Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93931
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor鐘嘉德zh_TW
dc.contributor.advisorChar-Dir Chungen
dc.contributor.author曾彥迦zh_TW
dc.contributor.authorYen-Chia Tsengen
dc.date.accessioned2024-08-09T16:29:52Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-07-28-
dc.identifier.citation[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186-195, Feb. 2014.
[2] Y. Dong, Y. Huang, and L. Qiu, “Energy-efficient sparse beamforming for multiuser MIMO systems with nonideal power amplifiers,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 134–145, Jan. 2017.
[3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, ‘‘An overview of massive MIMO: Benefits and challenges,’’ IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.
[4] L. Dai, B. Wang, Y. Yuan, S. Han, Chih-Lin I., and Z. Wang, “Nonorthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Lett., vol. 53, no. 9, pp. 74–81, Sep. 2015.
[5] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013
[6] “NR; Physical channels and modulation,” 3GPP, Sophia Antipolis Cedex, France, TS 38.211 V16.2.0, Jul. 2020.
[7] “NR; Physical layer procedures for control,” 3GPP, Sophia Antipolis Cedex, France, TS 38.213 V17.1.0, May 2022.
[8] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.
[9] J. Jose, A. Ashikhmin, T. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell TDD systems,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2640-2651, Aug. 2011.
[10] A. Kalachikov and A. Stenin, “Performance evaluation of the SRS based MIMO channel estimation on 5G NR open source channel model,” in Proc. IEEE Int. Conf. Young Profess. Electron Dev. Mater., Souzga, Altai Republic, Aug. 2021, pp. 124-127.
[11] P. Xu, J. Wang, J. Wang, and F. Qi, “Analysis and design of channel estimation in multicell multiuser MIMO OFDM systems,” IEEE Trans. Veh. Technol., vol. 64, no. 2, pp. 610-620, Feb. 2015.
[12] Y. Wang, A. Zheng, J. Zhang, and D. Yang, “A novel channel estimation algorithm for sounding reference signal in LTE uplink transmission,” in Proc. IEEE Int. Conf. Commun. Technol. Appl., Beijing, China, Dec. 2009, pp. 412-415.
[13] J. Amadid, M. Boulouird, and M. M. Hassani, “Channel estimation with pilot contamination in multicell massive MIMO systems,” in Proc. IEEE Int. Conf. Electron., Control, Optim. Comput. Science, Kenitra, Morocco, Jan. 2020, pp. 1-4.
[14] H. Q. Ngo, T. L. Marzetta, and E. G. Larsson, “Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., Prague, Czech Republic, May 2011, pp. 3464-3467.
[15] T. E. Bogale, L. B. Le, X. Wang, and L. Vandendorpe, “Pilot contamination mitigation for wideband massive MIMO systems,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7889-7906, Nov. 2019.
[16] S. Yu and J.-W. Lee, “Channel sounding for multi-user massive MIMO in distributed antenna system environment,” Electronics, vol. 8, no. 1, pp. 1-14, Jan. 2019.
[17] S.-H. Lu, C.-D. Chung, and W.-C. Chen, “Simultaneous channel estimation in MIMO OFDM systems using constant-amplitude sequences,” in Proc. IEEE Veh. Technol. Conf., Hong Kong, Oct. 2023, pp. 1-7.
[18] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. 18, pp. 531-532, Jul. 1972.
[19] J. J. Benedetto and J. J. Donatelli, “Ambiguity function and frame-theoretic properties of periodic zero-autocorrelation waveforms,” IEEE J. Select. Topics Signal Process., vol. 1, no. 1, pp. 6-20, Jun. 2007.
[20] B. M. Popović, P. Wang, and F. Berggren, “Signals with sparse mutual interference for sounding massive MIMO channels,” IEEE Trans. Commun., vol. 69, no. 8, pp. 5608-5619, Aug. 2021.
[21] C.-D. Chung, W.-C. Chen, and C.-K. Yang, “Constant-amplitude sequences for spectrally compact OFDM training waveforms,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12974-12991, Nov. 2020.
[22] T. Kim and S. H. Chae, “A channel estimator via non-orthogonal pilot signals for uplink cellular IoT,” IEEE Access, vol. 7, pp. 53419-53428, Apr. 2019.
[23] C. Nader, P. N. Landin, W. Van Moer, N. Bjorsell, and P. Handel, “Performance evaluation of peak-to-average power ratio reduction and digital pre-distortion for OFDM based systems,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3504–3511, Dec. 2011.
[24] S. Haghighatshoar and G. Caire, “Massive MIMO pilot decontamination and channel interpolation via wideband sparse channel estimation,” IEEE Trans. Wireless Commun., vol. 16, no. 12, pp. 8316–8332, Dec. 2017.
[25] S. Shahsavari, A. Ashikhmin, E. Erkip, and T. L. Marzetta, “Coordinated multi-point massive MIMO cellular systems with sectorized antennas,” in Proc. 52nd Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA, USA, Oct. 2018, pp. 2130–2135.
[26] M. Assaad, ‘‘Optimal fractional frequency reuse (FFR) in multicellular OFDMA system,’’ in Proc. IEEE 68th Veh. Technol. Conf. (VTC Fall), Calgary, BC, Canada, Sep. 2008, pp. 1822–1826.
[27] G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference coordination and cancellation for 4G networks,” IEEE Commun. Mag., vol. 47, no. 4, pp. 74–81, Apr. 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93931-
dc.description.abstract在多細胞多用戶多輸入多輸出正交分頻多工 (orthogonal frequency-division multiplexing; OFDM) 的蜂巢環境中,通過首先將來自所有細胞的多個接收到的含有不同恆定振幅 (constant-amplitude; CA) 領航序列的OFDM探測信號分離出來,並在每個基站接收端聯合估計通道響應,實現同步通道估計 (simultaneous channel estimation; SCE)。
本論文在分析多細胞情況下基於最小平方法之同步通道估計的平均均方誤差時,考慮了在獨立的上行瑞利或萊斯多路徑通道下,每個基站接收端以及多個接收到的探測信號之間存在時間偏移的情況。在時域存在多個接收到的探測信號時,SCE系統能夠有效抑制各種接收到的探測信號之間的互相干擾,前提是每個細胞內使用的領航序列子集都是由在時域上滿足最小循環移位距離 ϖ_min 的條件下可循環移位的CA序列(cyclically-shiftable constant-amplitude; CSCA) ,也就是ϖ_min-允許的CSCA序列所組成,且來自不同子集的CA序列彼此間都是正交的。
因此,在本論文中構建了一個修改相位模型分配 (modified phase-model-assigning; MPMA) 序列家族,此家族由正交的 ϖ_min-允許的CSCA序列子家族組成,並將其與由非正交的 ϖ_min-允許的CSCA序列子家族所組成的Zadoff-Chu和Yu-Lee序列家族以及由正交的 ϖ_min-允許的CSCA序列子家族所組成的退化相位模型分配 (degenerated phase-model-assigning; DPMA) 序列家族進行了比較。採用MPMA序列家族的系統在SCE中可以提供了比採用Zadoff-Chu, Yu-Lee和DPMA序列家族更高的估計精確度。
zh_TW
dc.description.abstractIn multicell multiuser multiple-input multiple-output orthogonal frequency-division multiplexing (OFDM) cellular environments, simultaneous channel estimation (SCE) is achieved by first separating multiple received sounding OFDM signals carrying different constant-amplitude (CA) pilot sequences from all cells and then estimating channel responses jointly at each base station receiver. Multicell least-square-based SCE is analytically studied herein in terms of average mean-square-error for each base station receiver operating under independent uplink Rician/Rayleigh multipath channels and in the presence of time offsets among multiple received sounding signals. The SCE system is shown to suppress the mutual interference among various received sounding signals effectively when the pilot sequence subset for each cell consists of all CA sequences that are cyclically shiftable with a minimum cyclic shift distance ϖ_min in time domain (namely, ϖ_min-permissible CSCA sequences), and sequences from different subsets are mutually orthogonal. Thus, a modified phase-model-assigning (MPMA) sequence family is constructed herein of orthogonal ϖ_min-permissible CSCA sequence subfamilies, and compared with Zadoff-Chu and Yu-Lee sequence families that are comprised of nonorthogonal ϖ_min-permissible CSCA sequence subfamilies and the degenerated phase-model-assigning sequence family which consists of orthogonal ϖ_min-permissible CSCA subfamilies. The system adopting the MPMA family is demonstrated to provide higher estimation accuracy in SCE than the systems adopting the other three sequence families.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:29:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:29:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables ix
List of Abbreviations x
Chapter 1 Introduction 1
1.1 Multicell Multiuser MIMO OFDM Systems 1
1.2 Simultaneous Channel Estimation 2
1.3 Motivation and Contribution 4
1.4 Organization 4
1.5 Notations 5
Chapter 2 SCE and Useful CA Sequence Families 7
2.1 LS-Based SCE System Model 7
2.2 CA Sequence Families 13
2.2.1 ZC Sequence Family Q_ZC 13
2.2.2 YL Sequence Family Q_YL 14
2.2.3 MPMA Sequence Family Q_MPMA 14
2.2.4 DPMA Sequence Family Q_DPMA 15
2.2.5 PAPR of the CA Sequence Families 17
2.2.6 Average OOB Fraction of the CA Sequence Families 18
Chapter 3 SCE Performance Analysis 20
3.1 Average MSE Performance Analysis 20
3.2 Special Case with Rayleigh Channel and Zero Time Offsets 23
3.3 Effect of Adopting CA Sequences with Specific Properties 24
3.3.1 ϖ_min-Permissible CSCA Sequence Subfamilies 24
3.3.2 Orthogonal ϖ_min-Permissible CSCA Sequence Subfamilies 24
Chapter 4 SCE Performance Result 26
4.1 Channel Model and System Parameters 26
4.2 Performance Result Under SAS I 28
4.2.1 Average MSE Versus SNR 29
4.2.2 Average MSE Versus Large-Scale Power Factor 41
4.3 Performance Result Under SAS II 44
4.3.1 Average MSE Versus Number of Transmit Antenna per Cell 44
Chapter 5 Conclusion 46
Appendix 47
References 48
-
dc.language.isoen-
dc.subject通道探測zh_TW
dc.subject正交分頻多工zh_TW
dc.subject恆定振幅序列zh_TW
dc.subject同步通道估計zh_TW
dc.subject多用戶多輸入多輸出zh_TW
dc.subjectmultiuser multiple-input multiple-outputen
dc.subjectchannel soundingen
dc.subjectconstant-amplitude sequencesen
dc.subjectsimultaneous channel estimationen
dc.subjectOrthogonal frequency division multiplexingen
dc.title多細胞多用戶正交分頻多工系統之同步多輸入多輸出通道估計zh_TW
dc.titleSimultaneous Channel Estimation in Multicell Multiuser MIMO OFDM Systemsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳維昌zh_TW
dc.contributor.coadvisorWei-Chang Chenen
dc.contributor.oralexamcommittee王晉良;林茂昭;李穎zh_TW
dc.contributor.oralexamcommitteeChin-Liang Wang;Mao-Chao Lin;Ying Lien
dc.subject.keyword正交分頻多工,多用戶多輸入多輸出,同步通道估計,恆定振幅序列,通道探測,zh_TW
dc.subject.keywordOrthogonal frequency division multiplexing,multiuser multiple-input multiple-output,simultaneous channel estimation,constant-amplitude sequences,channel sounding,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202402457-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
Access limited in NTU ip range
2.84 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved