請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93919完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇偉儁 | zh_TW |
| dc.contributor.advisor | Wei-Jiun Su | en |
| dc.contributor.author | 留崇恆 | zh_TW |
| dc.contributor.author | Chung-Heng Liu | en |
| dc.date.accessioned | 2024-08-09T16:25:39Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-03 | - |
| dc.identifier.citation | [1]A. Erturk and D. J. Inman, "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters," Journal of Vibration and Acoustics, vol. 130, no. 4, p. 041002, 2008, doi: 10.1115/1.2890402.
[2]M. Bukhari, A. Malla, H. Kim, O. Barry, and L. Zuo, "On a self-tuning sliding-mass electromagnetic energy harvester," AIP Advances, vol. 10, no. 9, 2020, doi: 10.1063/5.0005430. [3]L. G. H. Staaf, A. D. Smith, P. Lundgren, P. D. Folkow, and P. Enoksson, "Effective piezoelectric energy harvesting with bandwidth enhancement by assymetry augmented self-tuning of conjoined cantilevers," International Journal of Mechanical Sciences, vol. 150, pp. 1-11, 2019, doi: 10.1016/j.ijmecsci.2018.09.050. [4]Y. Hu, H. Xue, and H. Hu, "A piezoelectric power harvester with adjustable frequency through axial preloads," Smart Materials and Structures, vol. 16, no. 5, pp. 1961-1966, 2007, doi: 10.1088/0964-1726/16/5/054. [5]C. Eichhorn, F. Goldschmidtboeing, and P. Woias, "Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam," Journal of Micromechanics and Microengineering, vol. 19, no. 9, 2009, doi: 10.1088/0960-1317/19/9/094006. [6]M. O. Mansour, M. H. Arafa, and S. M. Megahed, "Resonator with magnetically adjustable natural frequency for vibration energy harvesting," Sensors and Actuators A: Physical, vol. 163, no. 1, pp. 297-303, 2010, doi: 10.1016/j.sna.2010.07.001. [7]V. R. Challa, M. G. Prasad, Y. Shi, and F. T. Fisher, "A vibration energy harvesting device with bidirectional resonance frequency tunability," Smart Materials and Structures, vol. 17, no. 1, 2008, doi: 10.1088/0964-1726/17/01/015035. [8]S. Zhou, J. Cao, A. Erturk, and J. Lin, "Enhanced broadband piezoelectric energy harvesting using rotatable magnets," Applied Physics Letters, vol. 102, no. 17, 2013, doi: 10.1063/1.4803445. [9]X. Li, D. Upadrashta, K. Yu, and Y. Yang, "Analytical modeling and validation of multi-mode piezoelectric energy harvester," Mechanical Systems and Signal Processing, vol. 124, pp. 613-631, 2019, doi: 10.1016/j.ymssp.2019.02.003. [10]J.-Q. Liu et al., "A MEMS-based piezoelectric power generator array for vibration energy harvesting," Microelectronics Journal, vol. 39, no. 5, pp. 802-806, 2008, doi: 10.1016/j.mejo.2007.12.017. [11]S. Qi, R. Shuttleworth, S. Olutunde Oyadiji, and J. Wright, "Design of a multiresonant beam for broadband piezoelectric energy harvesting," Smart Materials and Structures, vol. 19, no. 9, 2010, doi: 10.1088/0964-1726/19/9/094009. [12]R. Chen, L. Ren, H. Xia, X. Yuan, and X. Liu, "Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester," Sensors and Actuators A: Physical, vol. 230, pp. 1-8, 2015, doi: 10.1016/j.sna.2015.03.038. [13]H. Li, D. Liu, J. Wang, X. Shang, and M. R. Hajj, "Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of L-shaped structure," Energy Conversion and Management, vol. 206, 2020, doi: 10.1016/j.enconman.2020.112503. [14]K. Chen, F. Gao, Z. Liu, and W.-H. Liao, "A nonlinear M-shaped tri-directional piezoelectric energy harvester," Smart Materials and Structures, vol. 30, no. 4, 2021, doi: 10.1088/1361-665X/abe87e. [15]V. J. Caetano and M. A. Savi, "Star-shaped piezoelectric mechanical energy harvesters for multidirectional sources," International Journal of Mechanical Sciences, vol. 215, 2022, doi: 10.1016/j.ijmecsci.2021.106962. [16]S. C. Stanton, C. C. McGehee, and B. P. Mann, "Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator," Physica D: Nonlinear Phenomena, vol. 239, no. 10, pp. 640-653, 2010, doi: 10.1016/j.physd.2010.01.019. [17]Y. Zhu, J. Zu, and W. Su, "Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading," Smart Materials and Structures, vol. 22, no. 4, 2013, doi: 10.1088/0964-1726/22/4/045007. [18]H. Wu, L. Tang, Y. Yang, and C. K. Soh, "Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester," Journal of Intelligent Material Systems and Structures, vol. 25, no. 14, pp. 1875-1889, 2014, doi: 10.1177/1045389x14541494. [19]D. Zhao et al., "Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method," Materials Research Express, vol. 5, no. 5, 2018, doi: 10.1088/2053-1591/aabefc. [20]Y. Fan, M. H. Ghayesh, T.-F. Lu, and M. Amabili, "Design, development, and theoretical and experimental tests of a nonlinear energy harvester via piezoelectric arrays and motion limiters," International Journal of Non-Linear Mechanics, vol. 142, 2022, doi: 10.1016/j.ijnonlinmec.2022.103974. [21]Y. Chen and Z. Yan, "Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity," International Journal of Mechanical Sciences, vol. 173, 2020, doi: 10.1016/j.ijmecsci.2020.105473. [22]J. Palosaari, M. Leinonen, J. Hannu, J. Juuti, and H. Jantunen, "Energy harvesting with a cymbal type piezoelectric transducer from low frequency compression," Journal of Electroceramics, vol. 28, no. 4, pp. 214-219, 2012, doi: 10.1007/s10832-012-9713-8. [23]Z. Yang and J. Zu, "High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism," Energy Conversion and Management, vol. 88, pp. 829-833, 2014, doi: 10.1016/j.enconman.2014.09.026. [24]C. Xu et al., "Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3," Applied Physics Letters, vol. 101, no. 3, 2012, doi: 10.1063/1.4737170. [25]Y. Kuang, Z. J. Chew, J. Dunville, J. Sibson, and M. Zhu, "Strongly coupled piezoelectric energy harvesters: Optimised design with over 100 mW power, high durability and robustness for self-powered condition monitoring," Energy Conversion and Management, vol. 237, 2021, doi: 10.1016/j.enconman.2021.114129. [26]H.-L. Chang and W.-J. Su, "Design and development of a high-performance tensile-mode piezoelectric energy harvester based on a three-hinged force-amplification mechanism," Smart Materials and Structures, vol. 31, no. 7, 2022, doi: 10.1088/1361-665X/ac7489. [27]M. T. Towliat Kashani, S. Jayasinghe, and S. M. Hashemi, "On the Flexural-Torsional Vibration and Stability of Beams Subjected to Axial Load and End Moment," Shock and Vibration, vol. 2014, pp. 1-11, 2014, doi: 10.1155/2014/153532. [28]E. S. Leland and P. K. Wright, "Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload," Smart Materials and Structures, vol. 15, no. 5, pp. 1413-1420, 2006, doi: 10.1088/0964-1726/15/5/030. [29]E. F. Crawley and E. H. Anderson, "Detailed Models of Piezoceramic Actuation of Beams," Journal of Intelligent Material Systems and Structures, vol. 1, no. 1, pp. 4-25, 1990, doi: 10.1177/1045389x9000100102. [30]A. Triplett and D. D. Quinn, "The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting," Journal of Intelligent Material Systems and Structures, vol. 20, no. 16, pp. 1959-1967, 2009, doi: 10.1177/1045389x09343218. [31]Y. H. Shin et al., "Mechanical Fatigue Resistance of Piezoelectric PVDF Polymers," Micromachines (Basel), vol. 9, no. 10, Oct 4 2018, doi: 10.3390/mi9100503. [32]D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H. C. Wikle, and D.-J. Kim, "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting," Journal of Micromechanics and Microengineering, vol. 18, no. 5, 2008, doi: 10.1088/0960-1317/18/5/055017. [33]F. M. Foong, C. K. Thein, and D. Yurchenko, "On mechanical damping of cantilever beam-based electromagnetic resonators," Mechanical Systems and Signal Processing, vol. 119, pp. 120-137, 2019, doi: 10.1016/j.ymssp.2018.09.023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93919 | - |
| dc.description.abstract | 傳統的壓電懸臂樑採集器有幾個明顯的缺點,如採集頻寬窄、應變分布不均等,使採集器的發電效率低落。為了改善上述情形,本研究提出一種結合旋轉接頭之分段非線性能量採集器,透過幾何結構產生非線性效果,進而拓展系統的頻寬,並施予壓電材料軸向預力使其在振動過程中產生均勻的軸向應變,且結構所帶來的力放大效果除了影響系統的共振頻外,也進一步提高了採集器的輸出電壓。本研究將特殊設計的剛體塊視作主體,一端為旋轉接頭,另一端則透過簡支邊界與PVDF壓電材料接觸,在此將PVDF壓電材料視作彈性桿件,兩端以夾持方式固定,又因其剛性遠小於剛體塊,故在理論模型中忽略其彎矩剛性與質量。此外,本研究也針對採集器的各項參數進行實驗,包括等效剛性、預拉力值、激振加速度、簡支邊界質量、簡支邊界位置等,探討各參數對於系統性能的影響,並將實驗結果與理論模型進行驗證,最後與傳統懸臂樑能量採集器做比較。實驗結果顯示,本研究所設計之採集器與懸臂樑採集器相比,最大方均根電壓提高了3倍,且頻寬也提升了13倍,在3.33 MΩ的外接阻抗下,最大輸出功率可達0.47 mW。 | zh_TW |
| dc.description.abstract | The traditional cantilever piezoelectric energy harvester has some disadvantages such as narrow bandwidth and uneven strain distribution, which leads to low power generation efficiency. To address these issues, this study proposes a piecewise nonlinear piezoelectric energy harvester composed of a specially designed rigid body and an elastic PVDF sheet. Due to the force-amplification mechanism, the PVDF subjected to axial preload is stretched uniformly to influence the system’s resonant frequency and increase the output voltage. The dynamic equations of the proposed energy harvester is derived based on the motion of the rigid body which is considered as the only degree of freedom. In the theoretical model, the mass and the bending stiffness of the piezoelectric sheet are ignored because the stiffness of the piezoelectric sheet is much smaller than that of the rigid body. Experimental results are conducted to verify the theoretical model. The influence of stiffness, preload, acceleration, and mass configuration will be discussed in the verification. The experimental results show that the output voltage of the proposed design is increased by 2.52 times and the bandwidth is extended by 13 times compared with the traditional cantilever energy harvester. According to the optimal resistance experiment results, the maximum output power can reach 0.47 mW with an optimal resistance of 3.33 MΩ. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:25:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:25:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 iv 圖次 vi 表次 ix 符號表 xi Chapter 1 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與方法 7 1.4 論文架構 8 Chapter 2 壓電能量擷取理論 9 2.1 壓電效應 9 2.2 壓電本構方程式 11 Chapter 3 能量採集器模型 14 3.1 採集器之力學模型 15 3.1.1 加速度造成之慣性力矩 16 3.1.2 彈性桿件拉力造成之力矩 17 3.1.3 採集器之分段非線性 19 3.2 採集器之電學模型 21 Chapter 4 實驗設計 23 4.1 原型設計 23 4.2 實驗設備 26 4.3 實驗流程 30 Chapter 5 結果驗證與討論 31 5.1 模型驗證與參數對系統之影響 32 5.1.1 等效剛性的影響 33 5.1.2 預拉力的影響 38 5.1.3 加速度的影響 46 5.1.4 簡支邊界的影響 49 5.1.5 分段非線性的影響 52 5.2 與懸臂樑採集器之比較 59 5.3 系統功率與最佳阻抗 64 5.4 與非線性拉伸型採集器之比較 66 Chapter 6 結論與未來展望 70 6.1 結論 70 6.2 未來展望 71 參考文獻 72 附錄A 壓電懸臂樑之理論模型 76 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電能量採集器 | zh_TW |
| dc.subject | 非線性硬化效應 | zh_TW |
| dc.subject | 軸向預力 | zh_TW |
| dc.subject | 應變分布 | zh_TW |
| dc.subject | 力放大機構 | zh_TW |
| dc.subject | axial preload | en |
| dc.subject | Piezoelectric energy harvester | en |
| dc.subject | amplifying mechanism | en |
| dc.subject | strain distribution | en |
| dc.subject | hardening effect | en |
| dc.title | 結合轉軸之分段非線性拉伸式壓電能量採集器之設計與分析 | zh_TW |
| dc.title | Design and Analysis of a Tensile-mode Piecewise Nonlinear Piezoelectric Energy Harvester with Revolute Joint | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃育熙;陳任之 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsi Huang;Yum-Ji Chan | en |
| dc.subject.keyword | 壓電能量採集器,非線性硬化效應,軸向預力,應變分布,力放大機構, | zh_TW |
| dc.subject.keyword | Piezoelectric energy harvester,hardening effect,axial preload,strain distribution,amplifying mechanism, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202403178 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
