Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥向zh_TW
dc.contributor.advisorYen-Hsiang CHENen
dc.contributor.author王奕涵zh_TW
dc.contributor.authorYi-Han WANGen
dc.date.accessioned2024-08-09T16:44:12Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] Roger P Roess, Elena S Prassas, and William R McShane. Traffic engineering. Pearson/Prentice Hall, 2004.
[2] Benjamin Heydecker. Uncertainty and variability in traffic signal calculations. Transportation Research Part B: Methodological, 21(1):79–85, 1987.
[3] Yafeng Yin. Robust optimal traffic signal timing. Transportation Research Part B: Methodological, 42(10):911–924, 2008.
[4] Satish V Ukkusuri, Gitakrishnan Ramadurai, and Gopal Patil. A robust transportation signal control problem accounting for traffic dynamics. Computers & Operations Research, 37(5):869–879, 2010.
[5] Fo Vo Webster. Traffic signal settings. Technical report, 1958. [6] Carlos F. Daganzo. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4):269–287, 1994.
[7] Harry Markowitz. Portfolio selection*. The Journal of Finance, 7(1):77–91, 1952.
[8] Martin R Young. A minimax portfolio selection rule with linear programming solution. Management science, 44(5):673–683, 1998.
[9] Lihui Zhang and Yafeng Yin. Robust synchronization of actuated signals on arterials. Transportation Research Record, 2080(1):111–119, 2008.
[10] Andy HF Chow and Ying Li. Robust optimization of dynamic motorway traffic via ramp metering. IEEE Transactions on Intelligent Transportation Systems, 15(3):1374–1380, 2014.
[11] Dennis I Robertson. Transyt: a traffic network study tool. 1969.
[12] Hong-kam Lo, Elbert Chang, and Yiu-cho Chan. Dynamic intersection signal control optimization (disco): Numerical results for argyle street. HKIE Transactions, 6(3):1–7, 1999.
[13] Hong K Lo. A cell-based traffic control formulation: strategies and benefits of dynamic timing plans. Transportation Science, 35(2):148–164, 2001.
[14] Yue Liu and Gang-Len Chang. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage. Transportation research part C: emerging technologies, 19(1):130–144, 2011.
[15] Richard E Allsop. Delay-minimizing settings for fixed-time traffic signals at a single road junction. IMA Journal of Applied Mathematics, 8(2):164–185, 1971.
[16] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear programming and network flows. John Wiley & Sons, 2011.
[17] Hong K Lo, Elbert Chang, and Yiu Cho Chan. Dynamic network traffic control. Transportation Research Part A: Policy and Practice, 35(8):721–744, 2001.
[18] Leonard. Kaufman. Partitioning Around Medoids (Program PAM). Finding Groups in Data. Wiley,, New York :, 1990-03-08.
[19] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning research, 9(11), 2008.
[20] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93960-
dc.description.abstract傳統的號誌設計方法多以單一需求量作為設計依據,實際上交通需求會因各種時空因素而有多種可能,若忽略需求的波動,可能會導致號誌控制的效果不如預期,如高於平均之需求量可能無法於一次綠燈時間紓解完畢。雖然文獻中以獨立路口設計考量需求不確定性的號誌時制,但概念尚未推廣至連鎖號誌,無法一次性考量多個路口。基於以上原因,本研究欲以路網為研究範圍,構建考量需求不確定性之號誌最佳化模型,產生足以面對需求波動之號誌時制計畫,提升路網績效。首先以格位傳遞模式構建車流模型,並提出號誌控制模型,分別建立確定性及強韌性模型;接著以車輛的隨機抵達產生150個需求情境,再透過K-Medoids演算法縮減情境數量,供強韌性模型使用。最終結果顯示,本研究所構建之強韌性模型具有效性,其所產生之號誌時制計畫相較於確定性模型可使路網之總延滯值更小,在三個案例中分別使75.33% 、82.67%及60.0%之情境有較少之路網總延滯,足以顯現其強韌性。zh_TW
dc.description.abstractTraditional methods of traffic signal design often use a single value of demand as the basis for design. However, in reality, traffic demand can vary due to various spatiotemporal factors. Ignoring demand fluctuations may lead to suboptimal signal control effectiveness. For example, higher-than-average demand might not be discharged within one green light cycle. Although literature has considered signal timing plan under demand uncertainty for isolated intersections, the concept has not been extended to coordinated signals, unable to simultaneously consider multiple intersections. Therefore, this study aims to develop an optimization model for signal timing plan considering demand uncertainty across a network, producing signal timing plans capable of handling demand fluctuations and improving network performance. First, a traffic flow model is constructed using the cell transmission model (CTM), and a signal control model is proposed, establishing deterministic and robust optimization models, respectively. Next, 150 demand scenarios are generated based on the stochastic arrival of vehicles, and the number of scenarios is reduced using the K-Medoids algorithm for the robust model. The final results show that the robust model constructed in this study is effective. Compared to the deterministic model, the signal timing plans produced by the robust model result in lower total network delay, reducing total network delay in 75.33%, 82.67%, and 60.0% of scenarios in three cases, respectively, demonstrating its robustness.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:44:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:44:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 iv
圖目次 vii
表目次 x
第1章緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究流程 3
第2章文獻回顧 5
2.1 不確定性 5
2.2 交通需求不確定性 5
2.3 強韌最佳化 6
2.4 路網號誌最佳化 9
2.5 小結 9
第3章以單一路口號誌最佳化探索隨機模型 11
3.1 號誌最佳化模型—群組基礎 12
3.2 確定性模型 16
3.3 隨機性模型 18
3.4 總模型 20
3.5 案例分析 21
3.5.1 提升求解效率 21
3.5.2 數值結果 22
第4章路網號誌最佳化模型 24
4.1 車流模型-格位傳遞 24
4.2 號誌控制模型 29
4.3 確定性模型 34
4.4 強韌性模型 34
4.4.1 目標式 35
4.4.2 車流模型—格位傳遞 36
4.4.3 號誌控制模型 37
4.5 總模型 37
4.6 交通需求量之情境設計 38
4.6.1 需求產生 39
4.6.2 K-Medoids演算法 40
4.6.3 t-SNE 41
4.6.4 輪廓係數 41
第5章路網案例分析 43
5.1 路網設計 43
5.2 需求產生 44
5.3 績效評估指標 45
5.4 求解環境及參數設定 46
5.5 起始可行解 47
5.6 數值結果 48
5.6.1 案例一 48
5.6.2 案例二 52
5.6.3 案例三 55
5.7 小結 57
第6章結論與建議 58
6.1 結論 58
6.2 建議 59
參考文獻 59
附錄 63
A 路網確定性模型使用符號 64
B 路網強韌性模型使用符號 66
C 口試委員意見與回應修正表 70
D 以第75百分位數之流量作為模型輸入參數 74
D.1 案例一 74
D.2 案例二 77
D.3 案例三 79
D.4 小結 82
-
dc.language.isozh_TW-
dc.subject強韌最佳化zh_TW
dc.subject路網號誌控制zh_TW
dc.subject需求不確定性zh_TW
dc.subject混合整數規劃zh_TW
dc.subject格位傳遞模式zh_TW
dc.subjectnetwork traffic signal controlen
dc.subjectrobust optimizationen
dc.subjectdemand uncertaintyen
dc.subjectmixed-integer programmingen
dc.subjectcell transmission modelen
dc.title考量不確定性之路網號誌最佳化問題zh_TW
dc.titleIncorporating uncertainty for delay minimization in the networken
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor許添本zh_TW
dc.contributor.coadvisorTien-Pen HSUen
dc.contributor.oralexamcommittee陳彥佑;李明聰zh_TW
dc.contributor.oralexamcommitteeYen-Yu CHEN;Ming-Tsung LEEen
dc.subject.keyword路網號誌控制,強韌最佳化,格位傳遞模式,混合整數規劃,需求不確定性,zh_TW
dc.subject.keywordnetwork traffic signal control,robust optimization,cell transmission model,mixed-integer programming,demand uncertainty,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202403107-
dc.rights.note未授權-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved