Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93956
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁文傑zh_TW
dc.contributor.advisorMan-kit Leungen
dc.contributor.author沈希亞zh_TW
dc.contributor.authorShemsia Mohammed Hudieen
dc.date.accessioned2024-08-09T16:41:46Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-07-12-
dc.identifier.citationReference list of Chapter 1
(1) Zabel, G. Peak People: The Interrelationship Between Population Growth and Energy Resources; Energy Bulletin, 2009.
(2) Rao, A. B.; Rubin, E. S. Environmental Science & Technology 2002, 36, 4467.
(3) Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Nature Materials 2016, 16, 57.
(4) Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Huang, K.-C.; Vittal, R.; Ho, K.-C. ACS Nano 2012, 6, 7016.
(5) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. Nature Chemistry 2013, 5, 263.
(6) Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nature Reviews Materials 2017, 2, 17033.
(7) Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W.; Ouyang, F.; Lee, Y.-H.; Ueno, K.; Saito, R.; Palacios, T.; Kong, J.; Dresselhaus, M. S. Journal of the American Chemical Society 2015, 137, 11892.
(8) Weyl, H. Proceedings of the National Academy of Sciences of the United States of America 1929, 15, 323.
(9) Weng, H.; Fang, C.; Fang, Z.; Bernevig, B. A.; Dai, X. Physical Review X 2015, 5, 011029.
(10) Krane, K. S. Introductory Nuclear Physics, John and Wiley 1987, 549.
(11) Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H. Nature Physics 2015, 11, 482.
(12) Mahmood, N.; Tang, T.; Hou, Y. Advanced Energy Materials 2016, 6, 1600374.
(13) Yan, B.; Felser, C. Annual Review of Condensed Matter Physics 2017, 8, 337.
(14) Jia, S.; Xu, S. Y.; Hasan, M. Z. Nature Materials 2016, 15, 1140.
(15) Yang, L. X.; Liu, Z. K.; Sun, Y.; Peng, H.; Yang, H. F.; Zhang, T.; Zhou, B.; Zhang, Y.; Guo, Y. F.; Rahn, M.; Prabhakaran, D.; Hussain, Z.; Mo, S. K.; Felser, C.; Yan, B.; Chen, Y. L. Nature Physics 2015, 11, 728.
(16) Huang, L.; McCormick, T. M.; Ochi, M.; Zhao, Z.; Suzuki, M. T.; Arita, R.; Wu, Y.; Mou, D.; Cao, H.; Yan, J.; Trivedi, N.; Kaminski, A. Nature Materials 2016, 15, 1155.
(17) Dery, H.; Dalal, P.; Cywinski, L.; Sham, L. J. Nature 2007, 447, 573.
(18) Melzer, M.; Kaltenbrunner, M.; Makarov, D.; Karnaushenko, D.; Karnaushenko, D.; Sekitani, T.; Someya, T.; Schmidt, O. G. Nature Communications 2015, 6, 6080.
(19) Callanan, J. E.; Hope, G. A.; Weir, R. D.; Westrum, E. F. The Journal of Chemical Thermodynamics 1992, 24, 627.
(20) O'Hare, P. A. G.; Hope, G. A. The Journal of Chemical Thermodynamics 1992, 24, 639.
(21) Jinbong Seok, J.-H. L.; SuyeonCho, B. J.; HyoWonKim, M.K.; DohyunKim,Y.-M.; SangHo Oh, S.W.K.; Young Hee Lee, Y.- W.S.; Heejun, Y. 2D Materials 2017, 4, 025061.
(22) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L.; Wang, X.; Fu, W.; Yu, P.; Chang, T. R.; Hsu, C. H.; Wu, D.; Jeng, H. T.; Huang, Y.; Lin, H.; Shen, Z.; Yang, C.; Lu, L.; Suenaga, K.; Zhou, W.; Pantelides, S. T.; Liu, G.; Liu, Z. Advanced Materials 2017, 29, 1603471.
(23) Chang, T. R.; Xu, S. Y.; Chang, G.; Lee, C. C.; Huang, S. M.; Wang, B.; Bian, G.; Zheng, H.; Sanchez, D. S.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bansil, A.; Jeng, H. T.; Lin, H.; Zahid Hasan, M. Nature Communications 2016, 7, 10639.
(24) Deng, K.; Wan, G.; Deng, P.; Zhang, K.; Ding, S.; Wang, E.; Yan, M.; Huang, H.; Zhang, H.; Xu, Z.; Denlinger, J.; Fedorov, A.; Yang, H.; Duan, W.; Yao, H.; Wu, Y.; Fan, S.; Zhang, H.; Chen, X.; Zhou, S. Nature Physics 2016, 12, 1105.
(25) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A. Nature 2015, 527, 495.
(26) Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P.; Cava, R. J. Nature 2014, 514, 205.
(27) Xu, S.-Y.; Alidoust, N.; Belopolski, I.; Yuan, Z.; Bian, G.; Chang, T.-R.; Zheng, H.; Strocov, V. N.; Sanchez, D. S.; Chang, G.; Zhang, C.; Mou, D.; Wu, Y.; Huang, L.; Lee, C.- C.; Huang, S.-M.; Wang, B.; Bansil, A.; Jeng, H.-T.; Neupert, T.; Kaminski, A.; Lin, H.; Jia, S.; Zahid Hasan, M. Nature Physics 2015, 11, 748.
(28) Shekhar, C.; Nayak, A. K.; Sun, Y.; Schmidt, M.; Nicklas, M.; Leermakers, I.; Zeitler, U.; Skourski, Y.; Wosnitza, J.; Liu, Z.; Chen, Y.; Schnelle, W.; Borrmann, H.; Grin, Y.; Felser, C.; Yan, B. Nature Physics 2015, 11, 645.
(29) Chen, W.; Wang, J.; Wan, F.; Wang, P. High Voltage 2019, 4(4), 271.
(30) Xu, S.-Y.; Belopolski, I.; Sanchez, D. S.; Zhang, C.; Chang, G.; Guo, C.; Bian, G.; Yuan, Z.; Lu, H.; Chang, T.-R.; Shibayev, P. P.; Prokopovych, M. L.; Alidoust, N.; Zheng, H.; Lee, C.-C.; Huang, S.-M.; Sankar, R.; Chou, F.; Hsu, C.-H.; Jeng, H.-T.; Bansil, A.; Neupert, T.; Strocov, V. N.; Lin, H.; Jia, S.; Hasan, M. Z. Science Advances 2015, 1,1501092.
(31) Belopolski, I.; Sanchez, D. S.; Ishida, Y.; Pan, X.; Yu, P.; Xu, S.-Y.; Chang, G.; Chang, T.-R.; Zheng, H.; Alidoust, N.; Bian, G.; Neupane, M.; Huang, S.-M.; Lee, C.-C.; Song, Y.; Bu, H.; Wang, G.; Li, S.; Eda, G.; Jeng, H.-T.; Kondo, T.; Lin, H.; Liu, Z.; Song, F.; Shin, S.; Hasan, M. Z. Nature Communications 2016, 7, 13643.
(32) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
(33) Beard, M. C.; Luther, J. M.; Nozik, A. J. Nature Nanotechnology 2014, 9, 951.
(34) Mark, A. L.; Andrew S. D.; Caroline R. E.; Fei M.; Audrey F.; Robert J. H.; Song J. Energy & Environmental Science 2014,7, 2608-2613.
(35) Lee, C.-P.; W.-F. C., Tadesse B.; Lin, Y.-G.; Fu, F.-Y.; Satyanarayana S.; Lee, C. -H.; Hwang, J. -S.; Chen, K. -H.; Chen, L. -C. Journal of Material Chemistry A 2016, 4, 4553.
(36) Ying-Chiao W.; D.-Y. W., You-Ting J.; Hsin-An C.; Chia-Chun C.; Kuo-Chuan H.; Hung-Lung C.; Chun-Wei C. Angewandte Chemie International Edition 2013, 52, 6694.
(37) Wei, W.; Kai, S.; Yun, H. H. Journal of Material Chemistry A 2016, 4, 12398.
(38) Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtaroro, S.; Hunte, F.; Shannon, S.; Zhu, Y.; Yang, W.; Cao, L. Journal of American Chemical Society 2016, 138, 16632.
(39) Seok, J.; Lee, J. H.; Cho, S.; Ji, B.; Kim, H. W.; Kwon, M.; Kim, D.; Kim, Y. M.; Oh, S. H.; Kim, S. W.; Lee, Y. H.; Son, Y. W.; & Yang, H. 2D Material 2017, 4 025061.
(40) Rajamathi, C. R.; Gupta, U.; Kumar, N.; Yang, H.; Sun, Y.; Süß, V.; Shekhar, C.; Schmidt, M.; Blumtritt, H.; Werner, P.; Yan, B.; Parkin, S.; Felser, C.; Rao, C. N. R. Advanced Materials 2017, 29, 1606202.
(41) Lee, C.-P.; Lin, R. Y.-Y.; Lin, L.-Y.; Li, C.-T.; Chu, T.-C.; Sun, S.-S.; Lin, J. T.; Ho, K.-C. RSC Advances 2015, 5, 23810.
(42) Wu, M.; Ma, T. ChemSusChem 2012, 5, 1343.
(43) Masud; Kim, H. K. ACS Omega 2023, 8, 6139.
(44) Krane, K. S. Introductory Nuclear Physics, ; John Wiley & Sons, Inc, 1988.
(45) Arfwedson, A. Journal of Chemical Physics 1818, 22, 93.
(46) Berzelius, J. J. Journal of Chemical Physics 1817, 21, 44.
(47) Brande, W. T. A Manual of chemistry; JW Parker, 1848; Vol. 2.
(48) Lewis, G. N.; Keyes, F. G. Journal of the American Chemical Society 1913, 35, 340.
(49) Reddy, M. V.; Mauger, A.; Julien, C. M.; Paolella, A.; Zaghib, K. Materials 2020, 13(8), 1884.
(50) Harris, W. S. Electrochemical Studies in Cyclic Esters; University of California Radiation Laboratory, 1958; Vol. 8381.
(51) Wang, C.; Yang, C.; Zheng, Z. Advanced Science 2022, 9, 2105213.
(52) Goodenough, J. B.; Kim, Y. Chemistry of Materials 2010, 22, 587.
(53) Edström, K.; Gustafsson, T.; Thomas, J. O. Electrochimica Acta 2004, 50, 397.
(54) Julien, C. M.; Mauger, A.; Zaghib, K.; Groult, H. Inorganics 2014, 2, 132.
(55) Smith, L.; Dunn, B. Science 2015, 350, 918.
(56) Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K. Journal of Power Sources 2010, 195, 845.
(57) Zhang, B.; Ghimbeu, C. M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J.-M. Advanced Energy Materials 2016, 6, 1501588.
(58) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Energy & Environmental Science 2014, 7, 513.
(59) Liang, C.; Dudney, N. J.; Howe, J. Y. Chemistry of Materials 2009, 21, 4724.
(60) Yang, F.; Feng, X.; Glans, P.-A.; Guo, J. APL Materials 2021, 9, 050903.
(61) Xu, X.; Zhao, R.; Ai, W.; Chen, B.; Du, H.; Wu, L.; Zhang, H.; Huang, W.; Yu, T. Advanced Materials 2018, 30, 1800658.
(62) Chang, K.; Chen, W. ACS Nano 2011, 5, 4720.
(63) Hwang, H.; Kim, H.; Cho, J. Nano Letters 2011, 11, 4826.
(64) Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Advanced Materials 2010, 22, E170.
(65) Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R.; Wu, L.; Volkov, V.; Su, D.; Key, B.; Whittingham, M. S.; Grey, C. P.; Amatucci, G. G.; Zhu, Y.; Graetz, J. Journal of the American Chemical Society 2011,133, 18828.
(66) Li, L.; Jacobs, R.; Gao, P.; Gan, L.; Wang, F.; Morgan, D.; Jin, S. Journal of the American Chemical Society 2016, 138, 2838.
(67) Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.
(68) Shen, X.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Xu, R.; Chen, X.; Yan, C.; Su, F.-Y.; Chen, C.-M.; Liu, X.; Zhang, Q. Energy Material Advances 2021, 2021.
(69) Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Science 1995, 270, 590.
(70) Yan, J.; Zhang, J.; Su, Y.-C.; Zhang, X.-G.; Xia, B.-J. Electrochimica Acta 2010, 55, 1785.
(71) Winter, M.; Besenhard, J. O. P. D.; Spahr, M. E.; Novák, P. Advanced Materials 1998, 10, 725.
(72) Yang, X.-G.; Liu, T.; Gao, Y.; Ge, S.; Leng, Y.; Wang, D.; Wang, C.-Y. Joule 2019, 3, 3002.
(73) Wang, G. X.; Bradhurst, D. H.; Dou, S. X.; Liu, H. K. Journal of Power Sources 1999, 83, 156.
(74) Jin, Y.; Zhu, B.; Lu, Z.; Liu, N.; Zhu, J. Advanced Energy Materials 2017, 7, 1700715.
(75) Casimir, A.; Zhang, H.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G. Nano Energy 2016,27, 359.
(76) Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H.-M. Small 2019, 15,1900687.
(77) Li, T.; Zhang, X.-Q.; Shi, P.; Zhang, Q. Joule 2019, 3, 2647.
(78) Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Nature Energy 2018, 3, 279.
(79) Ma, N.; Jiang, X.-Y.; Zhang, L.; Wang, X.-S.; Cao, Y.-L.; Zhang, X.-Z. Small 2018,14, 1703680.
(80) Chen, B.; Meng, Y.; He, F.; Liu, E.; Shi, C.; He, C.; Ma, L.; Li, Q.; Li, J.; Zhao, N. Nano Energy 2017, 41, 154.
(81) Park, C.; Kim, Y. H.; Lee, H.; Kang, H. S.; Kim, T.; Lee, S. W.; Lee, K.; Kim, K.-B.; Park, C. Advanced Energy Materials 2021, 11, 2003243.
(82) Sun, R.; Wei, Q.; Sheng, J.; Shi, C.; An, Q.; Liu, S.; Mai, L. Nano Energy 2017, 35, 396.
(83) Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Nature Nanotechnology 2016, 11, 218.
(84) Eftekhari, A. ACS Sustainable Chemistry & Engineering 2017, 5, 2799.
(85) Tang, Q.; Cui, Y.; Wu, J.; Qu, D.; Baker, A. P.; Ma, Y.; Song, X.; Liu, Y. Nano Energy 2017, 41, 377.
(86) Li, G.; Luo, D.; Wang, X.; Seo, M. H.; Hemmati, S.; Yu, A.; Chen, Z. Advanced Functional Materials 2017, 27, 1702562.
(87) Boland, J. B.; Harvey, A.; Tian, R.; Hanlon, D.; Vega-Mayoral, V.; Szydlowska, B.; Griffin, A.; Stimpel-Lindner, T.; Jaskaniec, S.; Nicolosi, V.; Duesberg, G.; Coleman, Jonathan N. Nanoscale Advances 2019, 1, 1560.
(88) Yang, J.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. ACS Applied Materials & Interfaces 2017, 9, 44550.
(89) Zhu, Z.; Tang, Y.; Lv, Z.; Wei, J.; Zhang, Y.; Wang, R.; Zhang, W.; Xia, H.; Ge, M.; Chen, X. Angewandte Chemie International Edition 2018, 57, 3656.
(90) Wan, J.; Hao, Y.; Shi, Y.; Song, Y.-X.; Yan, H.-J.; Zheng, J.; Wen, R.; Wan, L.-J. Nature Communications 2019, 10, 3265.
(91) Chang, T.-R. X., S.-Y.; Chang, G.; Lee, C.-C.; Huang, S.-M.; Wang, B.; Bian, G.; Zheng, H.; Sanchez, D. S.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bansil, A.; Jeng, H.- T.; Lin, H.; Zahid Hasan, M. Nature Communications 2016, 7, 10639.
(92) Zhao, T.; Shu, H.; Shen, Z.; Hu, H.; Wang, J.; Chen, X. The Journal of Physical Chemistry C 2019, 123, 2139.
(93) Zou, Y.-C.; Chen, Z.-G.; Liu, S.; Aso, K.; Zhang, C.; Kong, F.; Hong, M.; Matsumura, S.; Cho, K.; Zou, J. Small 2018, 14, 1800780.
(94) Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A.; Schiros, T.; Klarr, T.; Mazzoni, A.; Chin, M.; Chiu, Y. c.; Zheng, W.; Zhang, Q. R.; Ernst, F.; Dadap, J. I.; Tong, X.; Ma, J.; Lou, R.; Wang, S.; Qian, T.; Ding, H.; Osgood, R. M.; Paley, D. W.; Lindenberg, A. M.; Huang, P. Y.; Pasupathy, A. N.; Dubey, M.; Hone, J.; Balicas, L. Nano Letters 2017, 17, 1616.
(95) Aslan, O. B.; Datye, I. M.; Mleczko, M. J.; Sze Cheung, K.; Krylyuk, S.; Bruma, A.; Kalish, I.; Davydov, A. V.; Pop, E.; Heinz, T. F. Nano Letters 2018, 18, 2485.
(96) Duerloo, K.-A. N.; Reed, E. J. ACS Nano 2016, 10, 289.
(97) Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419.
(98) Madian, M.; Eychmüller, A.; Giebeler, L. Batteries 2018, 4, 7.

Reference list of Chapter 2
(1) Qi, Y.; Naumov, P. G.; Ali, M. N.; Rajamathi, C. R.; Schnelle, W.; Barkalov, O.; Hanfland, M.; Wu, S.-C.; Shekhar, C.; Sun, Y.; Süß, V.; Schmidt, M.; Schwarz, U.; Pippel, E.; Werner, P.; Hillebrand, R.; Förster, T.; Kampert, E.; Parkin, S.; Cava, R. J.; Felser, C.; Yan, B.; Medvedev, S. A. Nature Communications 2016, 7, 11038.
(2) Jin Cheol Park, S. J. Y., Hyun Kim, Ji-Hoon Park, Sang Hoon Chae, Sung-Jin An, Jeong- Gyun Kim, Soo Min Kim, Ki Kang Kim and Young Hee Lee ACS Nano 2015, 9, 6548.
(3) EVANS, A. A. A.-H. a. B. L. Journal of Crystal Growth (1972) 15, 93—101
(4) Tan, C.; Zhang, H. Nature Communications 2015, 6, 7873.
(5) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L.; Wang, X.; Fu, W.; Yu, P.; Chang, T. R.; Hsu, C. H.; Wu, D.; Jeng, H. T.; Huang, Y.; Lin, H.; Shen, Z.; Yang, C.; Lu, L.; Suenaga, K.; Zhou, W.; Pantelides, S. T.; Liu, G.; Liu, Z. Advanced Materials 2017, 29, 1603471.
(6) Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W.; Ouyang, F.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T.; Kong, J.; Dresselhaus, M. S. Journal of the American Chemical Society 2015, 137, 11892.
(7) Park, J. C.; Yun, S. J.; Kim, H.; Park, J.-H.; Chae, S. H.; An, S.-J.; Kim, J.-G.; Kim, S. M.; Kim, K. K.; Lee, Y. H. ACS Nano 2015, 9, 6548.
(8) Agarwal, D.; Bhatt, P.; Pathan, A.; Patel, H.; Joshi, U. AIP Conference Proceedings 2012, 1447, 531.
(9) Nils Wiberg , A. F. H., Egon Wiberg Academic Press 2001, 588.
(10) Schubert, E. L. a. W.-D. Kluwer Academic and Plenum Publishers 1998, 160.
(11) Tillack, J. Inorg. Synth. 1973, 14, 109.
(12) Gibson, V. C., Kee, T. P., Shaw, A. Polyhedron 1988, 7,, 579.
(13) Gong, Y.; Lin, Z.; Ye, G.; Shi, G.; Feng, S.; Lei, Y.; Elías, A. L.; Perea-Lopez, N.; Vajtai, R.; Terrones, H.; Liu, Z.; Terrones, M.; Ajayan, P. M. ACS Nano 2015, 9, 11658.
(14) Bosi, M. RSC Adv. 2015, 5, 75500.
(15) Cushman, C.; Chatterjee, S.; Major, G.; Smith, N.; Roberts, A.; Linford, M. Vacuum Technology & Coating November 2016.
(16) Chen, W.; Wang, J.; Wan, F.; Wang, P. High Voltage 2019, 4(4), 271.
(17) Bumbrah, G. S.; Sharma, R. M. Egyptian Journal of Forensic Sciences 2016, 6, 209.
(18) Inkson, B. J. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann, H.-G., Eds.; Woodhead Publishing: 2016, p 17.
(19) Binnig, G.; Quate, C. F.; Gerber, C. Physical Review Letters 1986, 56, 930.
(20) Chhowalla, M.; Jena, D.; Zhang, H. Nature Reviews Materials 2016, 1, 16052.
(21) Rajamathi, C. R., Gupta, U., Kumar, N., Yang, H., Sun, Y., Süß, V., Shekhar, C., Schmidt, M., Blumtritt, H., Werner, P., Yan, B., Parkin, S., Felser, C., & R. Rao, C. N. Advanced Materials 2017, 29(19), 1606202.

Reference list of Chapter 3
(1) Zabel, G. Peak People: The Interrelationship Between Population Growth and Energy Resources; Energy Bulletin, 2009.
(2) Rao, A. B.; Rubin, E. S. Environmental Science & Technology 2002, 36, 4467.
(3) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
(4) Chung-Wei Kung, H.-W. C., Chia-Yu Lin, Kuan-Chieh Huang, R. Vittal, and Kuo- Chuan Ho ACS nano 2012, 6, 7016.
(5) Wu, M.; Ma, T. ChemSusChem 2012, 5, 1343.
(6) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Nørskov, J. K.; Zheng, X. Nature Materials 2015, 15, 48.
(7) Jin, Z.; Zhang, M.; Wang, M.; Feng, C.; Wang, Z.-S. Accounts of Chemical Research 2017, 50, 895.
(8) Zhang, J.; Najmaei, S.; Lin, H.; Lou, J. Nanoscale 2014, 6, 5279.
(9) Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X.; Abild-Pedersen, F. Nature Communications 2017, 8, 15113.
(10) Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Nature Nanotechnology 2016, 11, 218.
(11) Jinbong, S.; Jun-Ho, L.; Suyeon, C.; Byungdo, J.; Hyo Won, K.; Min, K.; Dohyun, K.; Young-Min, K.; Sang Ho, O.; Sung Wng, K.; Young Hee, L.; Young-Woo, S.; Heejun, Y. 2D Materials 2017, 4, 025061.
(12) Xu, S.-Y.; Alidoust, N.; Belopolski, I.; Yuan, Z.; Bian, G.; Chang, T.-R.; Zheng, H.; Strocov, V. N.; Sanchez, D. S.; Chang, G.; Zhang, C.; Mou, D.; Wu, Y.; Huang, L.; Lee, C.- C.; Huang, S.-M.; Wang, B.; Bansil, A.; Jeng, H.-T.; Neupert, T.; Kaminski, A.; Lin, H.; Jia, S.; Zahid Hasan, M. Nature Physics 2015, 11, 748.
(13) Yang, L. X.; Liu, Z. K.; Sun, Y.; Peng, H.; Yang, H. F.; Zhang, T.; Zhou, B.; Zhang, Y.; Guo, Y. F.; Rahn, M.; Prabhakaran, D.; Hussain, Z.; Mo, S. K.; Felser, C.; Yan, B.; Chen, Y. L. Nature Physics 2015, 11, 728.
(14) Weng, H.; Fang, C.; Fang, Z.; Bernevig, B. A.; Dai, X. Physical Review X 2015, 5, 011029.
(15) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A. Nature 2015, 527, 495.
(16) Deng, K.; Wan, G.; Deng, P.; Zhang, K.; Ding, S.; Wang, E.; Yan, M.; Huang, H.; Zhang, H.; Xu, Z.; Denlinger, J.; Fedorov, A.; Yang, H.; Duan, W.; Yao, H.; Wu, Y.; Fan, S.; Zhang, H.; Chen, X.; Zhou, S. Nature Physics 2016, 12, 1105.
(17) Jia, S.; Xu, S. Y.; Hasan, M. Z. Nature Materials 2016, 15, 1140.
(18) Huang, L.; McCormick, T. M.; Ochi, M.; Zhao, Z.; Suzuki, M. T.; Arita, R.; Wu, Y.; Mou, D.; Cao, H.; Yan, J.; Trivedi, N.; Kaminski, A. Nature Materials 2016, 15, 1155.
(19) Chang, T. R.; Xu, S. Y.; Chang, G.; Lee, C. C.; Huang, S. M.; Wang, B.; Bian, G.; Zheng, H.; Sanchez, D. S.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bansil, A.; Jeng, H. T.; Lin, H.; Zahid Hasan, M. Nature Communications 2016, 7, 10639.
(20) Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H. Nature Physics 2015, 11, 482.
(21) Kazuaki, K.; Zeyuan, N.; Ryuichi, A.; Tetsuroh, S.; Chun-Liang, L.; Emi, M.; Satoshi, W.; Maki, K.; Noriaki, T. Applied Physics Express 2017, 10, 045702.
(22) Rajamathi, C. R., Gupta, U., Kumar, N., Yang, H., Sun, Y., Süß, V., Shekhar, C., Schmidt, M., Blumtritt, H., Werner, P., Yan, B., Parkin, S., Felser, C., & R. Rao, C. N. Advanced Materials 2017, 29(19), 1606202.
(23) Li, J.; Ma, H.; Xie, Q.; Feng, S.; Ullah, S.; Li, R.; Dong, J.; Li, D.; Li, Y.; Chen, X.-Q. Science China Materials 2018, 61, 23.
(24) Chen, H.; Zhu, W.; Xiao, D.; Zhang, Z. Physical Review Letters 2011, 107, 056804.
(25) Manoj, K. J.; Anjali, S.; Dattatray, J. L.; Catherine, R. R.; Kanishka, B.; Claudia, F.; Umesh, V. W.; Rao, C. N. R. Journal of Physics: Condensed Matter 2015, 27, 285401.
(26) Chen, S.-Y.; Goldstein, T.; Venkataraman, D.; Ramasubramaniam, A.; Yan, J. Nano Letters 2016, 16, 5852.
(27) Yun, S.; Lund, P. D.; Hinsch, A. Energy & Environmental Science 2015, 8, 3495.
(28) Tan, C.; Zhang, H. Nature Communications 2015, 6, 7873.
(29) Sean M Oliver, R. B.; Sergiy Krylyuk, I.K.; Arunima K Singh, A.B.; Francesca Tavazza, J.J.; Iris R Stone, S.J.S.; Albert, V.D.; Patrick, M.V. 2D Materials 2017, 4, 045008.
(30) Brown, B. E. Acta Cryst. 1966, 20, 268. (39) Rhod
(31) Qi, Y.; Naumov, P. G.; Ali, M. N.; Rajamathi, C. R.; Schnelle, W.; Barkalov, O.; Hanfland, M.; Wu, S.-C.; Shekhar, C.; Sun, Y.; Süß, V.; Schmidt, M.; Schwarz, U.; Pippel, E.; Werner, P.; Hillebrand, R.; Förster, T.; Kampert, E.; Parkin, S.; Cava, R. J.; Felser, C.; Yan, B.; Medvedev, S. A. Nature Communications 2016, 7, 11038.
(32) Soluyanov, A. A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B. A. Nature 2015, 527, 495.
(33) Belopolski, I.; Sanchez, D. S.; Ishida, Y.; Pan, X.; Yu, P.; Xu, S.-Y.; Chang, G.; Chang, T.-R.; Zheng, H.; Alidoust, N.; Bian, G.; Neupane, M.; Huang, S.-M.; Lee, C.-C.; Song, Y.; Bu, H.; Wang, G.; Li, S.; Eda, G.; Jeng, H.-T.; Kondo, T.; Lin, H.; Liu, Z.; Song, F.; Shin, S.; Hasan, M. Z. Nature Communications 2016, 7, 13643.
(34) Listorti, A.; O’Regan, B.; Durrant, J. R. Chemistry of Materials 2011, 23, 3381.
(35) Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Nature Communications 2013, 4, 1583.
(36) Yang, B.; Guo, Q.; Tremain, B.; Barr, L. E.; Gao, W.; Liu, H.; Béri, B.; Xiang, Y.; Fan, D.; Hibbins, A. P.; Zhang, S. Nature Communications 2017, 8, 97.
(37) Mleczko, M. J.; Xu, R. L.; Okabe, K.; Kuo, H.-H.; Fisher, I. R.; Wong, H. S. P.; Nishi, Y.; Pop, E. ACS nano 2016, 10, 7507.
(38) Naylor, C. H.; Parkin, W. M.; Ping, J.; Gao, Z.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndić, M.; Kikkawa, J. M.; Johnson, A. T. C. Nano Letters 2016, 16, 4297. es, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A.; Schiros, T.; Klarr, T.; Mazzoni, A.; Chin, M.; Chiu, Y. c.; Zheng, W.; Zhang, Q. R.; Ernst, F.; Dadap, J. I.; Tong, X.; Ma, J.; Lou, R.; Wang, S.; Qian, T.; Ding, H.; Osgood, R. M.; Paley, D. W.; Lindenberg, A. M.; Huang, P. Y.; Pasupathy, A. N.; Dubey, M.; Hone, J.; Balicas, L. Nano Letters 2017, 17, 1616.
(40) Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D.-H.; Chang, K. J.; Suenaga, K.; Kim, S. W.; Lee, Y. H.; Yang, H. Science 2015, 349, 625.
(41) Ma, X.; Guo, P.; Yi, C.; Yu, Q.; Zhang, A.; Ji, J.; Tian, Y.; Jin, F.; Wang, Y.; Liu, K.; Xia, T.; Shi, Y.; Zhang, Q. Physical Review B 2016, 94, 214105.
(42) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L.; Wang, X.; Fu, W.; Yu, P.; Chang, T. R.; Hsu, C. H.; Wu, D.; Jeng, H. T.; Huang, Y.; Lin, H.; Shen, Z.; Yang, C.; Lu, L.; Suenaga, K.; Zhou, W.; Pantelides, S. T.; Liu, G.; Liu, Z. Advanced Materials 2017, 29, 1603471.
(43) Beams, R.; Cançado, L. G.; Krylyuk, S.; Kalish, I.; Kalanyan, B.; Singh, A. K.; Choudhary, K.; Bruma, A.; Vora, P. M.; Tavazza, F.; Davydov, A. V.; Stranick, S. J. ACS nano 2016, 10, 9626.
(44) Sankar, R.; Narsinga Rao, G.; Muthuselvam, I. P.; Butler, C.; Kumar, N.; Senthil Murugan, G.; Shekhar, C.; Chang, T.-R.; Wen, C.-Y.; Chen, C.-W.; Lee, W.-L.; Lin, M. T.; Jeng, H.-T.; Felser, C.; Chou, F. C. Chemistry of Materials 2017, 29, 699.
(45) Wan, X.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Physical Review B 2011, 83, 205101.
(46) Shekhar, C.; Nayak, A. K.; Sun, Y.; Schmidt, M.; Nicklas, M.; Leermakers, I.; Zeitler, U.; Skourski, Y.; Wosnitza, J.; Liu, Z.; Chen, Y.; Schnelle, W.; Borrmann, H.; Grin, Y.; Felser, C.; Yan, B. Nature Physics 2015, 11, 645.
(47) Littlewood, J. v. W. a. P. Physics 2010, 3, 87.
(48) Nakata, Y.; Sugawara, K.; Ichinokura, S.; Okada, Y.; Hitosugi, T.; Koretsune, T.; Ueno, K.; Hasegawa, S.; Takahashi, T.; Sato, T. npj 2D Materials and Applications 2018, 2, 12.
(49) Trescher, M.; Bergholtz, E. J.; Udagawa, M.; Knolle, J. Physical Review B 2017, 96, 201101.
(50) Hou, S.; Cai, X.; Wu, H.; Yu, X.; Peng, M.; Yan, K.; Zou, D. Energy & Environmental Science 2013, 6, 3356.
(51) Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. D.; Ralph, D. C. ACS Nano 2011, 5, 2264.
(52) Lee, C.-P.; Lai, K.-Y.; Lin, C.-A.; Li, C.-T.; Ho, K.-C.; Wu, C.-I.; Lau, S.-P.; He, J.- H. Nano Energy 2017, 36, 260.
(53) Lee, C.-P.; Lin, C.-A.; Wei, T.-C.; Tsai, M.-L.; Meng, Y.; Li, C.-T.; Ho, K.-C.; Wu, C.-I.; Lau, S.-P.; He, J.-H. Nano Energy 2015, 18, 109.
(54) Hussain, S.; Patil, S. A.; Vikraman, D.; Mengal, N.; Liu, H.; Song, W.; An, K.-S.; Jeong, S. H.; Kim, H.-S.; Jung, J. Scientific Reports 2018, 8, 29.

Reference list of Chapter 4
(1) Sun, H.; Zhu, J.; Baumann, D.; Peng, L.; Xu, Y.; Shakir, I.; Huang, Y.; Duan, X. Nature Reviews Materials 2019, 4, 45.
(2) Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Nature Energy 2018, 3, 279.
(3) Manthiram, A. ACS Central Science 2017, 3, 1063.
(4) Park, C.; Kim, Y. H.; Lee, H.; Kang, H. S.; Kim, T.; Lee, S. W.; Lee, K.; Kim, K.-B.; Park, C. Advanced Energy Materials 2021, 11, 2003243.
(5) Ma, N.; Jiang, X.-Y.; Zhang, L.; Wang, X.-S.; Cao, Y.-L.; Zhang, X.-Z. Small 2018, 14, 1703680.
(6) Chen, B.; Meng, Y.; He, F.; Liu, E.; Shi, C.; He, C.; Ma, L.; Li, Q.; Li, J.; Zhao, N. Nano Energy 2017, 41, 154.
(7) Sun, R.; Wei, Q.; Sheng, J.; Shi, C.; An, Q.; Liu, S.; Mai, L. Nano Energy 2017, 35, 396.
(8) Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Nature Nanotechnology 2016, 11, 218.
(9) Eftekhari, A. ACS Sustainable Chemistry & Engineering 2017, 5, 2799.
(10) Tang, Q.; Cui, Y.; Wu, J.; Qu, D.; Baker, A. P.; Ma, Y.; Song, X.; Liu, Y. Nano Energy 2017, 41, 377.
(11) Li, G.; Luo, D.; Wang, X.; Seo, M. H.; Hemmati, S.; Yu, A.; Chen, Z. Advanced Functional Materials 2017, 27, 1702562.
(12) Boland, J. B.; Harvey, A.; Tian, R.; Hanlon, D.; Vega-Mayoral, V.; Szydlowska, B.; Griffin, A.; Stimpel-Lindner, T.; Jaskaniec, S.; Nicolosi, V.; Duesberg, G.; Coleman, Jonathan N. Nanoscale Advances 2019, 1, 1560.
(13) Yang, J.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. ACS Applied Materials & Interfaces 2017, 9, 44550.
(14) Zhu, Z.; Tang, Y.; Lv, Z.; Wei, J.; Zhang, Y.; Wang, R.; Zhang, W.; Xia, H.; Ge, M.; Chen, X. Angewandte Chemie International Edition 2018, 57, 3656.
(15) Wan, J.; Hao, Y.; Shi, Y.; Song, Y.-X.; Yan, H.-J.; Zheng, J.; Wen, R.; Wan, L.-J. Nature Communications 2019, 10, 3265.
(16) Ding, J.; Liu, C.; Kalappattil, V.; Zhang, Y.; Mosendz, O.; Erugu, U.; Yu, R.; Tian, J.; DeMann, A.; Field, S. B.; Yang, X.; Ding, H.; Tang, J.; Terris, B.; Fert, A.; Chen, H.; Wu, M. Advanced Materials 2021, 33, 2005909.
(17) Tsuruda, K.; Nakagawa, K.; Ochi, M.; Kuroki, K.; Tokunaga, M.; Murakawa, H.; Hanasaki, N.; Sakai, H. Advanced Functional Materials 2021, 31, 2102275.
(18) Chang, T.-R. X., S.-Y.; Chang, G.; Lee, C.-C.; Huang, S.-M.; Wang, B.; Bian, G.; Zheng, H.; Sanchez, D. S.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bansil, A.; Jeng, H.-T.; Lin, H.; Zahid Hasan, M. Nature Communications 2016, 7, 10639.
(19) Dai, Z.; Manjappa, M.; Yang, Y.; Tan, T. C. W.; Qiang, B.; Han, S.; Wong, L. J.; Xiu, F.; Liu, W.; Singh, R. Advanced Functional Materials 2021, 31, 2011011.
(20) Li, M.; Song, J.; Jiang, Y. Physical Review B 2021, 103, 045307.
(21) Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H. Nature Physics 2015, 11, 482.
(22) Rajamathi, C. R.; Gupta, U.; Kumar, N.; Yang, H.; Sun, Y.; Süß, V.; Shekhar, C.; Schmidt, M.; Blumtritt, H.; Werner, P.; Yan, B.; Parkin, S.; Felser, C.; Rao, C. N. R. Advanced Materials 2017, 29, 1606202.
(23) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. Nature Chemistry 2013, 5, 263.
(24) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L.; Wang, X.; Fu, W.; Yu, P.; Chang, T.-R.; Hsu, C.-H.; Wu, D.; Jeng, H.-T.; Huang, Y.; Lin, H.; Shen, Z.; Yang, C.; Lu, L.; Suenaga, K.; Zhou, W.; Pantelides, S. T.; Liu, G.; Liu, Z. Advanced Materials 2017, 29, 1603471.
(25) Trescher, M.; Bergholtz, E. J.; Udagawa, M.; Knolle, J. Physical Review B 2017, 96, 201101.
(26) Zhu, C.; Chen, Y.; Liu, F.; Zheng, S.; Li, X.; Chaturvedi, A.; Zhou, J.; Fu, Q.; He, Y.; Zeng, Q.; Fan, H. J.; Zhang, H.; Liu, W.-J.; Yu, T.; Liu, Z. ACS Nano 2018, 12, 11203.
(27) Zhao, T.; Shu, H.; Shen, Z.; Hu, H.; Wang, J.; Chen, X. The Journal of Physical Chemistry C 2019, 123, 2139.
(28) Zou, Y.-C.; Chen, Z.-G.; Liu, S.; Aso, K.; Zhang, C.; Kong, F.; Hong, M.; Matsumura, S.; Cho, K.; Zou, J. Small 2018, 14, 1800780.
(29) Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A.; Schiros, T.; Klarr, T.; Mazzoni, A.; Chin, M.; Chiu, Y. c.; Zheng, W.; Zhang, Q. R.; Ernst, F.; Dadap, J. I.; Tong, X.; Ma, J.; Lou, R.; Wang, S.; Qian, T.; Ding, H.; Osgood, R. M.; Paley, D. W.; Lindenberg, A. M.; Huang, P. Y.; Pasupathy, A. N.; Dubey, M.; Hone, J.; Balicas, L. Nano Letters 2017, 17, 1616.
(30) Aslan, O. B.; Datye, I. M.; Mleczko, M. J.; Sze Cheung, K.; Krylyuk, S.; Bruma, A.; Kalish, I.; Davydov, A. V.; Pop, E.; Heinz, T. F. Nano Letters 2018, 18, 2485.
(31) Duerloo, K.-A. N.; Reed, E. J. ACS Nano 2016, 10, 289.
(32) Geim, A. K.; Grigorieva, I. V. Nature 2013, 499, 419.
(33) Oliver, S. M.; Beams, R.; Krylyuk, S.; Kalish, I.; Singh, A. K.; Bruma, A.; Tavazza, F.; Joshi, J.; Iris R. S.; Stranick, S. J.; Davydov, A. V.; Vora P. M. 2D Materials 2017, 4, 045008.
(34) Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D.-H.; Chang, K. J.; Suenaga, K.; Kim, S. W.; Lee, Y. H.; Yang, H. Science 2015, 349, 625.
(35) Oliver, S. M.; Beams, R.; Krylyuk, S.; Kalish, I.; Singh, A. K.; Bruma, A.; Tavazza, F.; Joshi, J.; Stone, I. R.; Stranick, S. J.; Davydov, A. V.; Vora, P. M. 2D Materials 2017, 4, 10.1088/2053.
(36) Ma, X.; Guo, P.; Yi, C.; Yu, Q.; Zhang, A.; Ji, J.; Tian, Y.; Jin, F.; Wang, Y.; Liu, K.; Xia, T.; Shi, Y.; Zhang, Q. Physical Review B 2016, 94, 214105.
(37) Kittel, C. Introduction to Solid State Physics; 8th ed.; John and Wiley 2005.
(38) Resnick, R. E.-R. Quantum Physics of Atoms-Molecules-Solids-Nuclei-Particles; 2nd ed.; John and Wiley 1985.
(39) Serway, R. A. M., Clement J.; Moyer, Curt A. Modern Physics; 3rd ed.; Cengage Learning 2004, 1.
(40) Chen, B.; Chao, D.; Liu, E.; Jaroniec, M.; Zhao, N.; Qiao, S.-Z. Energy & Environmental Science 2020, 13, 1096.
(41) Hu, Z.; Wang, L.; Zhang, K.; Wang, J.; Cheng, F.; Tao, Z.; Chen, J. Angewandte Chemie International Edition 2014, 53, 12794.
(42) Hudie, S. M.; Lee, C.-P.; Mathew, R. J.; Chien, T.-E.; Huang, Y.-J.; Chen, H.-T.; Ho, K.-C.; Tseng, C.-A.; Chen, Y.-T. Solar RRL 2019, 3, 1800314.
(43) Mathew, R. J.; Inbaraj, C. R. P.; Sankar, R.; Hudie, S. M.; Nikam, R. D.; Tseng, C.-A.; Lee, C.-H.; Chen, Y.-T. Journal of Materials Chemistry C 2019, 7, 10996.
(44) Wang, L.; Wu, Y.; Yu, Y.; Chen, A.; Li, H.; Ren, W.; Lu, S.; Ding, S.; Yang, H.; Xue, Q.-K.; Li, F.-S.; Wang, G. ACS Nano 2020, 14, 8299.
(45) Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H.Small 2013, 9, 140.

Appendix - Reference
(1) Oliver, S. M.; Beams, R.; Krylyuk, S.; Kalish, I.; Singh, A. K.; Bruma, A.; Tavazza, F.; Joshi, J.; Iris R. S.; Stranick, S. J.; Davydov, A. V.; Vora P. M. 2D Materials 2017, 4, 045008.
(2) Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A.; Schiros, T.; Klarr, T.; Mazzoni, A.; Chin, M.; Chiu, Y. c.; Zheng, W.; Zhang, Q. R.; Ernst, F.; Dadap, J. I.; Tong, X.; Ma, J.; Lou, R.; Wang, S.; Qian, T.; Ding, H.; Osgood, R. M.; Paley, D. W.; Lindenberg, A. M.; Huang, P. Y.; Pasupathy, A. N.; Dubey, M.; Hone, J.; Balicas, L. Nano Letters 2017, 17, 1616.
(3) Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D.-H.; Chang, K. J.; Suenaga, K.; Kim, S. W.; Lee, Y. H.; Yang, H. Science 2015, 349, 625.
(4) Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H. Nature Physics 2015, 11, 482.
(5) Chiu, I. T.; Li, C.-T.; Lee, C.-P.; Chen, P.-Y.; Tseng, Y.-H.; Vittal, R.; Ho, K.-C. Nano Energy 2016, 22, 594.
(6) Chang, L. Y.; Li, C. T.; Li, Y. Y.; Lee, C. P.; Yeh, M. H.; Ho, K. C.; Lin, J. J. Electrochim. Acta 2015, 155, 263.
(7) Yeh, M.-H.; L.-Y. L., Lee, C. - P.; Wei, H. -Y.; Chen, C. - Y.; Wu, C. - G.; Vittal, R.; Ho, K. - C. Journal of Material Chemistry 2011, 21 19021.
(8) Chang, L. - Y.; Lee, C.-P.; Li, C. - T.; Yeh, M. - H.; Ho, K. - C.; Lin J. - J. Journal of Material Chemistry A 2014, 2, 20814.
(9) Ma, N.; Jiang, X.-Y.; Zhang, L.; Wang, X.-S.; Cao, Y.-L.; Zhang, X.-Z. Small 2018, 14, 1703680.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93956-
dc.description.abstractMoxW1-xTe2 是一種吸引人的類型-II Weyl半金屬,由於其在理論上預測的超高載流 子遷移率、可調的穩健拓撲表面態以及多態相特性而引起了巨大的關注。 這些獨特 的特性為研究 MoxW1-xTe2 的電子轉換和儲存特性鋪平了道路,使其在催化領域具有 應用前景,用於開發高效和結構穩定的新一代催化劑,以及開發高容量和耐用的能 量存放裝置。 在本研究中,我們展示了合理的催化劑設計,包括合成和應用高度結 晶的 MoxW1-xTe2 晶體,直接用作染料敏化太陽能電池(DSSCs)中無鉑對電極(CE),以及用作鋰離子電池器件的陽極電極材料。
在第1章的第一節中,將介紹Weyl半金屬的基本背景,以及DSSCs和鋰離子 電池的工作原理。 第2章將展示一種簡便的CVD合成方法,用於在大氣壓下相調控 的幾層 MoxW1-xTe2 奈米晶體和薄膜。 將進行基本的光學和結構表徵,如光學顯微鏡 (OM)、拉曼光譜、X射線光電子能譜(XPS)、掃描電子顯微鏡(SEM)和高解 析度透射電子顯微鏡(TEM),以優化CVD合成程式,適用於兩種應用。
在第2章中探討採用場效應晶體管(FET)和四探針霍爾效應測量方法,研究 相調控的 MoxW1-xTe2 特性的獨特電學特性。 最後一節將重點介紹電化學測量,以展 示合成的相調控 MoxW1-xTe2 作為DSSCs中無鉑對電極和鋰離子電池中陽極電極的潛 在應用。 在第3章中,描述 MoxW1-xTe2 作為DSSCs中無鉑對電極的潛在應用,以及實 驗結果, 並討論電解液中電極的材料性能和穩定性。
在第4章中,重點介紹 MoxW1-xTe2 作為鋰離子電池的另一個潛在應用,用於插 層Li+電荷,由於其在電池電池器件中的應用。 將在碳布基底上沉積各種相的 MoxW1-xTe2 奈米晶體。 此外,除了晶體相特性外,還將通過原位TEM表徵方法研究 Li+的插層能力。 將通過電化學方法製備電池器件,以研究所製備晶體的充放電容量。還將討論器件穩定性的特性屬性和額外的表徵方法。
在第5章中,對我的整體工作進行總結和展望。 第6章將包括一般程式的附錄。最後,所有章節的參考文獻可在第7章找到。
zh_TW
dc.description.abstractMoxW1-xTe2 is an attractive type-II Weyl-semimetal that has garnered tremendous interest due to its theoretically predicted ultra-high carrier mobility, tunable robust topological surface states, and polymorphic phase properties. These unique characteristics pave the way to study the electron conversion and storage properties of MoxW1-xTe2, making it applicable in catalysis for developing highly efficient and structurally stable newgeneration catalysts, as well as for developing high-capacity and durable energy storage devices. In this study, we demonstrate rational catalyst design, which includes the synthesis and application of highly crystalline MoxW1-xTe2 crystals for direct use as a Pt-free counter electrode (CE) in dye-sensitized solar cells (DSSCs) and as an anodic electrode material for lithium-ion battery devices.
In the first section of Chapter 1, the basic background of Weyl-semimetals along with the working principles of DSSCs and lithium-ion batteries are introduced. Chapter 2 demonstrates a facile CVD synthesis approach for phase-engineered few-layer MoxW1-xTe2 nanocrystals and thin films under atmospheric pressure. Basic optical and structural characterizations such as optical microscopy (OM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and highresolution transmission electron microscopy (TEM) have been performed to optimize the CVD synthesis procedures for both applications.
In the second section, field-effect transistor (FET) and four probe Hall-effect measurements are employed to study the distinctive electrical properties of phase-engineered MoxW1-xTe2 characteristics. The final section focuses on electrochemical measurements to demonstrate the potential application of the synthesized phase-engineered MoxW1-xTe2 as a counter electrode for DSSCs and as an anodic electrode in lithium-ion batteries.
In Chapter 3, the potential applications of MoxW1-xTe2 as a Pt-free counter electrode in DSSCs are described along with experimental results. The material performance and stability of electrodes in the electrolyte solution are discussed.
Chapter 4 focuses on another potential application of MoxW1-xTe2 as an anodic electrode for lithium-ion batteries to intercalate Li+ charges due to its application in battery cell devices. Various phases of MoxW1-xTe2 nanocrystals have been deposited on carbon cloth substrates. Additionally, besides crystal phase characterization, the Li+ intercalation capability has been investigated through in-situ TEM characterization methods. Battery cell device fabrication has been performed electrochemically to study the charging/discharging capacity of the prepared crystals. Further characteristic properties of device stability and additional characterization methods are discussed.
Chapter 5 provides a summary and outlook of my overall work. Chapter 6 includes an appendix of the general procedures. Finally, the references for all chapters are found in Chapter 7.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:41:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:41:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgment ....................................................... iii
Abstract............................................................... viii
List of Figures.................................................................. xii
List of Tables ....................................................................... xvii
Abbreviations............................................................ xviii
Chapter I- Motivation and research problems............................................................. 1
1.1. Motivation .......................................... 1
1.2 Statement of research problems ................................................ 3
1.3. Background .......................................................... 5
1.3.1. Topological Weyl semi-metals and conceptual framework........................................... 5
1.3.2. Types of Weyl semimetals (WSMs) ..................................... 8
1.4. Application in dye-sensitized solar cell systems (DSSCs) ............ 11
1.4.1. Principle of DSS cells........................................... 13
1.5. Applications in lithium-ion battery systems (LIBs) .................... 18
1.5.1. High energy density anode materials................................................ 30
1.5.2. Advantage of Weyl semi-metallic-based devices on energy conversion and storage systems ............................................................ 37
Chapter II- Synthesis method and experimental setup ......................... 39
2.1. Chemical vapor deposition method .................................... 39
2.2. Chemical reactions ................................... 42
2.3. Bulk Mo0.29W0.71Te2 crystal growth ...................................... 44
2.4. Characterization techniques ........................... 45
2.4.1. X-ray photoelectron spectroscopy ...........................45
2.4.2. Raman spectroscopy................................................ 46
2.4.3. Transmission electron microscopy............................ 48
2.4.4. Scanning electron microscopy .......................................49
2.2.5. Energy-dispersive X-ray spectroscopy ........................50
2.4.6. Optical microscope .......................................... 51
2.4.7. Atomic force microscopy ............................... 52
2.5. Field effect transistor (FET) ................. 54
3.1. Introduction ................................................ 57
3.2. Strategy ........................................................62
3.3. Working principle of dye-sensitized solar cell with Weyl semi-metallic topological surface ................................................................ 63
3.4. Results and discussion ....................................... 66
3.4.1. Composition determination by XPS............................................................................... 66
3.4.2. Raman characterization.................................................................................................69
3.4.3. Surface morphology analysis......................................................................................... 70
3.4.4. EDS measurements ........................................................................................................ 71
3.4.5. HR-TEM image measurements ..................................................................................... 73
3.4.7. Electrochemical and DSSC measurements ................................................................... 78
3.5. Conclusion ...........................................................................................................................86
Chapter IV - Polymorphic MoxW1-xTe2 nanodevice for high-performance LIB anodes ........ 88
4.1 Introduction............................................................................................................................. 88
4.2. Strategy ............................................................................................................................... 93
4.3. Results and discussion ........................................................................................................ 94
4.4. Conclusion ........................................................................................................................... 109
4.5. Experimental part .............................................................................................................. 110
Chapter V - Summary and Outlook ............................................................................................ 113
Chapter VI- Appendix .................................................................................................................. 117
Chapter VII - References.............................................................................................................. 129
7.1. Reference list of Chapter 1 ................................................................................................ 129
7.2. Reference list of Chapter 2 ................................................................................................ 136
7.3. Reference list of Chapter 3 ................................................................................................ 138
7.4 Reference list of Chapter 4 ................................................................................................. 142
Appendix- reference .................................................................................................................. 146
Publication .................................................................................................................. 147
-
dc.language.isoen-
dc.subject過渡金屬二硫化物zh_TW
dc.subjectMoxW1-xTe2zh_TW
dc.subject拓撲Weyl半金屬zh_TW
dc.subject化學氣相沉積zh_TW
dc.subject相轉變zh_TW
dc.subject催化zh_TW
dc.subject染料敏化太陽能電池zh_TW
dc.subject能量轉換與記憶體件zh_TW
dc.subject鋰離子電池陽極zh_TW
dc.subjectDye-sensitized solar cellen
dc.subjectTransition metal dichalcogenidesen
dc.subjectCatalysisen
dc.subjectMoxW1-xTe2en
dc.subjectTopological Weyl semimetalsen
dc.subjectChemical vapor depositionen
dc.subjectPhase transitionen
dc.subjectLithium-ion battery anodesen
dc.subjectEnergy conversion and storage devicesen
dc.title相工程化的拓撲半金屬(MoxW1-xTe2)的合成及其作為高性能能量轉換和儲存設備的應用zh_TW
dc.titleSynthesis of phase-engineered topological semimetals (MoxW1-xTe2)and their applications as high-performance energy conversion and storage devicesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee周家復;方牧懷;顏宏儒;廖尉斯;金必堯zh_TW
dc.contributor.oralexamcommitteeChia-Fu Chou;Mu-Huai Fang;Hung-Ju Yen;Wei-Ssu Liao;Bih-Yaw Jinen
dc.subject.keyword過渡金屬二硫化物,MoxW1-xTe2,拓撲Weyl半金屬,化學氣相沉積,相轉變,催化,染料敏化太陽能電池,能量轉換與記憶體件,鋰離子電池陽極,zh_TW
dc.subject.keywordTransition metal dichalcogenides,MoxW1-xTe2,Topological Weyl semimetals,Chemical vapor deposition,Phase transition, Catalysis,Dye-sensitized solar cell,Energy conversion and storage devices,Lithium-ion battery anodes,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202401254-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved