviews, respectively. Texts were converted into model input feature vectors using pre-trained models. The LLM-generated textual information was integrated into model input in various ways for experiments. Common and relevant prediction models from previous studies were selected as experimental recommendation models. For each model, the predictive performance when using the reviews as input data served as the comparative baseline. The study results demonstrate that integrating the LLM-generated textual information and applying appropriate input feature vector generation methods for each model can improve the predictive performance of each model. Additionally, integrating the LLM-generated textual information can improve the performance of the recommendation models for users or restaurants with a certain or sufficient number of reviews. Moreover, integrating the LLM-generated textual information can improve the performance of predictions for low-rated restaurants, making the predicted ratings closer to the actual low ratings given by users, thereby better avoiding recommending restaurants that users dislike.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:45:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:45:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ........................................................................................................... i
誌謝 .................................................................................................................................. ii
摘要 ................................................................................................................................. iii
Abstract ............................................................................................................................ iv
Contents ............................................................................................................................. v
List of Figures ................................................................................................................ viii
List of Tables ................................................................................................................... xi
Chapter 1 Introduction .............................................................................................. 1
1.1 Background ..................................................................................................... 1
1.2 Motivation....................................................................................................... 2
1.3 Objective ......................................................................................................... 4
Chapter 2 Literature Review .................................................................................... 5
2.1 Recommendations Based on Reviews ............................................................ 5
2.2 Large Language Models ................................................................................. 8
2.3 Recommendations Using Large Language Models ...................................... 11
2.4 Summary ....................................................................................................... 15
Chapter 3 Methodology ........................................................................................... 16
3.1 Research Question ........................................................................................ 16
3.2 Stage 1 .......................................................................................................... 17
3.2.1 Dataset Filtering .................................................................................. 17
3.2.2 Dataset Sampling and Review Count Filtering ................................... 17
3.3 Stage 2 .......................................................................................................... 18
3.3.1 Dataset Splitting .................................................................................. 18
3.3.2 Merge the Reviews .............................................................................. 19
3.4 Stage 3 .......................................................................................................... 23
3.4.1 Large Language Model ....................................................................... 23
3.4.2 Prompt Strategies ................................................................................ 23
3.4.3 Integrate Different Types of Textual Information ............................... 32
3.5 Stage 4 .......................................................................................................... 33
3.5.1 Pre-Trained Models ............................................................................. 33
3.5.2 Input Feature Vector Generation Methods .......................................... 34
3.6 Stage 5 .......................................................................................................... 35
3.6.1 Recommendation Models .................................................................... 35
3.6.2 Model Training, Validation, and Testing ............................................. 39
Chapter 4 Experimental Results ............................................................................. 44
4.1 MSE performance of Each Model Based on Different Input Feature Vector Generation Methods...................................................................................... 44
4.1.1 Experimental Results of the FM Model .............................................. 46
4.1.2 Experimental Results of the MLP Model ............................................ 48
4.1.3 Experimental Results of the AutoInt Model ........................................ 50
4.1.4 Experimental Results of the XGBoost Model ..................................... 52
4.1.5 Experimental Results of the Random Forest Model ........................... 54
4.1.6 Discussion ........................................................................................... 56
4.2 MSE Performance of Each Model for Users and Restaurants with Different Numbers of Reviews..................................................................................... 60
4.2.1 Experimental Results of the FM Model .............................................. 62
4.2.2 Experimental Results of the MLP Model ............................................ 64
4.2.3 Experimental Results of the AutoInt Model ........................................ 66
4.2.4 Experimental Results of the XGBoost Model ..................................... 68
4.2.5 Experimental Results of the Random Forest Model ........................... 70
4.2.6 Summary ............................................................................................. 72
4.3 MSE Performance of Each Model for Different Ratings ............................. 73
4.3.1 Experimental Results of the FM Model .............................................. 74
4.3.2 Experimental Results of the MLP Model ............................................ 75
4.3.3 Experimental Results of the AutoInt Model ........................................ 76
4.3.4 Experimental Results of the XGBoost Model ..................................... 77
4.3.5 Experimental Results of the Random Forest Model ........................... 78
4.3.6 Summary ............................................................................................. 79
Chapter 5 Conclusion and Future Work................................................................ 80
5.1 Conclusion .................................................................................................... 80
5.2 Future work ................................................................................................... 83
References ....................................................................................................................... 85
Appendix ......................................................................................................................... 92
-
dc.language.isoen-
dc.subject基於評論之推薦zh_TW
dc.subject大型語言模型zh_TW
dc.subject評分預測zh_TW
dc.subject餐廳推薦zh_TW
dc.subject提示策略zh_TW
dc.subjectRating Predictionen
dc.subjectRestaurant Recommendationen
dc.subjectPrompt Strategyen
dc.subjectReview-Based Recommendationen
dc.subjectLarge Language Modelen
dc.title大型語言模型對基於文本評論的推薦模型之影響zh_TW
dc.titleImpacts of Large Language Models on Text Review-Based Recommendation Modelsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;杜志挺zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Chih-Ting Duen
dc.subject.keyword大型語言模型,基於評論之推薦,提示策略,餐廳推薦,評分預測,zh_TW
dc.subject.keywordLarge Language Model,Review-Based Recommendation,Prompt Strategy,Restaurant Recommendation,Rating Prediction,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202402016-
dc.rights.note未授權-
dc.date.accepted2024-08-05-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved