Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93948
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌zh_TW
dc.contributor.advisorShih-Huang Tungen
dc.contributor.author廖政豪zh_TW
dc.contributor.authorCheng-Hao Liaoen
dc.date.accessioned2024-08-09T16:37:21Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation1. Chen, Y.; Wen, K.; Chen, T.; Zhang, X.; Armand, M.; Chen, S., Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials 2020, 31, 401-433.
2. Ding, B.; Wang, J.; Fan, Z.; Chen, S.; Lin, Q.; Lu, X.; Dou, H.; Kumar Nanjundan, A.; Yushin, G.; Zhang, X.; Yamauchi, Y., Solid-state lithium–sulfur batteries: Advances, challenges and perspectives. Materials Today 2020, 40, 114-131.
3. Croce, F., Appetecchi, G., Persi, L. et al., Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.
4. Lin, Y.-Y.; Yong, A. X. B.; Gustafson, W. J.; Reedy, C. N.; Ertekin, E.; Krogstad, J. A.; Perry, N. H., Toward design of cation transport in solid-state battery electrolytes: Structure-dynamics relationships. Current Opinion in Solid State and Materials Science 2020, 24 (6).
5. Wan, J.; Xie, J.; Mackanic, D. G.; Burke, W.; Bao, Z.; Cui, Y., Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano 2018, 4, 1-16.
6. Zhang, T.; Shao, Y.; Zhang, X.; Huang, Y.; Wang, S.; Zhou, W.; Li, P.; Xia, G.; Yu, X., Fast Lithium Ionic Conductivity in Complex Hydride-Sulfide Electrolytes by Double Anions Substitution. Small Methods 2021, 5 (8), e2100609.
7. Zhang, T.; He, W.; Zhang, W.; Wang, T.; Li, P.; Sun, Z.; Yu, X., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem Sci 2020, 11 (33), 8686-8707.
8. Huang, J.; Liang, F.; Hou, M.; Zhang, Y.; Chen, K.; Xue, D., Garnet-type solid-state electrolytes and interfaces in all-solid-state lithium batteries: progress and perspective. Applied Materials Today 2020, 20.
9. Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 2016, 5, 139-164.
10. Wright, P. V., Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal 1975, 7 (5), 319-327.
11. Armand, M., Polymer solid electrolytes - an overview. Solid State Ionics 1983, 9-10, 745-754.
12. R. Walter, R. W., M. Smith, J.C. Selser, G. Piet, R. Bogoslovov, Role of polymer melt viscoelastic network behavior in lithium ion transport for PEO melt/LiClO4 SPEs: The `wet gel' model. Journal of Power Sources 2000, 89, 168-175.
13. Xue, Z.; He, D.; Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
14. Zhang, D.; Li, L.; Wu, X.; Wang, J.; Li, Q.; Pan, K.; He, J., Research Progress and Application of PEO-Based Solid State Polymer Composite Electrolytes. Frontiers in Energy Research 2021, 9.
15. Li, C.; Xue, P.; Chen, L.; Liu, J.; Wang, Z., Reducing the crystallinity of PEO-based composite electrolyte for high performance lithium batteries. Composites Part B: Engineering 2022, 234.
16. Zlatka Gadjourova, Y. G. A., David P. Tunstall & Peter G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412, 520–523.
17. Maranas, S. K. F.-S. a. J. K., Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes. Macromolecules 2009, 42, 2142-2156.
18. Xinming Qian, N. G., Zhiliang Cheng, Xiurong Yang, Erkang Wang, Shaojun Dong, Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Materials Chemistry and Physics 2002, 74, 98–103.
19. LEIRE ZUBIZARRETA, M. G.-A., JUAN CARLOS ESPINOSA, MARTA GARCIA-PELLICER, ALFREDO QUIJANO-LOPEZ, Studying the Properties of PVdF-HFP Based Lithium Polymer Electrolytes Using non-ionic Surfactants as Plasticizers. Materiale Plastice 2021, 58, 237-247.
20. Deb, D.; Bose, P.; Bhattacharya, S., Ionanofluid plasticized electrolyte with improved electrical and electrochemical properties for high‐performance lithium polymer battery. International Journal of Energy Research 2020, 44 (13), 10506-10522.
21. Banitaba, S. N.; Semnani, D.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A. A., The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries. Solid State Ionics 2020, 347.
22. Ahmed, H. T.; Jalal, V. J.; Tahir, D. A.; Mohamad, A. H.; Abdullah, O. G., Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films. Results in Physics 2019, 15.
23. Kumar, Y.; Hashmi, S. A.; Pandey, G. P., Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 2011, 201 (1), 73-80.
24. Srivastava, S.; Schaefer, J. L.; Yang, Z.; Tu, Z.; Archer, L. A., 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. Adv Mater 2014, 26 (2), 201-34.
25. Bocharova, V.; Chen, X. C.; Jeong, S. P.; Zhou, Z.; Sacci, R. L.; Keum, J. K.; Gainaru, C.; Rahman, M. A.; Sahori, R.; Sun, X.-G.; Cao, P.; Westover, A., Single Ion Conducting Hairy Nanoparticle Additive to Improve Cycling Stability of Solid Polymer Electrolytes. ACS Applied Energy Materials 2023, 6 (15), 8042-8052.
26. Chen, Z.; Jia, H.; Yan, S.; Gohy, J.-F., Polymer-coated silica dual functional fillers to improve the performance of poly(ethylene oxide)-based solid electrolytes. Nano Energy 2023, 114.
27. Yang, X.; Liu, J.; Pei, N.; Chen, Z.; Li, R.; Fu, L.; Zhang, P.; Zhao, J., The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery. Nanomicro Lett 2023, 15 (1), 74.
28. Sripada, S.; Reddy, M. C.; Sreekanth, T.; Siripuram, R.; Venkateshwarlu, K., Influence of Nano Filler (ZrO2) on Optical and Thermal Studies of Potassium Doped Polyethylene Oxide Solid Polymer Electrolytes. Materials Science Forum 2022, 1048, 101-109.
29. Tao, C.; Gao, M.-H.; Yin, B.-H.; Li, B.; Huang, Y.-P.; Xu, G.; Bao, J.-J., A promising TPU/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Electrochimica Acta 2017, 257, 31-39.
30. Li, J.; Zhu, K.; Wang, J.; Yan, K.; Liu, J.; Yao, Z.; Xu, Y., Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries. Materials Technology 2020, 37 (4), 240-247.
31. Zhu, L.; Li, J.; Jia, Y.; Zhu, P.; Jing, M.; Yao, S.; Shen, X.; Li, S.; Tu, F., Toward high performance solid‐state lithium‐ion battery with a promising PEO/PPC blend solid polymer electrolyte. International Journal of Energy Research 2020, 44 (13), 10168-10178.
32. Olmedo-Martinez, J. L.; Pastorio, M.; Gabirondo, E.; Lorenzetti, A.; Sardon, H.; Mecerreyes, D.; Muller, A. J., Polyether Single and Double Crystalline Blends and the Effect of Lithium Salt on Their Crystallinity and Ionic Conductivity. Polymers (Basel) 2021, 13 (13).
33. Olmedo-Martínez, J. L.; Porcarelli, L.; Guzmán-González, G.; Calafel, I.; Forsyth, M.; Mecerreyes, D.; Müller, A. J., Ternary Poly(ethylene oxide)/Poly(l,l-lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials 2021, 3 (12), 6326-6337.
34. Zhaoyin Wen, T. I., Yoshiaki Ichikawa, Masataka Kubo, Osamu Yamamoto, Blend-based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly[bis(triethylene glycol)benzoate] with terminal acetyl groups. Solid State Ionics 2000, 134, 281-289.
35. Mei, X.; Huang, Y.; Chen, S.; Tang, M.; Li, J.; Bo, S.-H.; Guo, Y., Improving Ion Conductivity in Polymer Blend Electrolytes by Tuning Microdynamics and Interfaces. ACS Applied Polymer Materials 2023, 5 (11), 9225-9235.
36. Xin, C.; Wen, K.; Guan, S.; Xue, C.; Wu, X.; Li, L.; Nan, C.-W., A Cross-Linked Poly(Ethylene Oxide)-Based Electrolyte for All-Solid-State Lithium Metal Batteries With Long Cycling Stability. Frontiers in Materials 2022, 9.
37. Liang, H. P.; Chen, Z.; Dong, X.; Zinkevich, T.; Indris, S.; Passerini, S.; Bresser, D., Photo-Cross-Linked Single-Ion Conducting Polymer Electrolyte for Lithium-Metal Batteries. Macromol Rapid Commun 2022, 43 (12), e2100820.
38. Li, C.; Hu, A.; Zhang, X.; Ni, H.; Fan, J.; Yuan, R.; Zheng, M.; Dong, Q., An intrinsic polymer electrolyte via in situ cross-linked for solid lithium-based batteries with high performance. PNAS Nexus 2023, 2 (9), pgad263.
39. Yang, Y.; Li, W.; Zhou, N.; Shen, J., Design and Construction of Cross-Linked PEO with the Integration of Helical Polyurethane as an Advanced All-Solid-State Polymer Electrolyte for Lithium Batteries. Journal of Chemical Education 2020, 97 (10), 3758-3765.
40. Manuel Stephan, A., Review on gel polymer electrolytes for lithium batteries. European Polymer Journal 2006, 42 (1), 21-42.
41. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303-4417.
42. Fauteux, C. D. R. D., Phase Diagrams and Conductivity Characterization of Some PEO ‐ LiX Electrolytes. Journal of The Electrochemical Society 1986, 133, 315.
43. FAUTEUX, D., Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 2003, 159, 111-119.
44. Henderson, W. A., Crystallization Kinetics of Glyme-LiX and PEO-LiX Polymer Electrolytes. Macromolecules 2007, 40, 4963-4971.
45. Siqueira, L. J.; Ribeiro, M. C., Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO(4). II. Dynamical properties. J Chem Phys 2006, 125 (21), 214903.
46. Mark Salomon, M. X., Edward M. Eyring, and Sergio Petrucci, Molecular Structure and Dynamics of LiClC^-Polyethylene Oxide-400 (Dimethyl Ether and Diglycol Systems) at 25 °C. J. Phys. Chem. 1994, 98, 8234-8244.
47. W. GORECKI, R. A., C. BERTHIER, NMR, DSC, AND CONDUCTIVITY STUDY OF A POLY(ETHYLENEOXIDE) COMPLEXELECTROLYTE : PEO(LiCI04)x. Solid State Ionics 1986, 18 & 19, 295-299.
48. Karmakar, A.; Ghosh, A., Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Current Applied Physics 2012, 12 (2), 539-543.
49. A. Magistris, P. M., E. Quartarone, C. Tomasi, Transport and thermal properties of (PEO)n –LiPF6 electrolytes for super-ambient applications. Solid State Ionics 2000, 136-137, 1241-1247.
50. Angulakshmi, N.; Nahm, K. S.; Nair, J. R.; Gerbaldi, C.; Bongiovanni, R.; Penazzi, N.; Stephan, A. M., Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochimica Acta 2013, 90, 179-185.
51. Ibrahim, S.; Yassin, M. M.; Ahmad, R.; Johan, M. R., Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 2011, 17 (5), 399-405.
52. Zlatka Stoeva, I. M.-L., Edward Staunton, Yuri G. Andreev, and Peter G. Bruce, Ionic Conductivity in the Crystalline Polymer Electrolytes PEO6:LiXF6, X ) P, As, Sb. J. AM. CHEM. SOC. 2002, 125, 4619-4626.
53. Graham S. MacGlashan, Y. G. A. P. G. B., Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 1999, 398, 792-794.
54. S. M. Zahurak, M. L. K., E. A, Rietman, D. W. Murphy, and R. J. Cava, Phase Relationships and Conductivity of the Polymer Electrolytes Poly (ethylene oxide)/Lithium Tetrafluoroborate and Polyethylene oxide)/Lithium Trifluoromethanesulfonate. Macromolecules 1988, 21, 654-660.
55. A.C. Bloise, C. C. T., R.W.A. Franco, J.P. Donoso, C.J. Magon, M.F. Souza, A.V. Rosario, E.C. Pereira, Nuclear magnetic resonance study of PEO-based composite polymer electrolytes. Electrochimica Acta 2001, 46, 1571-1579.
56. Kalita, M.; Bukat, M.; Ciosek, M.; Siekierski, M.; Chung, S. H.; Rodríguez, T.; Greenbaum, S. G.; Kovarsky, R.; Golodnitsky, D.; Peled, E.; Zane, D.; Scrosati, B.; Wieczorek, W., Effect of calixpyrrole in PEO–LiBF4 polymer electrolytes. Electrochimica Acta 2005, 50 (19), 3942-3948.
57. Bernhard, R.; Latini, A.; Panero, S.; Scrosati, B.; Hassoun, J., Poly(ethylenglycol)dimethylether–lithium bis(trifluoromethanesulfonyl)imide, PEG500DME–LiTFSI, as high viscosity electrolyte for lithium ion batteries. Journal of Power Sources 2013, 226, 329-333.
58. Oleg Borodin, G. D. S., Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/ LiTFSI from Molecular Dynamics Simulations. Macromolecules 2006, 39, 1620-1629.
59. S. Lascaud, M. P., A. Vallée, S. Besner, and J. Prud’homme, Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes. Macromolecules 1994, 27, 7469-7477.
60. Eishun TSUCHIDA, H. O., Koichi TSUNEMI and Norihisa KOBAYASHI, Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate. Solid State Ionics 1983, 11, 227-233.
61. Devi, C.; Gellanki, J.; Pettersson, H.; Kumar, S., High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers. Sci Rep 2021, 11 (1), 20180.
62. Patel, V. K.; Sengwa, R. J.; Saraswat, M., Unveiling the Synergy of Polymer–Salt Compositions for Properties Enhancement of Solid Polymer Electrolytes Based on PEO/PVP Blend Polymer Matrix and LiTFSI Dopant Salt. ECS Advances 2023, 2 (4).
63. Sengwa, R. J.; Patel, V. K.; Saraswat, M., Investigation on promising properties of PEO/PVP/LiTFSI solid polymer electrolytes for high-performance energy storage and next-generation flexible optoelectronic and iontronic devices. Journal of Polymer Research 2022, 29 (11).
64. Anilkumar, K. M.; Jinisha, B.; Manoj, M.; Jayalekshmi, S., Poly(ethylene oxide) (PEO) – Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. European Polymer Journal 2017, 89, 249-262.
65. Yuan, F.; Chen, H.-Z.; Yang, H.-Y.; Li, H.-Y.; Wang, M., PAN–PEO solid polymer electrolytes with high ionic conductivity. Materials Chemistry and Physics 2005, 89 (2-3), 390-394.
66. Abdollahi, S.; Sadadi, H.; Ehsani, M.; Aram, E., Highly efficient polymer electrolyte based on electrospun PEO/PAN/single-layered graphene oxide. Ionics 2021, 27 (8), 3477-3487.
67. Chun‐Guey, W.; Chiung‐Hui, W.; Ming‐I, L.; Huey‐Jan, C., New solid polymer electrolytes based on PEO/PAN hybrids. Journal of Applied Polymer Science 2005, 99 (4), 1530-1540.
68. M.M.E. Jacob, S. R. S. P., S. Radhakrishna, Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 1997, 104, 267-276.
69. Prasanth, R.; Shubha, N.; Hng, H. H.; Srinivasan, M., Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. Journal of Power Sources 2014, 245, 283-291.
70. Xi, J.; Qiu, X.; Li, J.; Tang, X.; Zhu, W.; Chen, L., PVDF–PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity. Journal of Power Sources 2006, 157 (1), 501-506.
71. Nourisabet, T.; Jamshidi Aval, H.; Shidpour, R.; Naji, L., Fabrication of a PEO-PVDF blend based polymer composite electrolyte with extremely high ionic conductivity via the addition of LLTO nanowires. Solid State Ionics 2022, 377.
72. Revathy, C.; Sunitha, V. R.; Money, B. K.; Joseph, R.; Radhakrishnan, S., Role of mixed molecular weight PEO-PVDF polymers in improving the ionic conductivity of blended solid polymer electrolytes. Ionics 2023, 29 (10), 4025-4035.
73. Ushakova, E. E.; Sergeev, A. V.; Morzhukhin, A.; Napolskiy, F. S.; Kristavchuk, O.; Chertovich, A. V.; Yashina, L. V.; Itkis, D. M., Free-standing Li(+)-conductive films based on PEO-PVDF blends. RSC Adv 2020, 10 (27), 16118-16124.
74. Liang, B.; Tang, S.; Jiang, Q.; Chen, C.; Chen, X.; Li, S.; Yan, X., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochimica Acta 2015, 169, 334-341.
75. Lim, Y.; Jung, H.-A.; Hwang, H., Fabrication of PEO-PMMA-LiClO4-Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries. Energies 2018, 11 (10).
76. Dhatarwal, P.; Choudhary, S.; Sengwa, R. J., Electrochemical performance of Li+-ion conducting solid polymer electrolytes based on PEO–PMMA blend matrix incorporated with various inorganic nanoparticles for the lithium ion batteries. Composites Communications 2018, 10, 11-17.
77. Yap, Y. L.; You, A. H.; Teo, L. L., Preparation and characterization studies of PMMA–PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics 2019, 25 (7), 3087-3098.
78. Subramanian, A.; Kumaraiah, R.; Tahira, M. T., Novel Dispersion of CeO2 Nanofiller in PEO/PMMA Blended Nanocomposite Solid Polymer Electrolytes. In The 4th International Electronic Conference on Applied Sciences, 2023.
79. Wu, X.; Song, T.; Wei, Z.; Shen, L.; Jiang, H.; Ke, Y.; He, C.; Yang, H.; Shi, W., Promoted liquid-liquid phase separation of PEO/PS blends with very low LiTFSI fraction. Polymer 2022, 260.
80. Zhang, M.; Zhang, A.-l.; Li, Q.; Li, F.-f.; Wang, S.; Li, S.-x., Conductivity of PEO/PLA Doped Liquid Crystal Ionomer Solid Polymer Electrolyte in Mesomorphic Range. Journal of Polymers and the Environment 2019, 27 (11), 2369-2379.
81. Ana Maria Rocco, C. P. d. F., Robson Pacheco Pereira, A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4. Polymer 2002, 43 (13), 3601-3609.
82. Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W., Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 2014, 136 (20), 7395-402.
83. Shi, J.; Yang, Y.; Shao, H., Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. Journal of Membrane Science 2018, 547, 1-10.
84. He, W.; Cui, Z.; Liu, X.; Cui, Y.; Chai, J.; Zhou, X.; Liu, Z.; Cui, G., Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochimica Acta 2017, 225, 151-159.
85. Xu, L.; Wei, K.; Cao, Y.; Ma, S.; Li, J.; Zhao, Y.; Cui, Y.; Cui, Y., The synergistic effect of the PEO-PVA-PESf composite polymer electrolyte for all-solid-state lithium-ion batteries. RSC Adv 2020, 10 (9), 5462-5467.
86. Ma, J.; Chen, B.; Wang, L.; Cui, G., Progress and prospect on failure mechanisms of solid-state lithium batteries. Journal of Power Sources 2018, 392, 94-115.
87. Zheng, Y.; Yao, Y.; Ou, J.; Li, M.; Luo, D.; Dou, H.; Li, Z.; Amine, K.; Yu, A.; Chen, Z., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev 2020, 49 (23), 8790-8839.
88. Zhang, D.; Xu, X.; Qin, Y.; Ji, S.; Huo, Y.; Wang, Z.; Liu, Z.; Shen, J.; Liu, J., Recent Progress in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Chemistry 2020, 26 (8), 1720-1736.
89. Lv, N.; Zhang, Q.; Xu, Y.; Li, H.; Wei, Z.; Tao, Z.; Wang, Y.; Tang, H., PEO-based composite solid electrolyte for lithium battery with enhanced interface structure. Journal of Alloys and Compounds 2023, 938.
90. Liang, H.; Wang, S.; Ye, Q.; Zeng, C.; Tong, Z.; Ma, Y.; Li, H., Stabilizing the interface of PEO solid electrolyte to lithium metal anode via a g-C(3)N(4) mediator. Chem Commun (Camb) 2022, 58 (77), 10821-10824.
91. Dong, D.; Zhou, B.; Sun, Y.; Zhang, H.; Zhong, G.; Dong, Q.; Fu, F.; Qian, H.; Lin, Z.; Lu, D.; Shen, Y.; Wu, J.; Chen, L.; Chen, H., Polymer Electrolyte Glue: A Universal Interfacial Modification Strategy for All-Solid-State Li Batteries. Nano Lett 2019, 19 (4), 2343-2349.
92. Yang, L.; Wang, Z.; Feng, Y.; Tan, R.; Zuo, Y.; Gao, R.; Zhao, Y.; Han, L.; Wang, Z.; Pan, F., Flexible Composite Solid Electrolyte Facilitating Highly Stable “Soft Contacting” Li–Electrolyte Interface for Solid State Lithium‐Ion Batteries. Advanced Energy Materials 2017, 7 (22).
93. Jia, Z.; Liu, Y.; Li, H.; Xiong, Y.; Miao, Y.; Liu, Z.; Ren, F., In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries: Challenges, strategies, and perspectives. Journal of Energy Chemistry 2024, 92, 548-571.
94. Deng, C.; Chen, N.; Hou, C.; Liu, H.; Zhou, Z.; Chen, R., Enhancing Interfacial Contact in Solid-State Batteries with a Gradient Composite Solid Electrolyte. Small 2021, 17 (18), e2006578.
95. Duan, H.; Yin, Y. X.; Shi, Y.; Wang, P. F.; Zhang, X. D.; Yang, C. P.; Shi, J. L.; Wen, R.; Guo, Y. G.; Wan, L. J., Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. J Am Chem Soc 2018, 140 (1), 82-85.
96. Cheng, Z.; Pan, H.; Li, C.; Mu, X.; Du, Y.; Zhang, F.; Zhang, X.; He, P.; Zhou, H., Anin situsolidifying strategy enabling high-voltage all-solid-state Li-metal batteries operating at room temperature. Journal of Materials Chemistry A 2020, 8 (47), 25217-25225.
97. Gao, L.; Sarmad, B.; Li, J.; Cheng, B.; Kang, W.; Deng, N., Application of polyamide 6 microfiber non-woven fabrics in the large-scale production of all-solid-state lithium metal batteries. J Power Sources 2020, 475, 228663.
98. Wang, Y.; Wu, Z.; Zhang, R.; Chen, Z.; Wei, Z.; Hou, Y.; Li, P.; Yang, S.; Huang, Z.; Li, N.; Zhi, C., Spider silk inspired polymer electrolyte with well bonded interface and fast kinetics for solid-state lithium-ion batteries. Materials Today 2024.
99. Lu, W.; Shi, R.; Li, X.; Ma, S.; Yang, D.; Shang, D.; Xia, Q., A review on complete silk gene sequencing and de novo assembly of artificial silk. Int J Biol Macromol 2024, 264 (Pt 2), 130444.
100. Hu, W.; Jia, A.; Ma, S.; Zhang, G.; Wei, Z.; Lu, F.; Luo, Y.; Zhang, Z.; Sun, J.; Yang, T.; Xia, T.; Li, Q.; Yao, T.; Zheng, J.; Jiang, Z.; Xu, Z.; Xia, Q.; Wang, Y., A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk. Nat Commun 2023, 14 (1), 837.
101. Wen, R.; Yang, D.; Wang, K.; Zan, X., Characterization of two full-length Araneus ventricosus major ampullate silk protein genes. Int J Biol Macromol 2022, 213, 297-304.
102. Correa-Garhwal, S. M.; Baker, R. H.; Clarke, T. H.; Ayoub, N. A.; Hayashi, C. Y., The evolutionary history of cribellate orb-weaver capture thread spidroins. BMC Ecol Evol 2022, 22 (1), 89.
103. Kuria, K. P.; Jane, G., Spider silk: A natural marvel of mechanical and structural strength. African Journal of Biological Sciences 2021, 3 (4).
104. Kiseleva, A. P.; Krivoshapkin, P. V.; Krivoshapkina, E. F., Recent Advances in Development of Functional Spider Silk-Based Hybrid Materials. Front Chem 2020, 8, 554.
105. Opell, B. D.; Elmore, H. M.; Hendricks, M. L., Adhesive contact and protein elastic modulus tune orb weaving spider glue droplet biomechanics to habitat humidity. Acta Biomater 2022, 151, 468-479.
106. Ayoub, N. A.; DuMez, L.; Lazo, C.; Luzaran, M.; Magoti, J.; Morris, S. A.; Baker, R. H.; Clarke, T.; Correa-Garhwal, S. M.; Hayashi, C. Y.; Friend, K.; Opell, B. D., Orb weaver aggregate glue protein composition as a mechanism for rapid evolution of material properties. Frontiers in Ecology and Evolution 2023, 11.
107. Ramezaniaghdam, M.; Nahdi, N. D.; Reski, R., Recombinant Spider Silk: Promises and Bottlenecks. Front Bioeng Biotechnol 2022, 10, 835637.
108. Peng, X.; Liu, Z.; Gao, J.; Zhang, Y.; Wang, H.; Li, C.; Lv, X.; Gao, Y.; Deng, H.; Zhao, B.; Gao, T.; Li, H., Influence of Spider Silk Protein Structure on Mechanical and Biological Properties for Energetic Material Detection. Molecules 2024, 29 (5).
109. Yoon, T.; Shin, H.; Park, W.; Kim, Y.; Na, S., Biochemical mechanism involved in the enhancement of the Young's modulus of silk by the SpiCE protein. J Mech Behav Biomed Mater 2023, 143, 105878.
110. al., K. A. e., 1000 spider silkomes: Linking sequences to silk physical properties. SCIENCE ADVANCES 2022, 8 (41).
111. Wu, D.; Koscic, A.; Schneider, S.; Dubini, R. C. A.; Rodriguez Camargo, D. C.; Schneider, S.; Rovo, P., Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein. Biomacromolecules 2024, 25 (3), 1759-1774.
112. Connor, A.; Wigham, C.; Bai, Y.; Rai, M.; Nassif, S.; Koffas, M.; Zha, R. H., Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli. Metab Eng Commun 2023, 16, e00219.
113. Prince, J. T.; McGrath, K. P.; DiGirolamo, C. M.; Kaplan, D. L., Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 1995, 34 (34), 10879-85.
114. Connor, A.; Zha, R. H.; Koffas, M., Production and secretion of recombinant spider silk in Bacillus megaterium. Microb Cell Fact 2024, 23 (1), 35.
115. Stephen R. Fahnestock, Z. Y., Laura A. Bedzyk, Microbial production of spider silk proteins. Reviews in Molecular Biotechnology 2000, 74, 105-119.
116. Jürgen Scheller, K.-H. G., Frank Grosse, and Udo Conrad, Production of spider silk proteins in tobacco and potato. nature biotechnology 2001, 19, 573-577.
117. Gruchow, H. M.; Opdensteinen, P.; Buyel, J. F., Membrane-based inverse-transition purification facilitates a rapid isolation of various spider-silk elastin-like polypeptide fusion proteins from extracts of transgenic tobacco. Transgenic Res 2024, 33 (1-2), 21-33.
118. Peng, C. A.; Russo, J.; Gravgaard, C.; McCartney, H.; Gaines, W.; Marcotte, W. R., Jr., Spider silk-like proteins derived from transgenic Nicotiana tabacum. Transgenic Res 2016, 25 (4), 517-26.
119. Anthoula Lazaris, S. A., Yue Huang, Jiang-Feng Zhou, Fran ̧cois Duguay, Nathalie Chretien, Elizabeth A. Welsh, Jason W. Soares, Costas N. Karatzas, Spider Silk Fibers Spun from Soluble Recombinant Silk Produced in Mammalian Cells. SCIENCE 2002, 295, 472-476.
120. Heim, M.; Keerl, D.; Scheibel, T., Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed Engl 2009, 48 (20), 3584-96.
121. Gray, G. M.; Thiessen, B.; van der Vaart, A., Secondary structure of peptides mimicking the Gly-rich regions of major ampullate spidroin protein 1 and 2. Biophys Chem 2022, 284, 106783.
122. Troy, E.; Tilbury, M. A.; Power, A. M.; Wall, J. G., Nature-Based Biomaterials and Their Application in Biomedicine. Polymers (Basel) 2021, 13 (19).
123. Kluge, J. A.; Rabotyagova, O.; Leisk, G. G.; Kaplan, D. L., Spider silks and their applications. Trends Biotechnol 2008, 26 (5), 244-51.
124. Gregory P. Holland, M. S. C., Janelle E. Jenkins, Randolph V. Lewis, and Jeffery L. Yarger, Determining Secondary Structure in Spider Dragline Silk by Carbon−Carbon Correlation Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2008, 130 (30), 9871-9877.
125. M. Hronska, J. D. v. B., P. T. F. Williamson, Fritz Vollrath, and Beat H. Meier, NMR Characterization of Native Liquid Spider Dragline Silk from Nephila edulis. Biomacromolecules 2004, 5 (3), 834–839.
126. Melinda S. Creager, J. E. J., Leigh A. Thagard-Yeaman, Amanda E. Brooks, Justin A. Jones, Randolph V. Lewis, Gregory P. Holland, and Jeffery L. Yarger, Solid-State NMR Comparison of Various Spiders’ Dragline Silk Fiber. Biomacromolecules 2010, 11 (8), 2039–2043.
127. Shi, X.; Holland, G. P.; Yarger, J. L., Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR. Biomacromolecules 2015, 16 (3), 852-9.
128. Asakura, T.; Yao, J., 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching. Protein Sci 2002, 11 (11), 2706-13.
129. Raiker Witter, U. S., and Anne S. Ulrich, NMR Chemical Shift Powder Pattern Recoupling at High Spinning Speed and Theoretical Tensor Evaluation Applied to Silk Fibroin. J. Am. Chem. Soc. 2006, 128 (7), 2236–2243.
130. Papadopoulos, P.; Solter, J.; Kremer, F., Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy. Eur Phys J E Soft Matter 2007, 24 (2), 193-9.
131. Heidebrecht, A.; Eisoldt, L.; Diehl, J.; Schmidt, A.; Geffers, M.; Lang, G.; Scheibel, T., Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 2015, 27 (13), 2189-94.
132. Koperska, M. A.; Pawcenis, D.; Bagniuk, J.; Zaitz, M. M.; Missori, M.; Łojewski, T.; Łojewska, J., Degradation markers of fibroin in silk through infrared spectroscopy. Polymer Degradation and Stability 2014, 105, 185-196.
133. Vilaplana, F.; Nilsson, J.; Sommer, D. V.; Karlsson, S., Analytical markers for silk degradation: comparing historic silk and silk artificially aged in different environments. Anal Bioanal Chem 2015, 407 (5), 1433-49.
134. de Moraes, M. A.; Albrecht Mahl, C. R.; Ferreira Silva, M.; Beppu, M. M., Formation of silk fibroin hydrogel and evaluation of its drug release profile. Journal of Applied Polymer Science 2015, 132 (15).
135. Barth, A., Infrared spectroscopy of proteins. Biochim Biophys Acta 2007, 1767 (9), 1073-101.
136. Paquet-Mercier, F.; Lefèvre, T.; Auger, M.; Pézolet, M., Evidence by infrared spectroscopy of the presence of two types of β-sheets in major ampullate spider silk and silkworm silk. Soft Matter 2013, 9 (1), 208-215.
137. Du, N.; Liu, X. Y.; Narayanan, J.; Li, L.; Lim, M. L.; Li, D., Design of superior spider silk: from nanostructure to mechanical properties. Biophys J 2006, 91 (12), 4528-35.
138. Warwicker, J. O., The Crystal Structure of Silk Fibroin. Acta Crystallogr. 1954, 7, 565-573.
139. Christian Riekel, M. M., and Fritz Vollrath, In Situ X-ray Diffraction during ForcedSilking of Spider Silk. Macromolecules 1999, 32, 4464-4466.
140. Marie-Eve Rousseau, D. H. C., M. Marcia West, Adam P. Hitchcock, and Michel Pézolet, Nephila clavipes Spider Dragline Silk Microstructure Studiedby Scanning Transmission X-ray Microscopy. J. Am. Chem. Soc. 2007, 129 (13), 3897–3905.
141. Gupta, P.; Kumar, M.; Bhardwaj, N.; Kumar, J. P.; Krishnamurthy, C. S.; Nandi, S. K.; Mandal, B. B., Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films. ACS Appl Mater Interfaces 2016, 8 (25), 15874-88.
142. Abels, G.; Bardenhagen, I.; Schwenzel, J.; Langer, F., Thermal Stability of Polyethylene Oxide Electrolytes in Lithium Nickel Manganese Cobalt Oxide Based Composite Cathodes. Journal of The Electrochemical Society 2022, 169 (2).
143. Emanuele Calabrò, S. m., On the hydrogen bond increasing in polyethylene oxide aqueous solution induced by exposure to electromagnetic fields. Physical Chemistry: An Indian Journal 2013, 8 (2), 59-66.
144. Samanta, P.; V, T.; Singh, S.; Srivastava, R.; Nandan, B.; Liu, C. L.; Chen, H. L., Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends. Soft Matter 2016, 12 (23), 5110-20.
145. Chen, H.; Chen, X.; Chen, H.; Liu, X.; Li, J.; Luo, J.; He, A.; Han, C. C.; Liu, Y.; Xu, S., Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. Membranes (Basel) 2020, 10 (9).
146. Tadokoro, Y. T. a. H., Structural Studies of Polyethers, (-(CH2)m-O-)n. X. Crystal Structure of Poly(ethylene oxide). Macromolecules 1973, 6 (5), 672–675.
147. Lei Zhu, S. Z. D. C., Bret H. Calhoun, Qing Ge, Roderic P. Quirk, Edwin L. Thomas, Benjamin S. Hsiao, Fengji Yeh, and Bernard Lotz, Crystallization Temperature-Dependent Crystal Orientations within Nanoscale Confined Lamellae of a Self-Assembled Crystalline-Amorphous Diblock Copolymer. J. Am. Chem. Soc. 2000, 122, 5957-5967.
148. Kwon, O. H.; Ortalan, V.; Zewail, A. H., Macromolecular structural dynamics visualized by pulsed dose control in 4D electron microscopy. Proc Natl Acad Sci U S A 2011, 108 (15), 6026-31.
149. Calabrò, E.; Magazù, S., On the hydrogen bond increasing in polyethylene oxide aqueous solution induced by exposure to electromagnetic fields. Physical Chemistry: An Indian Journal 2013, 8 (2), 59-66.
150. Lin, T. Y.; Masunaga, H.; Sato, R.; Malay, A. D.; Toyooka, K.; Hikima, T.; Numata, K., Liquid Crystalline Granules Align in a Hierarchical Structure To Produce Spider Dragline Microfibrils. Biomacromolecules 2017, 18 (4), 1350-1355.
151. Zhao, Y.; Wang, L.; Zhou, Y.; Liang, Z.; Tavajohi, N.; Li, B.; Li, T., Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries. Adv Sci (Weinh) 2021, 8 (7), 2003675.
152. Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y., A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances 2017, 7 (38), 23494-23501.
153. Liu, M.; Jin, B.; Zhang, Q.; Zhan, X.; Chen, F., High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane. Journal of Alloys and Compounds 2018, 742, 619-628.
154. Liu, X.; Mao, W.; Gong, J.; Liu, H.; Shao, Y.; Sun, L.; Wang, H.; Wang, C., Enhanced Electrochemical Performance of PEO-Based Composite Polymer Electrolyte with Single-Ion Conducting Polymer Grafted SiO(2) Nanoparticles. Polymers (Basel) 2023, 15 (2).
155. Liu, M.; Guan, X.; Liu, H.; Ma, X.; Wu, Q.; Ge, S.; Zhang, H.; Xu, J., Composite solid electrolytes containing single-ion lithium polymer grafted garnet for dendrite-free, long-life all-solid-state lithium metal batteries. Chemical Engineering Journal 2022, 445.
156. Fu, X.; Lin, J.; Liang, Z.; Yao, R.; Wu, W.; Fang, Z.; Zou, W.; Wu, Z.; Ning, H.; Peng, J., Graphene oxide as a promising nanofiller for polymer composite. Surfaces and Interfaces 2023, 37.
157. Li, Y.; Cao, R.; Shi, S.; Cao, H., GO–Polymer Modified Anion Exchange Membranes for Antifouling. ACS Applied Nano Materials 2023, 6 (19), 18255-18262.
158. Dadashi, P.; Ray, S. S.; Babaei, A., Effect of Graphene Oxide Localization on Morphology Development and Rheological and Mechanical Properties of Poly(lactic acid)/ethylene vinyl Alcohol Copolymer Blend Composites: A Comprehensive Study. Polymers (Basel) 2024, 16 (8).
159. Wen, J.; Zhao, Q.; Jiang, X.; Ji, G.; Wang, R.; Lu, G.; Long, J.; Hu, N.; Xu, C., Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery. ACS Applied Energy Materials 2021, 4 (4), 3660-3669.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93948-
dc.description.abstract對於固態鋰電池而言,探索高性能固態電解質是至關重要的,其中以研究聚環氧乙烷固態電解質最為廣泛。然而,其性能需要在降低結晶度及提高機械性質間做取捨,破壞聚環氧乙烷結晶度的同時,也代表著機械性質的下降,這是聚環氧乙烷固態電解質面臨的一大挑戰。本研究利用生物工程所合成的蜘蛛絲與聚環氧乙烷進行混摻後,製備出固態電解質,結果表明蜘蛛絲能夠同時增強機械性質以及離子傳導度。添加蜘蛛絲於聚環氧乙烷後,抗拉強度以及斷裂伸長率都有顯著地提升,使其韌性與純聚環氧乙烷相比,高出八倍。此外,我們發現蜘蛛絲可以透過與聚環氧乙烷所產生的氫鍵作用力有效地抑制聚環氧乙烷結晶的形成,以增加非晶區結構並增強聚環氧乙烷鏈段的移動性。離子傳導度的量測結果顯示,添加20 %蜘蛛絲的聚環氧乙烷固態電解質有最高的離子傳導度,在30 °C下所測得的值為3.0 * 10^–4 S cm^–1。除此之外,由於聚環氧乙烷的低結晶度以及蜘蛛絲結構中具有大量極性官能基,以至於電解質具有強黏附性,使得電解質與電極間的介面能夠更加密合,因此介面的電阻也將大幅降低。在鋰鋰對充長循環測試中,在電流密度為0.2 mA cm^–2下可以充放長達4000小時,且維持低過電位,顯示出添加蜘蛛絲的固態電解質具有極強的抗鋰枝晶能力。在全電池的充放電測試中,併入蜘蛛絲的聚環氧乙烷電解質電池展現出極佳的充放電穩定性及電容量保持率,在0.2 C下充放電,其最初的電容量可達168 mAh g^–1,且在經歷150圈充放後仍維持97 %的充電容量。上述結果展現混摻蜘蛛絲後的聚環氧乙烷電解質對於全固態鋰離子電池有實際應用的潛力。zh_TW
dc.description.abstractExploring high-performance solid electrolytes is essential for the practical application of solid-state lithium-ion batteries. The performance of widely studied PEO-based solid polymer electrolytes is hindered by the trade-off between mechanical properties and lower crystallinity, which remains an ongoing challenge to be addressed. In this work, two bio-engineered major ampullate spidroins, MaSp1 and MaSp2, are incorporated into PEO-based electrolytes, enhancing both mechanical properties and ionic conductivity simultaneously. The addition of the spider silks, particularly the more flexible MaSp2, significantly increases the tensile strength and elongation of PEO, resulting in a maximum toughness eight times greater than that of pure PEO. Additionally, the spider silks inhibit PEO crystallization through intermolecular hydrogen bonding interactions, thereby increasing the amorphous regions and enhancing the mobility of PEO segments. This leads to a maximum ionic conductivity of 3.0 * 10^–4 S cm^–1 at 30 °C for the P/Li/MA2-20 SPE. Furthermore, the originally poor PEO electrolyte/electrode solid-solid interface is substantially improved by strong interfacial adhesion due to lower crystallinity of PEO and the presence of polar groups on the spider silks, resulting in lower interfacial impedance. In galvanostatic plating/stripping tests, Li|Li symmetric batteries can be cycled at a current density of 0.2 mA cm^–2 for 4000 hours with an overpotential of 100 mV, manifesting excellent performance in inhibiting the formation of lithium dendrites. The Li|LiFePO4 full battery exhibits superior cycling and rate properties, with an initial charge capacity of 168 mAh g^–1 at 0.2 C and 97 % capacity retention after 150 cycles. These results demomstrate that PEO-based electrolytes blended with recombinant spider silks holds significant practical application potential for all-solid-state lithium-ion batteries.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:37:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:37:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
Abstract ii
Chapter 1 Introduction 1
1.1 Advancements in Renewable Energy Storage: Focus on Lithium-Ion Batteries 1
1.2 Advancements and Advantages of Solid-State Electrolytes 2
1.3 The Advantages of Solid Polymer Electrolytes 5
1.4 The Development of PEO-Based Solid Polymer Electrolytes 6
1.5 Physical and Chemical Properties of PEO 7
1.6 The Working Principle of PEO-Based Solid Polymer Electrolytes 9
1.7 The Choice of Lithium Salt 12
1.8 The Challenges and Improvement Strategies of PEO-Based Electrolytes 14
1.9 Various Developements of Polymer Blend Electrolytes 16
1.10 Challenges of Solid-Solid Interfacial Contact 19
1.11 Different Types of Spider Silk 22
1.12 Biotechnological Spider Silk Production 25
1.13 The Structure of Spider Silk 27
Chapter 2 Experimental Section 29
2.1 Materials 29
2.2 Preparation of P/MA1-x and P/MA2-x Membranes 29
2.3 Preparation of Composite Solid Electrolytes 30
2.4 Preparation of Cathode 30
2.5 Coin Cell Preparation 31
2.6 Characterization Method 31
2.6.1 Solid-State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR) 31
2.6.2 ATR-FTIR 36
2.6.3 Small- and Wide-Angle X-ray Scattering (SAXS/WAXS) 38
2.6.4 One-Dimensional Correlation Function 40
2.6.5 Hard X-ray Photoelectron Spectroscopy (HAXPES) 44
2.6.6 Tensile Testing 46
2.6.7 Thermalgravimetric Analysis (TGA) 49
2.6.8 Different Scanning Calorimetry (DSC) 50
2.6.9 Rheology 52
2.6.10 Scanning Electron Microscope (SEM) 53
2.6.11 Polarized Optical Microscopy (POM) 55
2.6.12 Adhesion Test 55
2.7 Electrochemical Analysis 56
2.7.1 Ionic Conductivity 56
2.7.2 Linear Sweep Voltammetry (LSV) 56
2.7.3 Transference Number 57
2.7.4 Charge-Discharge Performance of Lithium-Ion Batteries 57
Chapter 3 Results and Discussion 59
3.1 Characterization of Different Types of Spider Silk Proteins 59
3.1.1 Examine the Conformational Information of Proteins 59
3.1.2 Characterizing the Difference in Functional Groups between MaSp1 and MaSp2 64
3.1.3 Understand the Crystalline Structures of Recombinant Spider Silk by WAXS 66
3.1.4 Understanding the Elemental Differences in Bonds between MaSp1 and MaSp2 68
3.2 Characterization of PEO Blended with Bioengineering Spider Silk 73
3.2.1 Tensile Test of P/MA2 Membranes with Different Ratios 73
3.2.2 Tensile Test of P/MA1 Membranes with Different Ratios 77
3.2.3 Thermal Stability of PEO/Spider Silk Blend Membranes 80
3.2.4 Interaction between MaSp2 and PEO Proved by ATR-IR 84
3.2.5 Alteration of Lamellar Periods with the Addition of Different Spider Silk Ratios 86
3.2.6 Crystallinity Change of P/MA2 Films for Different MaSp2 Proportions 88
3.2.7 Alteration of Lamellae and Long Periodicity as Calculated by One-Dimensional Correlation Function 90
3.2.8 Morphology Change with the Addition of Various MaSp2 Ratios 93
3.2.9 Change in Crystalline Behavior Induced by MaSp2 Addition 95
3.3 Characterization of PEO-Based Solid Polymer Electrolytes Blended with Recombinant Spider Silk 97
3.3.1 Mechanical Properties of PEO-Based SPEs Enhanced by MaSp2 97
3.3.2 Assessing Mechanical Properties and Crystallinity of PEO-Based SPEs Blended with MaSp2 Using Rheology 101
3.3.3 Comparison of Rheological Properties of PEO-Based SPEs Before and After Addition of MaSp2 105
3.3.4 Thermal Stability of PEO/MaSp2 SEs 109
3.3.5 Crystallinity Change of PEO and Miscibility among MaSp2, PEO, and Lithium Salt were Examined by DSC 111
3.3.6 Time Evolution of the Crystallinity of PEO 115
3.3.7 Crystallization Behavior Change for PEO-Based SPE with the Addtion of MaSp1 117
3.3.8 Interaction among MaSp2, PEO, and Lithium Salt was Observed by ATR-IR 120
3.3.9 Crystallization Behavior and Crystalline Structural Changes of Electrolytes After Addition of Recombinant Spider Silk 123
3.3.10 Alteration of Lamellar Periods with the Addition of Different Spider Silk Ratios 125
3.3.11 Alteration of Morphology with Different Content of MaSp2 127
3.3.12 Observation of Crystalline Behavior with Addition of MaSp2 Using POM 129
3.4 Electrochemical Measurements of PEO-Based Solid Polymer Electrolytes Incorporating Spider Silk 133
3.4.1 Effect of Ionic Conductivity for Addition of Different MaSp2 Ratios 133
3.4.2 Enhanced Ionic Conductivity by Blending MaSp1 into PEO-Based SPEs 136
3.4.3 Li+ Transference Number 138
3.4.4 Electrochemical Stability Window 140
3.4.5 Compatibility with Lithium Metal and Ability Against Lithium Dendrite Formation 142
3.4.6 Cycling Stability 143
3.4.7 Charge and Discharge Voltage Profiles 146
3.4.8 Rate Performance 147
Chapter 4 Conclusions 150
Future Work 151
References 155
Supporting Information 170
-
dc.language.isoen-
dc.title以重組蜘蛛絲提升聚環氧乙烷電解質性能應用於全固態鋰離子電池zh_TW
dc.titleRecombinant Spider Silk as an Effective Additive in PEO-Based Electrolytes for High-Performance All-Solid-State Lithium-Ion Batteriesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳亘承;鄭如忠;趙基揚zh_TW
dc.contributor.oralexamcommitteeHsuan-Chen Wu;Ru-Jong Jeng;Chi-Yang Chaoen
dc.subject.keyword生物材料,蜘蛛絲蛋白,介面黏附性,固態電解質,全固態鋰離子電池,zh_TW
dc.subject.keywordBiomaterials,Spider silk protein,Interface adhesion,Solid polymer electrolyte,All-solid-state lithium-ion batteries,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202402219-
dc.rights.note未授權-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
63.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved