Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93958
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王凡zh_TW
dc.contributor.advisorFarn Wangen
dc.contributor.author易行祐zh_TW
dc.contributor.authorHSING-YU YIen
dc.date.accessioned2024-08-09T16:43:22Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] Material Design, https://m3.material.io/
[2] C. Degott, N. P. Borges Jr, and A. Zeller, “Learning user interface element interactions,” in Proceedings of the 28th ACM SIGSOFT Inter national Symposium on Software Testing and Analysis, 2019, pp. 296–306.
[3] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, YangLiu, andZhendongSu.2017. Guided,stochastic model-based GUI testing of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. ACM, 245–256.
[4] Thomas D White, Gordon Fraser, and Guy J Brown. 2019. Improving random GUI testing with image-based widget detection. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. 307–317.
[5] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Time-travel testing of android apps. In Proceedings of the ACM/IEEE 42nd Inter national Conference on Software Engineering. 481–492.
[6] Dehai Zhao, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, Guo qiang Li, and Jinshui Wang. 2020. Seenomaly: vision-based linting of GUI animation effects against design-don’t guidelines. In ICSE ’20: 42nd Interna tional Conference on Software Engineering, Seoul, South Korea, 27 June- 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1286–1297.
[7] Kevin Moran, Boyang Li, Carlos Bernal-Cárdenas, Dan Jelf, and Denys Poshy vanyk. 2018. Automated reporting of GUI design violations for mobile apps. In Proceedings of the 40th International Conference on Software Engineering. 165–175.
[8] B. Yang, Z. Xing, X. Xia, C. Chen, D. Ye, and S. Li, UIS-hunter: Detecting UI design smells in Android apps, In Proceedings of the 43rd International Conference on Software Engineering: Companion Proceedings, pp. 89–92.
[9] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua Xu. 2019. Storydroid: Automated generation of storyboard for Android apps. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 596–607.
[10] Farnaz Behrang, Steven P Reiss, and Alessandro Orso. 2018. GUIfetch: sup porting app design and development through GUI search. In 5th International Conference on Mobile Software Engineering and Systems. 236–246.
[11] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset for building data-driven design applications. In Proceedings of the 30th Annual ACMSymposium on User Interface Software and Technology. 845–854.
[12] Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks. ArXiv, abs/1706.05098.
[13] Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Conference on Empirical Methods in Natural Language Processing.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93958-
dc.description.abstract在現今的社會,手機應用程式已經十分普及,人們透過這些程式來協助完成他們各式各樣的任務,像是時間管理、購物、通訊等等。但跟電腦應用程式不同的是,手機應用程式的開發通常要同時面對時間上的壓力和廣大同類型應用的競爭。此時,除了效率和創新以外,另一個能令其脫穎而出的關鍵就是GUI的設計。但UI設計是個很耗時的工程,需要不斷根據反饋和測試結果進行調整,確保最終的設計能夠滿足用戶的期望。正因如此,我們希望能找出方法,為UI開發過程提供有效的自動化支持。在本論文中,我們利用問卷蒐集回答作為模型訓練用的標籤,進一步結合機器學習的技術去做出一個能夠針對給定的GUI,自動回答問卷問題的模型。我們希望能透過這個模型自動化地檢測和識別UI設計中的問題,並向開發者提供建議,進而提高整個UI開發過程的效率,使設計師和開發者能夠更好地集中精力在創造性的方面,而不是繁瑣的錯誤修復上。zh_TW
dc.description.abstractIn today's society, mobile applications have become ubiquitous, assisting people in various tasks such as time management, shopping, and communication. However, unlike computer applications, the development of mobile applications typically involves time constraints and fierce competition among similar apps. In addition to efficiency and innovation, another key factor that distinguishes an app is the design of its Graphical User Interface (GUI). UI design is a time-consuming process that requires continuous adjustments based on feedback and testing to ensure the final design meets user expectations. Therefore, we aim to find methods to provide effective automation support for the UI development process.
In this thesis, we use questionnaires to collect responses as labels for model training. We further integrate machine learning techniques to develop a model capable of automatically answering questionnaire questions for a given GUI. Our goal is to automate the detection and identification of issues in UI design, providing suggestions to developers. This approach aims to enhance the overall efficiency of the UI development process, allowing designers and developers to focus more on creative aspects rather than tedious error fixes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:43:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:43:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Contributions 3
Chapter 2 Related Work and Preliminaries 5
2.1 Academic Research 5
2.2 Figma 6
2.3 UI Automator 6
Chapter 3 Methodology 8
3.1 Global Picture 8
3.2 Building UI Generating Algorithm 10
3.2.1 UI Generating Algorithm 12
3.2.2 Mutation of UI 14
3.3 Survey Design and Feedback Collection 15
3.3.1 Questionnaire Questions 16
3.4 Questionnaire-based Model 23
3.4.1 Model Architecture and Training 23
3.4.2 Dataset 25
Chapter 4 Implementations and Evaluations 26
4.1 Programming Language and Environment Setup 26
4.2 Model Performance on Training & Testing 26
4.3 Testing on Unlabeled Real-World Data 30
Chapter 5 Conclusion and Future Work 36
REFERENCE 38
-
dc.language.isoen-
dc.subject使用者介面設計zh_TW
dc.subject手機應用程式zh_TW
dc.subject自動回饋zh_TW
dc.subject問卷zh_TW
dc.subject設計準則zh_TW
dc.subjectAutomated Supporten
dc.subjectQuestionnaire-Based Modelen
dc.subjectSurveyen
dc.subjectUI Designen
dc.subjectDesign Guidelinesen
dc.subjectMobile appsen
dc.titleQUX : 問卷基底GUI模型之軟體架構zh_TW
dc.titleQUX : A Software Framework for Questionnaire-Based GUI Modelsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李宏毅;林守德;陳銘憲;葉國暉zh_TW
dc.contributor.oralexamcommitteeHung-Yi Lee;Shou-De Lin;Ming-Syan Chen;Kuo-Hui Yehen
dc.subject.keyword手機應用程式,使用者介面設計,設計準則,問卷,自動回饋,zh_TW
dc.subject.keywordMobile apps,UI Design,Design Guidelines,Automated Support,Survey,Questionnaire-Based Model,en
dc.relation.page39-
dc.identifier.doi10.6342/NTU202402814-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved