Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93946
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊士進zh_TW
dc.contributor.advisorShih-Chin Yangen
dc.contributor.author施家榮zh_TW
dc.contributor.authorChia-Jung Shihen
dc.date.accessioned2024-08-09T16:36:34Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citationW. Qing-long, L. Chun, Y. Chang-zhou, and Y. Shu-ying, "Field Weakening Control Technology for Asynchronous Motor of Electric Vehicle," in 2020 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), 26-28 June 2020 2020, pp. 325-331, doi: 10.1109/AIEA51086.2020.00074.
K. Sang-Hoon and S. K. Sul, "Voltage control strategy for maximum torque operation of an induction machine in the field-weakening region," IEEE Transactions on Industrial Electronics, vol. 44, no. 4, pp. 512-518, 1997, doi: 10.1109/41.605628.
K. Sang-Hoon and S. K. Sul, "Maximum torque control of an induction machine in the field weakening region," IEEE Transactions on Industry Applications, vol. 31, no. 4, pp. 787-794, 1995, doi: 10.1109/28.395288.
S. Duan and L. Zhou, "Influence of parameters on field weakening performance of induction motor," in 2011 International Conference on Electrical Machines and Systems, 20-23 Aug. 2011 2011, pp. 1-5, doi: 10.1109/ICEMS.2011.6073605.
H. Çalis and E. Çakı, "LabVIEW Based Laboratory Typed Test Setup for the Determination of Induction Motor Performance Characteristics," Journal of Electrical Engineering and Technology, vol. 9, pp. 1928-1934, 11/01 2014, doi: 10.5370/JEET.2014.9.6.1928.
K. Makinde et al., "Simulation based testing and performance investigation of induction motor drives using matlab simulink," SN Applied Sciences, vol. 5, 02/06 2023, doi: 10.1007/s42452-023-05296-w.
M. A. Kumar, M. S. Bhat, and D. R. Ballal, "Experimental Investigations of Load Characteristics of Induction Motor Drive," IOP Conference Series: Materials Science and Engineering, vol. 1065, no. 1, p. 012046, 2021/02/01 2021, doi: 10.1088/1757-899X/1065/1/012046.
R. McElveen and M. Melfi, "Locked-rotor test methods for induction motors investigated," in 2015 IEEE Petroleum and Chemical Industry Committee Conference (PCIC), 5-7 Oct. 2015 2015, pp. 1-9, doi: 10.1109/PCICON.2015.7435098.
J. H. Dymond, R. Ong, and P. G. McKenna, "Locked-rotor and acceleration testing of large induction machines-methods, problems, and interpretation of the results," IEEE Transactions on Industry Applications, vol. 36, no. 4, pp. 958-964, 2000, doi: 10.1109/28.855947.
J. Yoo, J. H. Lee, and S. K. Sul, "FEA-Assisted Experimental Parameter Map Identification of Induction Motor for Wide-Range Field-Oriented Control," IEEE Transactions on Power Electronics, vol. 39, no. 1, pp. 1353-1363, 2024, doi: 10.1109/TPEL.2023.3325535.
Y. Liu, G. Tao, H. Wang, and F. Blaabjerg, "Analysis of indirect rotor field oriented control-based induction machine performance under inaccurate field-oriented condition," in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.-1 Nov. 2017 2017, pp. 1810-1815, doi: 10.1109/IECON.2017.8216306.
S. Peresada, Y. Nikonenko, and S. Kovbasa, "Field-Weakening Methods for Torque-Flux Direct Field-Oriented Control of Induction Motors," in 2022 IEEE 8th International Conference on Energy Smart Systems (ESS), 12-14 Oct. 2022 2022, pp. 292-296, doi: 10.1109/ESS57819.2022.9969273.
郭志瀚, "實現感應電動車最大加速性能與最高效率之控制設計與切換策略," 碩士, 電機與控制工程系所, 國立交通大學, 2012年, 2012.
U. U. Ekong, M. Inamori, and M. Morimoto, "Field-Weakening Control for Torque and Efficiency Optimization of a Four-Switch Three-Phase Inverter-Fed Induction Motor Drive," IEEJ Journal of Industry Applications, 2019.
M. Mengoni, L. Zarri, A. Tani, G. Serra, and D. Casadei, "Stator Flux Vector Control of Induction Motor Drive in the Field Weakening Region," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 941-949, 2008, doi: 10.1109/TPEL.2007.915636.
T. H. Nguyen, T. Van, D.-C. Lee, J.-H. Park, and J.-H. Hwang, "Control Mode Switching of Induction Machine Drives between Vector Control and V/f Control in Overmodulation Range," Journal of Power Electronics, vol. 11, 11/20 2011, doi: 10.6113/JPE.2011.11.6.846.
S.-H. Kim, "Chapter 3 - Alternating current motors: Synchronous motor and induction motor," in Electric Motor Control, S.-H. Kim Ed.: Elsevier, 2017, pp. 95-152.
H. El Hadraoui, M. Zegrari, A. Chebak, O. Laayati, and N. Guennouni, "A Multi-Criteria Analysis and Trends of Electric Motors for Electric Vehicles," World Electric Vehicle Journal, vol. 13, no. 4, p. 65, 2022. [Online]. Available: https://www.mdpi.com/2032-6653/13/4/65.
Y. Liu, J. Zhao, R. Wang, and C. Huang, "Performance Improvement of Induction Motor Current Controllers in Field-Weakening Region for Electric Vehicles," IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2468-2482, 2013, doi: 10.1109/TPEL.2012.2217757.
Z. Dong, Y. Yu, W. Li, B. Wang, and D. Xu, "Flux-Weakening Control for Induction Motor in Voltage Extension Region: Torque Analysis and Dynamic Performance Improvement," IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 3740-3751, 2018, doi: 10.1109/TIE.2017.2764853.
G. Gallegos-Lopez, F. S. Gunawan, and J. E. Walters, "Current Control of Induction Machines in the Field-Weakened Region," IEEE Transactions on Industry Applications, vol. 43, no. 4, pp. 981-989, 2007, doi: 10.1109/TIA.2007.900459.
B. Wang, Y. Yu, W. Sun, and D. Xu, "High performance field-weakening control algorithm of sensorless induction motor using speed adaptive full-order observer," in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 22-25 Oct. 2014 2014, pp. 2964-2968, doi: 10.1109/ICEMS.2014.7014004.
S.-H. Kim, "Chapter 8 - High-speed operation of alternating current motors," in Electric Motor Control, S.-H. Kim Ed.: Elsevier, 2017, pp. 341-371.
P.-Y. Lin and Y.-S. Lai, "Novel Voltage Trajectory Control for Field-Weakening Operation of Induction Motor Drives," IEEE Transactions on Industry Applications, vol. 47, pp. 122-127, 2009.
L. Zarri, M. Mengoni, A. Tani, G. Serra, D. Casadei, and J. O. Ojo, "Control schemes for field weakening of induction machines: A review," in 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), 26-27 March 2015 2015, pp. 146-155, doi: 10.1109/WEMDCD.2015.7194523.
U. U. Ekong, M. Inamori, and M. Morimoto, "Flux weakening control for torque and efficiency optimization of a vector controlled four switch three phase inverter fed induction motor drive," in 2017 2nd International Conference on Power and Renewable Energy (ICPRE), 20-23 Sept. 2017 2017, pp. 147-151, doi: 10.1109/ICPRE.2017.8390517.
S. Seo, G. J. Park, Y. J. Kim, and S. Y. Jung, "Design method on induction motor of electric vehicle for maintaining torque performance at field weakening region," in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 11-14 Aug. 2017 2017, pp. 1-5, doi: 10.1109/ICEMS.2017.8056483.
M. S. Aswathy and M. W. Beevi, "High performance induction motor drive in field weakening region," in 2015 International Conference on Control Communication & Computing India (ICCC), 19-21 Nov. 2015 2015, pp. 242-247, doi: 10.1109/ICCC.2015.7432899.
P. H, J. Titus, K. Hatua, and S. E. Rao, "Effect of stator leakage inductance in field weakening region of a vector controlled induction machine drive for traction application," in 2017 IEEE Transportation Electrification Conference (ITEC-India), 13-15 Dec. 2017 2017, pp. 1-6, doi: 10.1109/ITEC-India.2017.8356940.
K.-H. Seong, J. Hwang, J. Shim, and H.-W. Cho, "Investigation of Temperature Rise in an Induction Motor Considering the Effect of Loading," IEEE Transactions on Magnetics, vol. 50, pp. 1-4, 2014.
Z. Dong and Y. Yu, "Flux-weakening control using anti-windup for induction motor in constant-voltage region," in 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 7-10 Aug. 2017 2017, pp. 1-5, doi: 10.1109/ITEC-AP.2017.8080899.
Y. Xu, C. Shen, H. Hui, and Z. Huang, "Field weakening strategy in a wide speed range of induction motors for electric vehicles based on maximum torque control," in 2014 International Power Electronics and Application Conference and Exposition, 5-8 Nov. 2014 2014, pp. 737-742, doi: 10.1109/PEAC.2014.7037949.
S. K. Sahoo and T. Bhattacharya, "Field Weakening Strategy for a Vector-Controlled Induction Motor Drive Near the Six-Step Mode of Operation," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 3043-3051, 2016, doi: 10.1109/TPEL.2015.2451694.
V. K and B. Singh, "Field Weakening Combined Over-modulation and Six-step Operation of Induction Motor with Improved Torque Control," in 2022 IEEE Industry Applications Society Annual Meeting (IAS), 9-14 Oct. 2022 2022, pp. 1-7, doi: 10.1109/IAS54023.2022.9939971.
J. Huang, S. Liu, P. Zhang, and Y. Wang, "Torque Increase Strategy for Induction Motor in the Field-Weakening Region Based on Model Predictive Control," Actuators, vol. 12, no. 10, p. 395, 2023. [Online]. Available: https://www.mdpi.com/2076-0825/12/10/395.
X. Zhang, G. Zhang, B. Wang, Y. Yu, J. Zhang, and D. Xu, "Maximum Torque Increase and Performance Optimization for Induction Motor Field-Weakening Control," in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 7-10 Oct. 2018 2018, pp. 1268-1272, doi: 10.23919/ICEMS.2018.8548976.
R. Tarvirdilu-Asl, S. Nalakath, Y. Sun, J. Wiseman, and A. Emadi, "Optimal Control of Induction Motor in Field Weakening Region Considering Inverter Nonlinearity," in 2019 IEEE Transportation Electrification Conference and Expo (ITEC), 19-21 June 2019 2019, pp. 1-8, doi: 10.1109/ITEC.2019.8790498.
H. Gashtil, V. Pickert, D. J. Atkinson, M. Dahidah, and D. Giaouris, "Closed-Loop Voltage Control for Maximizing Inverter Output Voltage in the Field Weakening Region of Induction Machines," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 6, pp. 7514-7526, 2022, doi: 10.1109/JESTPE.2022.3192120.
J. Zhang, X. Zhang, Y. Yu, B. Wang, and D. Xu, "Current Redistribution Method for Induciton Motor Voltage Closed-Loop Field-Weakening Control," in 2023 26th International Conference on Electrical Machines and Systems (ICEMS), 5-8 Nov. 2023 2023, pp. 4055-4059, doi: 10.1109/ICEMS59686.2023.10345102.
P. Xie, G. Li, F. Xie, C. Hu, and X. Qi, "Research on field-weakening control of induction motor based on torque current component of the voltage closed-loop," in 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 15-17 June 2015 2015, pp. 1618-1621, doi: 10.1109/ICIEA.2015.7334366.
D. Casadei, M. Mengoni, G. Serra, A. Tani, and L. Zarri, "Field-weakening control schemes for high-speed drives based on induction motors: a comparison," in 2008 IEEE Power Electronics Specialists Conference, 15-19 June 2008 2008, pp. 2159-2166, doi: 10.1109/PESC.2008.4592262.
P. Y. Lin and Y. S. Lai, "Novel Voltage Trajectory Control for Field-Weakening Operation of Induction Motor Drives," IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 122-127, 2011, doi: 10.1109/TIA.2010.2091092.
杨阳, 王庆年, 龚依民, and 田恬, "异步电机弱磁区转矩最大化策略," Torque-maximizing field-weakening control of induction motors., Article vol. 21, no. 12, pp. 51-59, 2017, doi: 10.15938/j.emc.2017.12.007.
S. Myoung-Ho, H. Dong-Seok, and C. Soon-Bong, "Maximum torque control of stator-flux-oriented induction machine drive in the field-weakening region," IEEE Transactions on Industry Applications, vol. 38, no. 1, pp. 117-122, 2002, doi: 10.1109/28.980365.
A. Dalal, A. K. Singh, and P. Kumar, "Effect of saturation on equivalent circuit analysis of induction motor in practical scenario," in 2013 Annual IEEE India Conference (INDICON), 13-15 Dec. 2013 2013, pp. 1-5, doi: 10.1109/INDCON.2013.6726122.
M. Mengoni, L. Zarri, A. Tani, G. Serra, and D. Casadei, "A Comparison of Four Robust Control Schemes for Field-Weakening Operation of Induction Motors," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 307-320, 2012, doi: 10.1109/TPEL.2011.2156810.
C. Qiu, F. Xie, Q. Wang, K. Liang, W. Hong, and H. Jiang, "The Optimal "Speed-Torque" Control of Asynchronous Motors in the Field-Weakening Region Based on ADRC and ELM," in 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 11-14 Aug. 2019 2019, pp. 1-6, doi: 10.1109/ICEMS.2019.8921913.
J. Tang, Y. Yang, L. Diao, J. Chen, Y. Chang, and Z. Liu, "Parameter Identification of Induction Motors for Railway Traction Applications," in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 23-27 Sept. 2018 2018, pp. 284-288, doi: 10.1109/ECCE.2018.8557866.
B. Harakuni, B. Divatar, N. Gurram, S. Sheth, R. Khaded, and N. Pattar, "Parameter Estimation and Vector Control of Induction Motor using Sciamble Workbench," in 2022 IEEE 7th International conference for Convergence in Technology (I2CT), 7-9 April 2022 2022, pp. 1-6, doi: 10.1109/I2CT54291.2022.9824245.
S. Jnayah and A. Khedher, "Sensorless Direct Torque Control of induction motor using sliding mode flux observer," in 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 24-26 March 2019 2019, pp. 536-541, doi: 10.1109/STA.2019.8717270.
A. Borisevich, "Numerical Method for Power Losses Minimization of Vector-Controlled Induction Motor," International Journal of Power Electronics and Drive Systems, vol. 6, pp. 486-497, 07/28 2015, doi: 10.11591/ijpeds.v6.i3.pp486-497.
D. Chatterjee, "A Simple Leakage Inductance Identification Technique for Three-Phase Induction Machines Under Variable Flux Condition," IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4041-4048, 2012, doi: 10.1109/TIE.2011.2176694.
V. H. R, R. S. Kaarthik, and P. P. Rajeevan, "Online Inductance Estimation of Speed Sensor less Induction Motor Drives," in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 16-19 Dec. 2020 2020, pp. 1-5, doi: 10.1109/PEDES49360.2020.9379853.
M. Comanescu and P. S. Altoona, "Development of a flux, speed and rotor time constant estimation scheme for the sensorless induction motor drive," in 2017 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED), 18-19 Sept. 2017 2017, pp. 213-218, doi: 10.1109/SLED.2017.8078452.
N. Suman, U. Prasad, and R. Kumar, "Comparison between Direct Torque Control based on Space Vector Modulation with Conventional Direct Torque Control Technique for Speed Control of Three-phase Induction Motor," in 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 11-12 Jan. 2024 2024, pp. 1-6, doi: 10.1109/ICAECT60202.2024.10469178.
E. Zerdali, M. Rivera, P. Zanchetta, P. Wheeler, and L. Ristić, "Encoderless Predictive Speed and Torque Control of an Induction Motor," in 2023 22nd International Symposium on Power Electronics (Ee), 25-28 Oct. 2023 2023, vol. 1, pp. 01-06, doi: 10.1109/Ee59906.2023.10346148.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93946-
dc.description.abstract本論文針對感應馬達應用編碼器角度感測器的高速運轉力矩控制,提出定功率區(Constant power region)的新型控制方法,藉此提高感應馬達的可控轉速,同時維持有效的力矩輸出,其應用是在電動載具包含電動車、電動機車或者自動搬運車等,確保載具使用之感應馬達的速度表現能夠符合各類使用需求。
本論文所提出的新複合型弱磁控制策略是根據既有的一般複合型弱磁控制架構進行改良,整合回授型架構內部的電壓控制器與前饋型架構的直接輸入電流命令兩種架構,使新複合型弱磁控制策略能夠有效適應不同的初始磁通分量電流以及不同電壓命令,有效減少力矩與弱磁控制模式切換的暫態響應,同時,確保系統能夠在不同力矩條件下進入弱磁控制,滿足定功率區的定義。
最後本論文針對一顆6kW的感應馬達進行實驗測試,根據實驗結果,新複合型弱磁控制策略能夠達成定功率控制,正確減少磁通分量電流,抑制反電動勢,拓展速度可控區間,由原先5300RPM馬達即將失控的情況,改善至10000RPM都能穩定控制,並且比較一般複合型弱磁控制控制模式,在控制模式切換過程的電壓暫態反應,新複合型弱磁控制策略不會發生明顯的電壓暫態反應,更不會出現電壓失控的情況。
zh_TW
dc.description.abstractThis thesis proposes a novel constant power control methodology for high speed torque control of induction motor. The objective is to enhance the motor controllable speed while ensuring effective torque output. This approach is intended for application in electric vehicles, including cars, motorcycles, or automated guided vehicles, to guarantee that the motor speed performance meets diverse usage demands.
The proposed control strategy enhances the existing hybrid field weakening control framework. It integrates the voltage controller within the feedback framework and the direct input current command within the feedforward framework. The proposed integrated field weakening control can meet the constant power region definition. It also adapts to different initial magnetic flux component currents and voltage commands. Moreover, it can reduce the transient response during constant torque and constant power control mode transitions, while ensuring the system can enter field weakening control under various torque conditions.
Finally, a 6-kW induction motor is used for experimental verification. According to experimental results, the proposed hybrid field weakening control achieves the constant power control by accurately reducing the magnetic flux component current and suppressing the back electromotive force. It extends the controllable speed range from 5300 RPM to 10000 RPM. A comparison of voltage transient response during control mode switching is performed between the general hybrid field weakening control and the proposed control strategy. It concluded that the proposed field weakening control minimize the voltage transient response with improved voltage control stability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:36:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:36:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents碩士論文口試委員審定書 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 ix
表次 xiv
符號列表 xv
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 感應馬達參數估測 2
1.2.2 感應馬達間接式磁場導向控制 7
1.2.3 感應馬達弱磁控制目的 8
1.2.4 感應馬達弱磁控制原理 10
1.2.5 感應馬達前饋型弱磁控制策略 15
1.2.6 感應馬達回授型弱磁控制策略 21
1.2.7 感應馬達複合型弱磁控制策略 25
1.3 研究目的 31
1.4 論文大綱 32
第2章 感應馬達參數估測 33
2.1 定子電阻 33
2.2 定子電感 34
2.3 漏感、互感及轉子電感 34
2.4 轉子電阻 36
第3章 感應馬達新複合型弱磁控制策略 38
3.1 新複合型弱磁控制之前饋型架構 39
3.1.1 弱磁致能定位 39
3.1.2 弱磁適應修正依據 42
3.2 新複合型弱磁控制之回授型架構 46
3.2.1 弱磁定功率控制 46
3.2.2 電壓控制器設計 49
3.3 新複合型弱磁控制之演算法 57
3.3.1 開關設計 57
3.3.2 電壓命令數值依據 60
3.3.3 轉速條件設定 61
3.3.4 磁通分量電流極限設定 62
第4章 實驗結果 65
4.1 平台介紹 65
4.2 感應馬達參數估測驗證 68
4.2.1 定子電阻估測實驗結果 68
4.2.2 定子電感估測實驗結果 69
4.2.3 漏感估測實驗結果 70
4.2.4 轉子電阻估測實驗結果 70
4.2.5 參數估測實驗總結 71
4.3 感應馬達間接式磁場導向控制 72
4.4 新複合型弱磁控制策略於加載實驗驗證 73
4.4.1 加減速驗證 73
4.4.2 定功率驗證 78
4.4.3 電流角驗證 79
4.4.4 速度力矩曲線以及速度效率曲線 81
4.5 新複合型弱磁控制策略於無載實驗驗證 83
4.5.1 相異弱磁初始點驗證 84
4.5.2 相異電壓命令驗證 87
4.5.3 弱磁控制模式比較 90
4.5.3.1 穩壓正確性 90
4.5.3.2 相異初始磁通分量電流 92
4.5.3.3 控制模式切換暫態 95
4.6 新複合型弱磁控制實驗總結 96
4.6.1 加載實驗總結 96
4.6.2 無載實驗總結 98
第5章 結論與未來工作 100
5.1 結論 100
5.1.1 定功率控制 100
5.1.2 控制模式切換暫態 100
5.2 未來工作 101
5.2.1 初始磁通分量電流定義 101
5.2.2 無感測器力矩控制應用 101
參考文獻 102
-
dc.language.isozh_TW-
dc.subject高速力矩控制zh_TW
dc.subject弱磁控制zh_TW
dc.subject定功率控制zh_TW
dc.subjectConstant power controlen
dc.subjectHigh-speed torque controlen
dc.subjectField weakening controlen
dc.title感應馬達高速運轉之弱磁控制策略zh_TW
dc.titleHigh-speed field weakening control strategy for induction motoren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳景然;陳偉倫;黃仁宏zh_TW
dc.contributor.oralexamcommitteeChing-Jan Chen;Woei-Luen Chen;Jen-Hong Huangen
dc.subject.keyword弱磁控制,高速力矩控制,定功率控制,zh_TW
dc.subject.keywordField weakening control,High-speed torque control,Constant power control,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202402743-
dc.rights.note未授權-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved