請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93947完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰 | zh_TW |
| dc.contributor.advisor | Pi-Tai Chou | en |
| dc.contributor.author | 瞿昊廷 | zh_TW |
| dc.contributor.author | Hao-Ting Qu | en |
| dc.date.accessioned | 2024-08-09T16:37:00Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-16 | - |
| dc.identifier.citation | (1) Mao, X., Liu, M., Li, Q., Fan, C., Zuo, X. DNA-Based Molecular Machines. JACS Au 2022 2 (11), 2381-2399
(2) Ramezani, H., Dietz, H. Building machines with DNA molecules. Nat Rev Genet. 2020 21, 5–26 (3) Browne, W. R., Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006 1, 25–35 (4) Iino, R., Kinbara, K., Bryant, Z. Introduction: Molecular Motors. Chem. Rev. 2020 120 (1), 1-4 (5) Xue, M., Yang, Y., Chi, X., Yan, X., Huang, F. Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chem. Rev. 2015 115 (15), 7398-7501 (6) J Badjic, J. D., Ronconi, C. M., Stoddart, J. F., Balzani, V., Silvi, S., Credi, A. Operating Molecular Elevators. J. Am. Chem. Soc. 2006 128 (5), 1489-1499 (7) Jagesar, D. C., Fazio, S. M., Taybi, J., Eiser, E., Gatti, F. G., Leigh, D. A., Brouwer, A. M. Photoinduced Shuttling Dynamics of Rotaxanes in Viscous Polymer Solutions. Adv. Funct. Mater. 2009 19, 3440-3449 (8) Willner, I., Pardo-Yissar, V., Katz, E., Ranjit, K. T. A photoactivated ‘molecular train’ for optoelectronic applications: light-stimulated translocation of a β-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode. J. ElectroAnal. Chem. 2001 497, 172-177 (9) Steuerman, D. W., Tseng, H. R., Peters, A. J., Flood, A. H., Jeppesen, J. O., Nielsen, K. A., Stoddart, J. F.; Heath, J. R. Molecular-Mechanical Switch-Based Solid-State Electrochromic Devices. Angew. Chem. Int. Ed. 2004 43, 6486-6491 (10) Kwamen, C., Niemeyer, J. Functional Rotaxanes in Catalysis. Chem. Eur. J. 2021, 27, 175-186 (11) Langton, M. J., Beer, P. D. Rotaxane and Catenane Host Structures for Sensing Charged Guest Species. Acc. Chem. Res. 2014 47 (7), 1935-1949 (12) Pairault, N., Barat, R., Tranoy-Opalinski, I., Renoux, B., Thomas, M., Papot, S. Rotaxane-based architectures for biological applications. Comptes Rendus Chimie. 2016 19, 103-112, (13) Yao, B., Sun, H., Yang, L., Wang, S., Liu, X. Recent Progress in Light-Driven Molecular Shuttles. Front. Chem. 2022 9,832735 (14) Wu, P., Dharmadhikari, B., Patra, P., Xiong, X. Rotaxane nanomachines in future molecular electronics. Nanoscale Adv. 2022 4, 3418-3461 (15) Balzani, V., Credi, A., Raymo, F. M., Stoddart, J. F. Artificial Molecular Machines. Angew. Chem. Int. Ed. 2000 39, 3348-3391 (16) Chatterjee, M. N., Kay, E. R., Leigh, D. A. Beyond Switches: Ratcheting a Particle Energetically Uphill with a Compartmentalized Molecular Machine. J. Am. Chem. Soc. 2006 128 (12), 4058-4073 (17) Balzani, V., Credi, A., & Venturi, M. Light Powered Molecular Machines. Chem. Soc. Rev. 2009, 38, 1542–1550 (18) Tian, H., Wang, Q. C. Recent progress on switchable rotaxanes. Chem. Soc. Rev. 2006 35(4), 361-374. (19) Busseron, E., Coutrot, F. N-benzyltriazolium as both molecular station and barrier in [2] rotaxane molecular machines. J. Org. Chem. 2013 78(8), 4099-4106. (20) Garaudée, S., Silvi, S., Venturi, M., Credi, A., Flood, A. H., & Stoddart, J. F. Shuttling Dynamics in an Acid–Base‐Switchable [2] Rotaxane. Chem. Phys. Chem. 2005 6(10), 2145-2152. (21) Iijima, T., Vignon, S. A., Tseng, H.-R., Jarrosson, T., Sanders, J. K. M., Marchioni, F.; Venturi, M., Apostoli, E., Balzani, V., Stoddart, J. F. Controllable Donor–Acceptor Neutral [2]Rotaxanes Chem. - Eur. J. 2004, 10 (24) 6375– 6392 (22) Lane, A. S., Leigh, D. A., Murphy, A. Peptide-based molecular shuttles. J. Am. Chem. Soc. 1997 119(45), 11092-11093. (23) Gholami, G., Zhu, K., Baggi, G., Schott, E., Zarate, X., Loeb, S. J. Influence of axle length on the rate and mechanism of shuttling in rigid H-shaped [2] rotaxanes. Chem. Sci. 2017 8(11), 7718-7723. (24) Flood, A. H., Peters, A. J., Vignon, S. A., Steuerman, D. W., Tseng, H.-R., Kang, S., Heath, J. R., Stoddart, J. F. The Role of Physical Environment on Molecular Electromechanical Switching. Chem. -Eur. J. 2004, 10, 6558–6564 (25) Choi, J. W., Flood, A. H., Steuerman, D. W., Nygaard, S., Braunschweig, A. B., Moonen, N. N. P., Laursen, B. W., Luo, Y., DeIonno, E., Peters, A. J. Ground-state Equilibrium Thermodynamics and Switching Kinetics of Bistable [2]Rotaxanes Switched in Solution, Polymer Gels, and Molecular Electronic Devices. Chem. - Eur. J. 2006, 12, 261– 279 (26) Panman, M. R., Bodis, P., Shaw, D. J., Bakker, B. H., Newton, A. C., Kay, E. R., Brouwer, A. M., Buma, W. J., Leigh, D. A., Woutersen, S. Operation Mechanism of a Molecular Machine Revealed Using Time Resolved Vibrational Spectroscopy. Science 2010 328, 1255– 1258 (27) Kumpulainen, T., Panman, M. R., Bakker, B. H., Hilbers, M., Woutersen, S., Brouwer, A. M. Accelerating the shuttling in hydrogen-bonded rotaxanes: active role of the axle and the end station. J. Am. Chem. Soc. 2019 141(48), 19118-19129. (28) Jagesar, D. C., Hartl, F., Buma, W. J., Brouwer, A. M. Infrared Study of Intercomponent Interactions in a Switchable Hydrogen‐Bonded Rotaxane. Chem.—Eur. J. 2008 14(6), 1935-1946. (29) Brouwer, A. M., Frochot, C., Gatti, F. G., Leigh, D. A., Mottier, L. c., Paolucci, F., Roffia, S., Wurpel, G. W. H. Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle. Science 2001 291 (5511) 2124– 2128 (30) Belyaev, A., Cheng, Y. H., Liu, Z. Y., Karttunen, A. J., Chou, P. T., Koshevoy, I. O. A Facile Molecular Machine: Optically Triggered Counterion Migration by Charge Transfer of Linear Donor‐π‐Acceptor Phosphonium Fluorophores. Angew. Chem. Int. Ed. 2019 58(38), 13456-13465. (31) Lin, T. C., Liu, Z. Y., Liu, S. H., Koshevoy, I. O., Chou, P. T. Counterion migration driven by light-induced intramolecular charge transfer. JACS Au 2021 1(3), 282-293. (32) Belyaev, A., Su, B. K., Cheng, Y. H., Liu, Z. Y., Khan, N. M., Karttunen, A. J., Chou, P. T., Koshevoy, I. O. Multiple Emission of Phosphonium Fluorophores Harnessed by the Pathways of Photoinduced Counterion Migration. Angew. Chem., Int. Ed. 2022, 61, e202115690 (33) Chang, K. H., Yang, Y. H., Su, K. H., Chen, Y., Lin, T. C., Li, J. L., Liu, Z. Y., Shi, J. H., Wang, T. F., Chang, Y. T., Demchenko, A. P., Yang, H. C., Chou, P. T. Light Induced Proton Coupled Charge Transfer Triggers Counterion Directional Translocation. Angew. Chem. Int. Ed. 2024, e202403317. (34) Fletcher, A. N., Bliss, D. E. Laser dye stability. Part 5: Effect of chemical substituents of bicyclic dyes upon photodegradation parameters. Appl. Phys. 1978 16, 289-295. (35) Würth, C., Grabolle, M., Pauli, J., Spieles, M., Resch-Genger, U. Comparison of Methods and Achievable Uncertainties for the Relative and Absolute Measurement of Photoluminescence Quantum Yields. Anal. Chem. 2011, 83 (9), 3431-3439. (36) Koti, A. S. R., Krishna, M. M. G., Periasamy, N. Time-resolved area-normalized emission spectroscopy (TRANES): a novel method for confirming emission from two excited states. J. Phys. Chem. A 2001 105(10), 1767-1771. (37) Barlow, A. J., Lamb, J., Matheson, A. J. Viscous behaviour of supercooled liquids. Proc. R. Soc. London, Ser. A. 1966 292(1430), 322-342 (38) Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241. (39) Hehre, W. J., Ditchfield, R., Pople, J. A. (1972). Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 1972 56(5), 2257-2261. (40) Tomasi, J., Persico, M. Molecular-Interactions in Solution- an Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027−2094. (41) Lu, T., Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012 33(5), 580-592. (42) Zhang, J., Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021 23(36), 20323-20328. (43) Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem., 1993 97(40), 10269-10280. (44) Liu, Z., Lu, T., & Chen, Q. An sp-hybridized all-carboatomic ring, cyclo [18] carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 2020 165, 461-467. (45) Cha, S., Choi, M. G., Jeon, H. R., Chang, S. K. Negative solvatochromism of merocyanine dyes: Application as water content probes for organic solvents. Sensor Actuator B Chem. 2011 157(1), 14-18. (46) Kulinich, A. V., Mikitenko, E. K., Ishchenko, A. A. Scope of negative solvatochromism and solvatofluorochromism of merocyanines. Phys. Chem. Chem. Phys. 2016 18(5), 3444-3453. (47) Fromherz, P. Monopole-dipole model for symmetrical solvatochromism of hemicyanine dyes. J. Phys. Chem. 1995 99(18), 7188-7192. (48) Laage, D., Thompson, W. H., Blanchard-Desce, M., Hynes, J. T. Charged push− pull polyenes in solution: anomalous solvatochromism and nonlinear optical properties. J. Phys. Chem. A 2003 107(31), 6032-6046. (49) Carlotti, B., Consiglio, G., Elisei, F., Fortuna, C. G., Mazzucato, U., Spalletti, A. Intramolecular charge transfer of push–pull pyridinium salts in the singlet manifold. J. Phys. Chem. A 2014 118(20), 3580-3592. (50) Carlotti, B., Cesaretti, A., Fortuna, C. G., Spalletti, A., Elisei, F. Experimental evidence of dual emission in a negatively solvatochromic push–pull pyridinium derivative. Phys. Chem. Chem. Phys. 2015 17(3), 1877-1882. (51) Carlotti, B., Benassi, E., Barone, V., Consiglio, G., Elisei, F., Mazzoli, A., Spalletti, A. Effect of the π Bridge and Acceptor on Intramolecular Charge Transfer in Push–Pull Cationic Chromophores: An Ultrafast Spectroscopic and TD‐DFT Computational Study. ChemPhysChem 2015 16(7), 1440-1450. (52) Nigam, S., Rutan, S. Principles and applications of solvatochromism. Appl. Spectrosc. 2001 55(11), 362A-370A. (53) Van der Zwan, G., Hynes, J. T. Time-dependent fluorescence solvent shifts, dielectric friction, and nonequilibrium solvation in polar solvents. J. Phys. Chem. 1985 89(20), 4181-4188. (54) Simon, J. D. Time-resolved studies of solvation in polar media. Acc. Chem. Res. 1988 21(3), 128-134. (55) Maroncelli, M. The dynamics of solvation in polar liquids. J. Mol. Liq. 1993 57, 1-37. (56) Nagarajan, V., Brearley, A. M., Kang, T. J., Barbara, P. F. Time‐resolved spectroscopic measurements on microscopic solvation dynamics. J. Phys. Chem. 1987 86(6), 3183-3196. (57) Simon, J. D., Su, S. G. Intramolecular electron transfer and solvation. J. Chem. Phys. 1987 87(12), 7016-7023. (58) Chapman, C. F., Maroncelli, M. Fluorescence studies of solvation and solvation dynamics in ionic solutions. J. Phys. Chem. 1991 95(23), 9095-9114. (59) Horng, M. L., Gardecki, J. A., Papazyan, A., Maroncelli, M. Subpicosecond measurements of polar solvation dynamics: coumarin 153 revisited. J. Phys. Chem. 1995 99(48), 17311-17337. (60) Demchenko, A. P., Tang, K. C., Chou, P. T. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013 42(3), 1379-1408. (61) Harris, K. R. Temperature and density dependence of the viscosity of toluene. J. Chem. Eng. Data 2000 45(5), 893-897. (62) Chou, T. C., Temerova, D., Wu, C. C., Tseng, S. M., Koshevoy, I. O., Chou, P. T. Photoinduced Aryl Transfer from Imidazolyl-Quinoline π-Conjugated Systems. J. Am. Chem. Soc. 2023 145(32), 18104-18114. (63) Messaâdi, A., Dhouibi, N., Hamda, H., Belgacem, F. B. M., Adbelkader, Y. H., Ouerfelli, N., & Hamzaoui, A. H. A new equation relating the viscosity Arrhenius temperature and the activation energy for some Newtonian classical solvents. J. Chem. 2015 2015(1), 163262. (64) Snoussi, L., Babu, S., Herráez, J. V., Akhtar, S., Al-Arfaj, A., & Ouerfelli, N. Thermodynamic parameters modeling of viscous flow activation in ethylene glycol-water fluid systems. Iranian J. Chem. Chem. Eng. 2020 39(3), 287-301. (65) Courtney, S. H., Fleming, G. R. Search for the kramers theory turnover: photochemical isomerization at very low viscosities. Chem. Phys. Lett. 1984 103(6), 443-446. (66) Murarka, R. K., Bhattacharyya, S., Biswas, R., & Bagchi, B. Isomerization dynamics in viscous liquids: Microscopic investigation of the coupling and decoupling of the rate to and from solvent viscosity and dependence on the intermolecular potential. J. Chem. Phys. 1999 110(15), 7365-7375. (67) Brouwer, A. C., & Kirsch, J. F. Investigation of diffusion-limited rates of chymotrypsin reactions by viscosity variation. Biochemistry 1982 21(6), 1302-1307. (68) Benson, S. W., North, A. M. A Simple Dilatometric Method of Determining the Rate Constants of Chain Reactions. II. The Effect of Viscosity on the Rate Constants of Polymerization Reactions1. J. Am. Chem. Soc. 1959 81(6), 1339-1345. (69) Edward, J. T. (1970). Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ. 1970 47(4), 261. (70) Van der Zwan, G., Hynes, J. T. Chemical reaction rates and solvation dynamics in electrolyte solutions: ion atmosphere friction. Chem. Phys. 1991 152(1-2), 169-183. (71) Ciccotti, G., Ferrario, M., Hynes, J. T., & Kapral, R. Dynamics of ion pair interconversion in a polar solvent. J. Chem. Phys 1990 93(10), 7137-7147. (72) Kwon, O., Barlow, S., Odom, S. A., Beverina, L., Thompson, N. J., Zojer, E., Brédas, J.-L., Marder, S. R. Aromatic amines: a comparison of electron-donor strengths. J. Phys. Chem. A 2005 109, 9346– 9352 (73) Hrobarik, P., Sigmundova, I., Zahradnik, P., Kasak, P., Arion, V., Franz, E., & Clays, K. Molecular engineering of benzothiazolium salts with large quadratic hyperpolarizabilities: can auxiliary electron-withdrawing groups enhance nonlinear optical responses?. J. Phys. Chem. C 2010 114(50), 22289-22302. (74) Maus, M., Rettig, W. The electronic structure of 4-(N, N-dimethylamino)-4′-cyano-biphenyl and its planar and twisted model compounds. Chem. Phys. 1997 218(1-2), 151-162. (75) Maus, M., Rettig, W., Jonusauskas, G., Lapouyade, R., Rullière, C. Subpicosecond transient absorption of donor− acceptor biphenyls. Intramolecular control of the excited state charge transfer processes by a weak electronic coupling. J. Phys. Chem. A 1998 102(38), 7393-7405. (76) Maus, M., Rettig, W., Bonafoux, D., Lapouyade, R. Photoinduced intramolecular charge transfer in a series of differently twisted donor− acceptor biphenyls as revealed by fluorescence. J. Phys. Chem. A 1999 103(18), 3388-3401. (77) Ghosh, R., Nandi, A., Palit, D. K. Solvent sensitive intramolecular charge transfer dynamics in the excited states of 4-N, N-dimethylamino-4′-nitrobiphenyl. Phys. Chem. Chem. Phys. 2016 18(11), 7661-7671. (78) Grabowski, Z. R., Rotkiewicz, K., Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003 103(10), 3899-4032 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93947 | - |
| dc.description.abstract | 我們對一系列磷酸鹽(化合物1[OTF]-7[OTF])在甲苯中的光誘導陰離子遷移進行了全面的動力學研究。我們的目的是探討陰離子遷移是否存在障礙,即是否是擴散控制的過程。在1-7發生激發態分子內電荷轉移後,陽離子的電荷重新分佈觸發了陰離子的遷移,從而在實驗上觀察到發射光的時間演變。因此,我們通過引入光譜響應函數來描述光誘導陰離子的遷移。結果表明,陰離子遷移不存在障礙,遵循Stokes-Einstein關係,其動力學可以用有方向性的布朗運動來描述。最後不同鹽類間遷移速度的差異得到了限制靜電勢(RESP)計算結果的支持,指出離子遷移的過程與陽離子骨架的電荷分布息息相關。 | zh_TW |
| dc.description.abstract | We perform comprehensive dynamics study on the photoinduced anion migration of a series of phosphonium salts (compounds 1-7) in toluene. Our aim is to probe if the anion migration is associated with a barrier or barrier free, i.e. a diffusion-controlled process. After the occurrence of excited-state intramolecular charge transfer (ESICT) in 1-7, the charge redistribution of the cation triggers the translocation of the counter anion, resulting in emission temporal evolution experimentally. The results are supportive by computational calculations using restrained electrostatic potential (RESP) analyses. As a result, we describe the photoinduced anion migration by introducing spectral response function , a concept adopted form the solvent diffusional relaxation. The results indicate that the anion migration lacks barrier, which follows a Stokes-Einstein relationship where the dynamics can be described by a biased Brownian motion, allowing us to quantify of the anion translocation rate. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:37:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:37:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………….i
誌謝……………………………………………………………………………….ii 中文摘要………………………………………………………………………….iii Abstract……………………………………………………………………………iv 目次……………………………………………………………………………….v 圖次……………………………………………………………………………….vi 表次……………………………………………………………………………….viii Chapter 1 Introduction……………………………………………………………1 Chapter 2 Experimental section……………………………………………….….6 2.1 Synthesis………………..……………………………………………...6 2.2 Steady-state spectroscopy……………………………………………...12 2.3 Time-resolved measurements………….………………………………13 2.4 Computational information…………………………………………….16 Chapter 3 Results and discussion……………….………………………………...21 3.1 Steady-state spectroscopy….………………………………….……….21 3.2 Time-resolved spectroscopy……………………………………….…..25 3.3 Model prediction………………………………………………………44 3.4 Structures and charge distribution effect………………………………47 Chapter 4 Conclusion…………………………………………………………….50 Chapter 5 References……………………………………………………………..52 | - |
| dc.language.iso | en | - |
| dc.subject | 溶劑鬆弛 | zh_TW |
| dc.subject | 光誘導陰離子遷移 | zh_TW |
| dc.subject | 限制靜電勢(RESP) | zh_TW |
| dc.subject | restrained electrostatic potential | en |
| dc.subject | solvent relaxation | en |
| dc.subject | photoinduced anion migration | en |
| dc.subject | phosphonium salts | en |
| dc.title | 光誘導陰離子遷移機制的深入研究 | zh_TW |
| dc.title | Anion Translocation Triggered by the Photoinduced Charge Transfer; Insight into the Mechanism of the Donor-π-Acceptor+(ion)- Molecular Machine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊小青;何美霖 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiao-Ching Yang;Mei-Lin Ho | en |
| dc.subject.keyword | 光誘導陰離子遷移,溶劑鬆弛,限制靜電勢(RESP), | zh_TW |
| dc.subject.keyword | phosphonium salts,photoinduced anion migration,solvent relaxation,restrained electrostatic potential, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202401769 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-16 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
