請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張芳嘉 | zh_TW |
| dc.contributor.advisor | Fang-Chia Chang | en |
| dc.contributor.author | 蘇鈺傑 | zh_TW |
| dc.contributor.author | Yu-Jie Su | en |
| dc.date.accessioned | 2024-08-09T16:25:16Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-22 | - |
| dc.identifier.citation | 1. Levenson, J.C., D.B. Kay, and D.J. Buysse, The pathophysiology of insomnia. Chest, 2015. 147(4): p. 1179-1192.
2. Bollu, P.C. and H. Kaur, Sleep medicine: insomnia and sleep. Missouri Medicine, 2019. 116(1): p. 68-75. 3. Roth, T., Insomnia: definition, prevalence, etiology, and consequences. Journal of Clinical Sleep Medicine, 2007. 3(5 Suppl): p. S7-10. 4. Saper, C.B., et al., Sleep state switching. Neuron, 2010. 68(6): p. 1023-42. 5. Sherin, J.E., et al., Activation of ventrolateral preoptic neurons during sleep. Science, 1996. 271(5246): p. 216-219. 6. Gallopin, T., et al., The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience, 2005. 134(4): p. 1377-1390. 7. Arrigoni, E. and P.M. Fuller, The sleep-promoting ventrolateral preoptic nucleus: what have we learned over the past 25 years? International Journal of Molecular Sciences, 2022. 23(6). 8. Lu, J., et al., Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. Journal of Neuroscience, 2000. 20(10): p. 3830-42. 9. Scammell, T., et al., Activation of ventrolateral preoptic neurons by the somnogen prostaglandinD2. Proceedings of the National Academy of Sciences, 1998. 95(13): p. 7754-7759. 10. S., M.J., et al., Clinical practice guideline for the pharmacologic treatment of chronic insomnia in adults: an American Academy of Sleep Medicine clinical practice guideline. Journal of Clinical Sleep Medicine, 2017. 13(02): p. 307-349. 11. Winkelman, J.W., et al., Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS). Sleep, 2008. 31(11): p. 1499-506. 12. Doyno, C.R. and C.M. White, Sedative-hypnotic agents that impact gamma-aminobutyric acid receptors: focus on flunitrazepam, gamma-hydroxybutyric acid, phenibut, and selank. Journal of Clinical Pharmacology, 2021. 61 Suppl 2: p. S114-s128. 13. Gottesmann, C., GABA mechanisms and sleep. Neuroscience, 2002. 111(2): p. 231-9. 14. Plante, D.T., J.E. Jensen, and J.W. Winkelman, The role of GABA in primary insomnia. Sleep, 2012. 35(6): p. 741-2. 15. Sarmiento, C.I., D. San-Juan, and V.B.S. Prasath, Letter to the editor: Brief history of transcranial direct current stimulation (tDCS): from electric fishes to microcontrollers. Psychological Medicine, 2016. 46(15): p. 3259-3261. 16. Yamada, Y. and T. Sumiyoshi, Neurobiological mechanisms of transcranial direct current stimulation for psychiatric disorders; neurophysiological, chemical, and anatomical considerations. Frontiers in Human Neuroscience, 2021. 15. 17. Nitsche, M.A., et al., Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 2008. 1(3): p. 206-223. 18. Podda, M.V., et al., Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression. Scientific Reports, 2016. 6: p. 22180. 19. Kronberg, G., et al., Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects. Brain Stimulation, 2017. 10(1): p. 51-58. 20. Liu, H.H., et al., Neuromodulatory effects of transcranial direct current stimulation on motor excitability in rats. Neural Plasticity, 2019. 2019: p. 4252943. 21. Vergallito, A., et al., State-dependent effectiveness of cathodal transcranial direct current stimulation on cortical excitability. NeuroImage, 2023. 277: p. 120242. 22. Nitsche, M.A. and W. Paulus, Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 2000. 527(Pt 3): p. 633. 23. Esmaeilpour, Z., et al., Incomplete evidence that increasing current intensity of tDCS boosts outcomes. Brain Stimulation, 2018. 11(2): p. 310-321. 24. Monte-Silva, K., et al., Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 2013. 6(3): p. 424-432. 25. Jackson, M.P., et al., Animal models of transcranial direct current stimulation: Methods and mechanisms. Clinical Neurophysiology, 2016. 127(11): p. 3425-3454. 26. Thair, H., et al., Transcranial direct current stimulation (tDCS): a beginner's guide for design and implementation. Frontiers in Neuroscience, 2017. 11. 27. de Souza Nicolau, E., et al., Transcranial direct current stimulation (tDCS) in mice. Journal of Visualized Experiments, 2018(139): p. e58517. 28. Zhou, Q., et al., The effects of repeated transcranial direct current stimulation on sleep quality and depression symptoms in patients with major depression and insomnia. Sleep Medicine, 2020. 70: p. 17-26. 29. Mohebbian, B., M. Najafi, and P. Sabahi, The effect of transcranial direct current stimulation on sleep quality, resilience, and optimism. Current Psychology, 2023. 42(7): p. 5785-5792. 30. Herrero Babiloni, A., et al., The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review. Sleep Medicine Reviews, 2021. 55: p. 101381. 31. Liebetanz, D., et al., Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology, 2009. 120(6): p. 1161-7. 32. Zhao, H., et al., Modulation of brain activity with noninvasive transcranial direct current stimulation (tDCS): clinical applications and safety concerns. Frontiers in Psychology, 2017. 8. 33. Jog, M.V., D.J.J. Wang, and K.L. Narr, A review of transcranial direct current stimulation (tDCS) for the individualized treatment of depressive symptoms. Personalized Medicine in Psychiatry, 2019. 17-18: p. 17-22. 34. Bashir, S. and W.K. Yoo, Neuromodulation for Addiction by Transcranial Direct Current Stimulation: Opportunities and Challenges. Annals of Neurosciences, 2016. 23(4): p. 241-245. 35. Majdi, A., et al., A systematic review and meta-analysis of transcranial direct-current stimulation effects on cognitive function in patients with Alzheimer’s disease. Molecular Psychiatry, 2022. 27(4): p. 2000-2009. 36. Salehinejad, M.A., et al., Transcranial direct current stimulation in ADHD: a systematic review of efficacy, safety, and protocol-induced electrical field modeling results. Neuroscience bulletin, 2020. 36(10): p. 1191-1212. 37. Barbey, A.K., M. Koenigs, and J. Grafman, Dorsolateral prefrontal contributions to human working memory. Cortex, 2013. 49(5): p. 1195-205. 38. Pochon, J.B., et al., The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cerebral Cortex, 2001. 11(3): p. 260-6. 39. Xia, X., et al., Functional role of dorsolateral prefrontal cortex in the modulation of cognitive bias. Psychophysiology, 2021. 58(10): p. e13894. 40. Herrera-Melendez, A., M. Bajbouj, and S. Aust, Application of transcranial direct current stimulation in psychiatry. Neuropsychobiology, 2019. 79(6): p. 372-383. 41. Frase, L., et al., Differential effects of bifrontal tDCS on arousal and sleep duration in insomnia patients and healthy controls. Brain Stimulation, 2019. 12(3): p. 674-683. 42. Jung, K. and J. Jun, Efficacy of transcranial direct-current stimulation on chronic insomnia. Brain Stimulation, 2019. 12(2): p. 557. 43. Schwierin, B., A.A. Borbély, and I. Tobler, Effects of N6-cyclopentyladenosine and caffeine on sleep regulation in the rat. European Journal of Pharmacology, 1996. 300(3): p. 163-71. 44. Yanik, G., S. Glaum, and M. Radulovacki, The dose-response effects of caffeine on sleep in rats. Brain Research 1987. 403(1): p. 177-80. 45. Revel, F.G., et al., Rodent models of insomnia: a review of experimental procedures that induce sleep disturbances. Neuroscience and biobehavioral reviews, 2009. 33(6): p. 874-99. 46. Tang, X., et al., Differential effects of two types of environmental novelty on activity and sleep in BALB/cJ and C57BL/6J mice. Physiology & Behavior, 2005. 85(4): p. 419-29. 47. Lee, S., H.J. Lee, and C.H. Cho, Mediation effect of insomnia symptoms on the relation between stress and quality of life. Psychiatry investigation, 2022. 19(3): p. 229-238. 48. Herbst, E., et al., Adaptation effects to sleep studies in participants with and without chronic posttraumatic stress disorder. Psychophysiology, 2010. 47(6): p. 1127-33. 49. Toth, L.A. and P. Bhargava, Animal models of sleep disorders. Comparative Medicine, 2013. 63(2): p. 91-104. 50. Jou, S.B., et al., Effects of N(6) -(4-hydroxybenzyl) adenine riboside in stress-induced insomnia in rodents. Journal of sleep research, 2021. 30(1): p. e13156. 51. M., C., What constitutes the prefrontal cortex? Science, 2017. 358(6362): p. 478-482. 52. Laubach, M., et al., What, if anything, is rodent prefrontal cortex? eNeuro, 2018. 5(5). 53. Brown, V.J. and E.M. Bowman, Rodent models of prefrontal cortical function. Trends in neurosciences, 2002. 25(7): p. 340-3. 54. Chou, T.C., et al., Afferents to the ventrolateral preoptic nucleus. Journal of Neuroscience, 2002. 22(3): p. 977-990. 55. Naumann, T., W. Härtig, and M. Frotscher, Retrograde tracing with Fluoro-Gold: different methods of tracer detection at the ultrastructural level and neurodegenerative changes of back-filled neurons in long-term studies. Journal of neuroscience methods, 2000. 103(1): p. 11-21. 56. Yao, F., et al., Did you choose appropriate tracer for retrograde tracing of retinal ganglion cells? The differences between cholera toxin subunit B and Fluorogold. PLOS ONE, 2018. 13(10): p. e0205133. 57. L., R.B., DREADDs for neuroscientists. Neuron, 2016. 89(4): p. 683-694. 58. Thompson, K.J., et al., DREADD Agonist 21 Is an Effective Agonist for Muscarinic-Based DREADDs in Vitro and in Vivo. ACS Pharmacology & Translational Science, 2018. 1(1): p. 61-72. 59. Jendryka, M., et al., Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Scientific Reports, 2019. 9(1): p. 4522. 60. Sadana, R. and C.W. Dessauer, Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals, 2009. 17(1): p. 5-22. 61. Ruiz-Velasco, V. and S.R. Ikeda, Multiple G-protein betagamma combinations produce voltage-dependent inhibition of N-type calcium channels in rat superior cervical ganglion neurons. Journal of Neuroscience, 2000. 20(6): p. 2183-91. 62. Nagy, A., Cre recombinase: The universal reagent for genome tailoring. Genesis, 2000. 26(2): p. 99-109. 63. Atasoy, D., et al., A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. Journal of Neuroscience, 2008. 28(28): p. 7025-30. 64. Xu, J. and Y. Zhu, A rapid in vitro method to flip back the double-floxed inverted open reading frame in a plasmid. BMC Biotechnology, 2018. 18(1): p. 52. 65. Keaveney, M.K., et al., CaMKIIα-Positive Interneurons Identified via a microRNA-Based Viral Gene Targeting Strategy. Journal of Neuroscience, 2020. 40(50): p. 9576-9588. 66. Yamabe, M., et al., MC-SleepNet: Large-scale sleep stage scoring in mice by deep neural networks. Scientific Reports, 2019. 9(1): p. 15793. 67. Long, S., et al., Sleep quality and electroencephalogram delta power. Frontiers in Neuroscience, 2021. 15: p. 803507. 68. Pikhovych, A., et al., Transcranial direct current stimulation in the male mouse to promote recovery after stroke. Laboratory Animals, 2016. 50(3): p. 212-216. 69. Cho, J., et al., Optimizing clozapine for chemogenetic neuromodulation of somatosensory cortex. Scientific Reports, 2020. 10(1): p. 6001. 70. Sánchez-León, C.A., et al., Immediate and after effects of transcranial direct-current stimulation in the mouse primary somatosensory cortex. Scientific Reports, 2021. 11(1): p. 3123. 71. Huang, Y.Z., et al., Plasticity induced by non-invasive transcranial brain stimulation: A position paper. Clinical Neurophysiology, 2017. 128(11): p. 2318-2329. 72. Quirk, G.J., R. Garcia, and F. González-Lima, Prefrontal mechanisms in extinction of conditioned fear. Biological psychiatry, 2006. 60(4): p. 337-343. 73. Peters, J., R.T. LaLumiere, and P.W. Kalivas, Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. Journal of Neuroscience, 2008. 28(23): p. 6046-6053. 74. Smith, K.S. and A.M. Graybiel, Habit formation. Dialogues in clinical neuroscience, 2016. 18(1): p. 33-43. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93918 | - |
| dc.description.abstract | 經顱直流電刺激(tDCS)已成為調節精神疾病中神經元活動的非侵入性方法之一,但其在治療失眠方面的效果仍然不穩定,這取決於tDCS的參數設置和患者的症狀。我們的研究旨在明確其在失眠治療中的效果及其背後的機制。我們假設,對前額葉皮層進行正極刺激會觸發來自下邊緣皮層(IL)到腹外側視前區(VLPO)的谷氨酸能投射,從而促進睡眠。
我們發現,在施加0.06毫安的電流8分鐘後,一般小鼠(C57BL/6)的非快速眼動(NREM)睡眠顯著增加,效果持續時間可達16至24小時。同樣的,在壓力誘導失眠(stress-induced insomnia)的小鼠中,這種電流不僅減輕了急性應激反應期的影響,還改善了隨後的急性失眠階段。 在研究IL到VLPO的神經通路時,我們使用了僅由設計藥物激活的設計受體(DREADDs)和ibotenic acid進行調節。通過注射clozapine,前者阻斷了這條神經通路,而後者則對IL造成了永久性損傷。這兩種方法的結果均表明,IL-VLPO通路在tDCS誘導的睡眠促進中起著關鍵作用。 這項研究增強了我們對tDCS如何影響睡眠障礙的理解,並為未來的研究和臨床應用提供了寶貴的見解。我們的發現表明,tDCS通過特定的神經通路促進睡眠,這對開發更有效的失眠治療方法具有重要意義。 | zh_TW |
| dc.description.abstract | Transcranial direct current stimulation (tDCS) has emerged as a non-invasive method for modulating neuronal activity in psychiatric disorders, yet its efficacy in treating insomnia remains variable, contingent upon tDCS parameters and patient characteristics. Our study aimed to delineate its effectiveness and underlying mechanisms in insomnia therapy. We postulated that anodal stimulation of the prefrontal cortex triggers glutaminergic projections from the infralimbic cortex (IL) to the ventrolateral preoptic area (VLPO), thereby facilitating sleep. We found that after administering 0.06 mA of electrical currents for 8 minutes, significant promotion of non-rapid eye movement (NREM) sleep was observed in naïve mice, with effects persisting for up to 16-24 hours. Similarly, in mice with stress-induced insomnia, the same current not only ameliorated the acute stress response period but also improved subsequent acute insomnia phases. In experiments investigating the IL-to-VLPO neural pathway, we utilized designer receptors exclusively activated by designer drugs (DREADDs) and ibotenic acid for modulation. The former, achieved through clozapine injection, blocked the neural pathway, while the latter caused permanent damage to the IL. Both methods indicated the pivotal role of the IL-VLPO pathway in tDCS-induced sleep promotion. This research enhances our understanding of how tDCS affects sleep disturbances and offers valuable insights for future studies and the clinical use of sleep therapy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:25:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:25:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 III Abstract IV List of figures VII I. Introduction 1 1.1 Insomnia 1 1.1.1 Insomnia 1 1.1.2 Pathophysiology of Insomnia 1 1.1.3 Insomnia treatment 2 1.2 Transcranial direct current stimulation (tDCS) 3 1.2.1 Function of tDCS 3 1.2.2 Parameters of tDCS 3 1.2.3 Applications of tDCS 5 1.3 Insomnia animal model 6 II. Aim and Hypothesis 8 2.1 Aims 8 2.2 Hypothesis 8 III. Materials and methods 10 3.1 Animal 10 3.2 Surgery 10 3.2.1 Electroencephalography (EEG) electrodes implantation 10 3.2.2 tDCS electrode 11 3.3 Retrograde tracing 12 3.3.1 Fluorogold 12 3.4 Viral Vector and Chemicals 13 3.4.1 Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) 13 3.4.2 Cre/DIO system 13 3.4.3 Microinjection of the virus 14 3.5 Histological processing 15 3.6 EEG recording and analysis 16 3.7 Experimental protocols 17 3.7.1 Exp. 1 Establishing a suitable tDCS setup 17 3.7.2 Exp. 2 tDCS effects on insomnia model 19 3.7.3 Exp. 3 Confirm the IL to VLPO pathway 20 3.7.4 Exp. 4 tDCS and the IL to VLPO pathway in insomnia mice 20 3.7.5 Exp. 5 tDCS effect in permanent IL lesioned animal. 22 3.8 Statistical analysis 23 IV. Results 24 4.1 Suitable set up of tDCS for mice 24 4.1.1 Parameters of tDCS 24 4.1.2 tDCS impact on sleep of normal mice 24 4.1.3 Sleep quantity and quality after tDCS treatment 25 4.2 The therapeutic effect of tDCS in insomnia mice 27 4.2.1 The sleep alterations in insomnia mice and those receiving tDCS 27 4.2.2 Sleep architecture of different phases 31 4.2.3 Sleep quality after tDCS treatment 34 4.3 Confirming the IL to VLPO pathway in mice 35 4.4 The manipulation of the IL to VLPO pathway 35 4.4.1 Effect of tDCS after blocking the pathway 35 4.4.2 Sleep architecture of different phases 38 4.4.3 Sleep quality analysis 40 4.4.4 Fluorescent image of brain after microinjection of virus 41 4.5 The impact of infralimbic (IL) lesions on sleep alteration 41 4.5.1 The effect of tDCS following infralimbic (IL) damage 41 4.5.2 Sleep architecture after infralimbic area lesioned 48 4.5.3 Histology after ibotenic acid injection 51 V. Discussion 53 VI. Figures and Tables 58 VII. References 71 | - |
| dc.language.iso | en | - |
| dc.subject | 僅由設計藥物激活的設計受體(DREADDs) | zh_TW |
| dc.subject | 下邊緣皮層(IL) | zh_TW |
| dc.subject | 睡眠 | zh_TW |
| dc.subject | 小鼠 | zh_TW |
| dc.subject | 腹外側視前區(VLPO) | zh_TW |
| dc.subject | 經顱直流電刺激(tDCS) | zh_TW |
| dc.subject | 壓力誘導失眠 | zh_TW |
| dc.subject | 鵝膏蕈胺酸 | zh_TW |
| dc.subject | sleep | en |
| dc.subject | designer receptors exclusively activated by designer drugs (DREADDs) | en |
| dc.subject | infralimbic cortex | en |
| dc.subject | stress-induced insomnia | en |
| dc.subject | transcranial direct current stimulation (tDCS) | en |
| dc.subject | ventrolateral preoptic area | en |
| dc.subject | mice | en |
| dc.subject | ibotenic acid | en |
| dc.title | 經顱直流電刺激 (tDCS) 在失眠治療中的神經機轉 | zh_TW |
| dc.title | The neural mechanisms of transcranial direct current stimulation (tDCS) on insomnia treatment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 尹珮璐;蕭逸澤;李信謙 | zh_TW |
| dc.contributor.oralexamcommittee | Pei-Lu Yi;Yi-Tse Hsiao;Hsin-Chien Lee | en |
| dc.subject.keyword | 經顱直流電刺激(tDCS),下邊緣皮層(IL),睡眠,小鼠,腹外側視前區(VLPO),僅由設計藥物激活的設計受體(DREADDs),壓力誘導失眠,鵝膏蕈胺酸, | zh_TW |
| dc.subject.keyword | designer receptors exclusively activated by designer drugs (DREADDs),infralimbic cortex,sleep,stress-induced insomnia,transcranial direct current stimulation (tDCS),ventrolateral preoptic area,mice,ibotenic acid, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202401975 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-22 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
