Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93925Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉志文 | zh_TW |
| dc.contributor.advisor | Chih-Wen Liu | en |
| dc.contributor.author | 張齊恩 | zh_TW |
| dc.contributor.author | Chi-En Chang | en |
| dc.date.accessioned | 2024-08-09T16:27:58Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | [1] "臺灣 2050 淨零排放路徑及策略總說明." 國家發展委員會、行政院環境保護署、經濟部、科技部、交通部、內政部、行政院農業委員會、金融監督管理委員會. https://www.ndc.gov.tw/Default.aspx (accessed May 5, 2024).
[2] J. E. Huber and J. W. Kolar, "Applicability of Solid-State Transformers in Today’s and Future Distribution Grids," IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 317-326, 2019. [3] S. Xu, A. Q. Huang, and R. Burgos, "Review of Solid-State Transformer Technologies and Their Application in Power Distribution Systems," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 3, pp. 186-198, 2013. [4] C. Joglekar, B. Mortimer, F. Ponci, A. Monti, and R. W. De Doncker, "SST-Based Grid Reinforcement for Electromobility Integration in Distribution Grids," Energies, vol. 15, no. 9, 2022. [5] B. Ismail, N. I. Abdul Wahab, M. L. Othman, M. A. M. Radzi, K. Naidu Vijyakumar, and M. N. Mat Naain, "A Comprehensive Review on Optimal Location and Sizing of Reactive Power Compensation Using Hybrid-Based Approaches for Power Loss Reduction, Voltage Stability Improvement, Voltage Profile Enhancement and Loadability Enhancement," IEEE Access, vol. 8, pp. 222733-222765, 2020. [6] M. N. I. Sarkar, L. G. Meegahapola, and M. Datta, "Reactive Power Management in Renewable Rich Power Grids: A Review of Grid-Codes, Renewable Generators, Support Devices, Control Strategies and Optimization Algorithms," IEEE Access, vol. 6, pp. 41458-41489, 2018. [7] I. Syed, V. Khadkikar, and H. H. Zeineldin, "Loss Reduction in Radial Distribution Networks Using a Solid-State Transformer," IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 5474-5482, 2018. [8] D. K. Mishra et al., "A review on solid-state transformer: A breakthrough technology for future smart distribution grids," International Journal of Electrical Power & Energy Systems, vol. 133, 2021. [9] D. Shah and M. L. Crow, "Online Volt-Var Control for Distribution Systems With Solid-State Transformers," IEEE Transactions on Power Delivery, vol. 31, no. 1, pp. 343-350, 2016. [10] M. R. Banaei and E. Salary, "Mitigation of voltage sag, swell and power factor correction using solid-state transformer based matrix converter in output stage," Alexandria Engineering Journal, vol. 53, no. 3, pp. 563-572, 2014/09/01/ 2014. [11] 行政院. "再生能源發展條例部分條文修正草案." https://www.lawbank.com.tw/news/NewsContent.aspx?NID=188835.00 (accessed May 30, 2024). [12] E. S. M. A. Program and (ESMAP). "GLOBAL SOLAR ATLAS." https://globalsolaratlas.info/map (accessed May30, 2024). [13] "SAE International." https://www.sae.org/ (accessed May 30, 2024). [14] T. A. Skouras, P. K. Gkonis, C. N. Ilias, P. T. Trakadas, E. G. Tsampasis, and T. V. Zahariadis, "Electrical Vehicles: Current State of the Art, Future Challenges, and Perspectives," Clean Technologies, vol. 2, no. 1, pp. 1-16 [15] 葉昭甫. "臺中市公有路外停車場電動車充電樁研擬增訂管理及使用辦法專案報告." 臺中市政府交通局. https://www.rdec.taichung.gov.tw/ (accessed May 30, 2024). [16] X. Ni and K. L. Lo, "A Methodology to Model Daily Charging Load in the EV Charging Stations Based on Monte Carlo Simulation," in 2020 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), 4-7 Oct. 2020 2020, pp. 125-130. [17] K. Girigoudar and L. A. Roald, "On the impact of different voltage unbalance metrics in distribution system optimization," Electric Power Systems Research, vol. 189, p. 106656, 2020/12/01/ 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93925 | - |
| dc.description.abstract | 本研究針對固態變壓器(Solid-State Transformer, SST)在我國配電網的應用進行探討。SST是一種新型電力電子設備,具備多種功能,包括電壓調節、虛功補償、電力品質改善以及能源管理。SST能夠有效結合再生能源及儲能系統,實現靈活的能源轉換和控制,從而提升電壓穩定性和電力品質。然而,由於SST的高成本,需合理設置以達到經濟效益。
隨著科技不斷發展,全球各國逐漸重視環保議題並朝向運具電氣化的方向邁進,電動車(Electric Vehicle, EV)數量持續上升,充電需求的增加對電網造成了顯著壓力,導致線路損失增加及電壓不穩定。此外,再生能源發電的間歇性和不確定性,也對電網穩定性構成了挑戰。 本研究的目標是透過固態變壓器的合理設置,來應對未來大量再生能源併網及電動車普及所帶來的電壓問題。本文設計了三種SST放置方案,分別為單點集中補償法、均勻分散補償法及適應性選擇補償法,並通過模擬和實驗驗證其效果。結果顯示,且三種方法皆顯示SST在提高電力品質、減少線路損失和提升電網穩定性方面具有顯著效果,在一天線路損失最高的18:00,損失大約可以降低5%。另外三種方法都套用本研究提出的補償因子算法,在12:00三相不平衡率相對高,加入SST之前為1.85%,而加入SST後三相不平衡率下降至0.39%。而三種方法比較中以適應性選擇補償可以使用最少的裝置容量,相較其他方法節省了10%總裝置容量。 | zh_TW |
| dc.description.abstract | This study explores the application of SST in the distribution network of our country. SST is an innovative power electronic device that offers multiple functionalities, including voltage regulation, reactive power compensation, power quality improvement, and energy management. SST can effectively integrate renewable energy sources and energy storage systems, achieving flexible energy conversion and control, thereby enhancing voltage stability and power quality. However, due to the high cost of SSTs, their deployment needs to be optimized to achieve economic efficiency.
With continuous technological advancement, countries worldwide are increasingly focusing on environmental issues and moving towards the electrification of transportation. The rising number of EVs and the corresponding increase in charging demands have placed significant pressure on power grids, resulting in increased line losses and voltage instability. Additionally, the intermittent and unpredictable nature of renewable energy generation poses further challenges to grid stability. The objective of this study is to address voltage issues arising from the large-scale integration of renewable energy and the widespread adoption of EVs by optimally deploying SSTs. Three SST placement strategies were designed in this study: the single-point centralized compensation method, the evenly distributed compensation method, and the adaptive selective compensation method. The effectiveness of these strategies was validated through simulations and experiments. The results demonstrated that all three methods significantly improve power quality, reduce line losses, and enhance grid stability. At 18:00, when line losses peak, the losses can be reduced by approximately 5%. Furthermore, the compensation factor algorithm proposed in this study was applied to all three methods, reducing the three phase unbalance rate from 1.85% to 0.39% at 12:00 when the unbalance rate is relatively high before the implementation of SSTs. Among the three methods, the adaptive selective compensation method was found to use the least device capacity, saving 10% of the total device capacity compared to the other methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:27:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:27:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目次 vi 圖次 xi 表次 xiii 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 1 1.3 文獻回顧 2 1.4 章節摘要 4 第二章 固態變壓器 6 2.1 前言 6 2.2 固態變壓器架構 6 2.3 各國固態變壓器技術發展現況與趨勢 9 2.3.1 ABB 9 2.3.2 GE 9 2.3.3 EPRI 10 2.3.4 FREEDM 10 2.4 SST於配電網之應用 12 2.4.1 結合分散式能源以及儲能系統 12 2.4.2 虛功補償 13 2.4.3 改善電力品質 13 2.5 比較現有設備與固態變壓器 14 2.5.1 傳統變壓器 14 2.5.2 電壓補償設備 15 第三章 太陽光電與電動車負載 18 3.1 前言 18 3.2 太陽光電種類 18 3.2.1 屋頂型 18 3.2.2 地面型 19 3.3 太陽光電生成 19 3.4 電動車種類 20 3.4.1 混合型電動車 20 3.4.2 純電動車 21 3.5 充電樁規格 21 3.5.1 AC-Level-1 21 3.5.2 AC-Level-2 22 3.5.3 AC-Level-3 22 3.5.4 DC-Level 22 3.6 電動車負載生成 23 3.6.1 電動車數量預估與充電需求分析 23 3.6.2 電動車資料生成 23 3.6.3 電動車負載產生流程 26 第四章 固態變壓器選址方法 28 4.1 前言 28 4.2 問題陳述 28 4.3 補償目標與限制條件 28 4.3.1 補償目標 28 4.3.2 限制條件 29 4.4 電力品質 30 4.4.1 三相不平衡率 30 4.4.2 線路損失 32 4.5 虛功補償 32 4.6 模擬軟體 Matlab/Simulink 34 4.7 選址演算法 35 4.7.1 補償量分配方法 35 4.7.2 單點集中補償法 38 4.7.3 均勻分散補償法 40 4.7.4 適應性選擇補償法 42 4.7.5 小節 44 第五章 測試電網 45 5.1 前言 45 5.2 測試電網選址 45 5.3 電網線路 45 第六章 測試結果 50 6.1 前言 50 6.2 太陽光電敏感度分析 50 6.3 電動車負載敏感度分析 53 6.4 固態變壓器設置 56 6.4.1 裝設SST前 57 6.4.2 單點集中補償 59 6.4.3 均勻分散補償 61 6.4.4 適應性選擇補償 63 6.4.5 結果比較 65 第七章 結論與未來研究方向 67 7.1 結論 67 7.2 未來研究方向 68 參考文獻 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電動車 | zh_TW |
| dc.subject | 電力品質 | zh_TW |
| dc.subject | 固態變壓器 | zh_TW |
| dc.subject | 配電系統規劃 | zh_TW |
| dc.subject | 再生能源 | zh_TW |
| dc.subject | Solid State Transformer (SST) | en |
| dc.subject | Power Quality | en |
| dc.subject | Distribution System Planning | en |
| dc.subject | Renewable Energy | en |
| dc.subject | Electric Vehicles (EV) | en |
| dc.title | 固態變壓器於我國配電網之應用與資源配置 | zh_TW |
| dc.title | Application and Resource Allocation of Solid-State Transformers in Our Country's Distribution Network | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江昭皚;楊俊哲 | zh_TW |
| dc.contributor.oralexamcommittee | Joe-Air Jiang;Jun-Zhe Yang | en |
| dc.subject.keyword | 固態變壓器,電動車,再生能源,配電系統規劃,電力品質, | zh_TW |
| dc.subject.keyword | Solid State Transformer (SST),Electric Vehicles (EV),Renewable Energy,Distribution System Planning,Power Quality, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202403166 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2028-04-07 | - |
| Appears in Collections: | 電機工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Until 2028-04-07 | 7.46 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
