請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93915完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | zh_TW |
| dc.contributor.advisor | Ming-Syan Chen | en |
| dc.contributor.author | 黃盈樺 | zh_TW |
| dc.contributor.author | Ying-Hua Huang | en |
| dc.date.accessioned | 2024-08-09T16:24:06Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | [1] Simone Angioni, Angelo A Salatino, Francesco Osborne, Diego Reforgiato Recupero, and Enrico Motta. Integrating knowledge graphs for analysing academia and industry dynamics. In ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium: International Workshops: DOING, MADEISD, SKG, BBIGAP, SIMPDA, AIMinScience 2020 and Doctoral Consortium, Lyon, France, August 25–27, 2020, Proceedings 24, pages 219–225. Springer, 2020.
[2] Sambaran Bandyopadhyay, Lokesh N, Saley Vishal Vivek, and M Narasimha Murty. Outlier resistant unsupervised deep architectures for attributed network embedding. In Proceedings of the 13th international conference on web search and data mining, pages 25–33, 2020. [3] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999. [4] Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and Junzhou Huang. Rumor detection on social media with bi-directional graph convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 549–556, 2020. [5] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural networks for graph pooling. In International conference on machine learning, pages 874–883. PMLR, 2020. [6] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed networks. In Proceedings of the 2019 SIAM International Conference on Data Mining, pages 594–602. SIAM, 2019. [7] Yingtong Dou, Kai Shu, Congying Xia, Philip S Yu, and Lichao Sun. User preference-aware fake news detection. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2051–2055, 2021. [8] Dongsheng Duan, Lingling Tong, Yangxi Li, Jie Lu, Lei Shi, and Cheng Zhang. Aane: Anomaly aware network embedding for anomalous link detection. In 2020 IEEE International Conference on Data Mining (ICDM), pages 1002–1007. IEEE, 2020. [9] P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959. [10] Haoyi Fan, Fengbin Zhang, and Zuoyong Li. Anomalydae: Dual autoencoder for anomaly detection on attributed networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5685–5689. IEEE, 2020. [11] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pages 2083–2092. PMLR, 2019. [12] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864, 2016. [13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances in neural information processing systems, 30, 2017. [14] Ling Huang, Ye Zhu, Yuefang Gao, Tuo Liu, Chao Chang, Caixing Liu, Yong Tang, and Chang-Dong Wang. Hybrid-order anomaly detection on attributed networks. IEEE Transactions on Knowledge and Data Engineering, 2021. [15] Zan Huang, Wingyan Chung, and Hsinchun Chen. A graph model for e-commerce recommender systems. Journal of the American Society for information science and technology, 55(3):259–274, 2004. [16] Weiwei Jiang. Graph-based deep learning for communication networks: A survey. Computer Communications, 185:40–54, 2022. [17] Aparna Joshi, Yu Zhang, Petko Bogdanov, and Jeong-Hyon Hwang. An efficient system for subgraph discovery. In 2018 IEEE International Conference on Big Data (Big Data), pages 703–712. IEEE, 2018. [18] Hwan Kim, Byung Suk Lee, Won-Yong Shin, and Sungsu Lim. Graph anomaly detection with graph neural networks: Current status and challenges. IEEE Access, 2022. [19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [20] Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. Radar: Residual analysis for anomaly detection in attributed networks. In IJCAI, volume 17, pages 2152–2158, 2017. [21] Nan Li, Huan Sun, Kyle Chipman, Jemin George, and Xifeng Yan. A probabilistic approach to uncovering attributed graph anomalies. In Proceedings of the 2014 SIAM International Conference on Data Mining, pages 82–90. SIAM, 2014. [22] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE transactions on neural networks and learning systems, 33(6):2378–2392, 2021. [23] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and Leman Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on Knowledge and Data Engineering, 2021. [24] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pages 43–52, 2015. [25] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higherorder graph neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 4602–4609, 2019. [26] Hamed Nilforoshan and Neil Shah. Slicendice: mining suspicious multi-attribute entity groups with multi-view graphs. In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pages 351–363. IEEE, 2019. [27] Linshu Ouyang, Yongzheng Zhang, and Yipeng Wang. Unified graph embeddingbased anomalous edge detection. In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020. [28] Yulong Pei, Fang Lyu, Werner Van Ipenburg, and Mykola Pechenizkiy. Subgraph anomaly detection in financial transaction networks. In Proceedings of the First ACM International Conference on AI in Finance, pages 1–8, 2020. [29] Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, Qinghua Zheng, et al. Anomalous: A joint modeling approach for anomaly detection on attributed networks. In IJCAI, pages 3513–3519, 2018. [30] Bryan Perozzi and Leman Akoglu. Scalable anomaly ranking of attributed neighborhoods. In Proceedings of the 2016 SIAM International Conference on Data Mining, pages 207–215. SIAM, 2016. [31] Minglai Shao, Jianxin Li, Feng Chen, and Xunxun Chen. An efficient framework for detecting evolving anomalous subgraphs in dynamic networks. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pages 2258–2266. IEEE, 2018. [32] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. [33] Arlei Silva, Wagner Meira Jr, and Mohammed J Zaki. Mining attribute-structure correlated patterns in large attributed graphs. arXiv preprint arXiv:1201.6568, 2012. [34] Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph neural networks. Journal of Machine Learning Research, 24(127):1–21, 2023. [35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. [36] Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, and Jilong Wang. Deep structure learning for fraud detection. In 2018 IEEE International Conference on Data Mining (ICDM), pages 567–576. IEEE, 2018. [37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018. [38] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. Network representation learning with rich text information. In IJCAI, volume 2015, pages 2111–2117, 2015. [39] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016. [40] Pei-Kai Yeh, Hsi-Wen Chen, and Ming-Syan Chen. Random walk conformer: learning graph representation from long and short range. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 10936–10944, 2023. [41] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hierarchical graph representation learning with differentiable pooling. Advances in neural information processing systems, 31, 2018. [42] Ge Zhang, Zhao Li, Jiaming Huang, Jia Wu, Chuan Zhou, Jian Yang, and Jianliang Gao. efraudcom: An e-commerce fraud detection system via competitive graph neural networks. ACM Transactions on Information Systems (TOIS), 40(3):1–29, 2022. [43] Ge Zhang, Zhenyu Yang, Jia Wu, Jian Yang, Shan Xue, Hao Peng, Jianlin Su, Chuan Zhou, Quan Z Sheng, Leman Akoglu, et al. Dual-discriminative graph neural network for imbalanced graph-level anomaly detection. Advances in Neural Information Processing Systems, 35:24144–24157, 2022. [44] Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing Systems, 34:15734–15747, 2021. [45] Zheng Zhang and Liang Zhao. Unsupervised deep subgraph anomaly detection. In 2022 IEEE International Conference on Data Mining (ICDM), pages 753–762. IEEE, 2022. [46] Lingxiao Zhao and Leman Akoglu. On using classification datasets to evaluate graph outlier detection: Peculiar observations and new insights. Big Data, 11(3):151–180, 2023. [47] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn with local structure awareness. arXiv preprint arXiv:2110.03753, 2021. [48] Mengyu Zheng, Chuan Zhou, Jia Wu, Shirui Pan, Jinqiao Shi, and Li Guo. Fraudne: a joint embedding approach for fraud detection. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2018. [49] Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe Chen. Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Transactions on Knowledge and Data Engineering, 2021. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93915 | - |
| dc.description.abstract | 在網絡中識別異常子圖對於各種應用至關重要,包括疾病爆發檢測、金融欺詐檢測和社交網絡活動監控。然而,在屬性和結構上存在多樣性異常的情況下識別這些異常子圖非常具有挑戰性。雖然圖神經網絡近來提供了一種端到端的方法來學習異常度量函數,但由於子圖表示學習和非監督異常量化方面存在重大挑戰,仍需要探索子圖層級異常的檢測。此外,現有方法通常采用自下而上的方法,訓練節點(或邊)檢測模型,將異常實體聯繫起來形成子圖。然而,這些方法可能忽略全局信息,其中異常子圖中的節點可能是普通的,但與其他子圖相比被視為異常。為解決這一問題,本文介紹了一種新的圖神經網絡框架,稱為結構感知雙對比圖神經網絡(SDCGNN),以自上而下的方式提取異常子圖。SDCGNN包括兩個主要組件:分層分組模塊(HGM),利用結構信息和屬性與結構之間的協同資訊將輸入圖劃分為子圖;基於對比的異常子圖檢測模塊(CASDM),區分異常子圖和正常子圖。對真實和合成數據集的廣泛實驗結果證實了SDCGNN在具有結構和屬性異常的情況下相對於十個基線的優越性能。 | zh_TW |
| dc.description.abstract | Identifying anomalous subgraphs within networks is vital for various applications, including disease outbreak detection, financial fraud detection, and social network activity monitoring. However, the challenge lies in recognizing these anomalous subgraphs, given the diverse anomalies in attributes and structure. While graph neural networks have recently offered an end-to-end approach to learning anomaly measure functions, the detection of subgraph-level anomalies still needs to be explored due to significant challenges in subgraph representation learning and unsupervised anomaly quantification. Moreover, existing methods often adopt a bottom-up approach, training node (or edge) detection models and linking abnormal entities to form a subgraph. However, these approaches may neglect global information, where nodes in an anomalous subgraph might be average yet considered anomalies compared to other subgraphs. To address this, the paper introduces a novel Graph Neural Network framework called Structure-aware Dual Contrastive Graph Neural Network (SDCGNN) to extract anomalous subgraphs in a top-down manner. SDCGNN incorporates two key components: the Hierarchical Grouping Module (HGM), dividing the input graph into subgraphs using both structural information and collaborative data between attributes and structure, and the Contrastive-based Anomalous Subgraph Detection Module (CASDM), distinguishing anomalous subgraphs from normal ones. Extensive experimental results on real and synthetic datasets substantiate its superior performance over ten baselines with structural and attribute abnormalities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:24:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:24:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements 1
摘要2 Abstract 3 Contents 5 List of Figures 7 List of Tables 8 Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Subgraph-level Anomaly Detection . . . . . . . . . . . . . . . . . . 5 2.2 Model-based Hierarchical Graph Pooling . . . . . . . . . . . . . . . 7 Chapter 3 Problem Formulation 9 Chapter 4 Methodology 11 4.1 Hierarchical Grouping Module . . . . . . . . . . . . . . . . . . . . . 12 4.1.1 Structure-aware Similarity-based GNN Block . . . . . . . . . . . . 13 4.1.2 Attribute-aware Similarity-based GNN Block . . . . . . . . . . . . 15 4.1.3 Intra-subgraph Contrastive Objective . . . . . . . . . . . . . . . . . 15 4.1.4 Pooling Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1.5 Fusional Similarity-based GNN Block . . . . . . . . . . . . . . . . 17 4.1.6 Pooling Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Contrastive-based Anomalous Subgraph Detection Module . . . . . . 18 4.2.1 Inter-subgraph Contrastive Objective . . . . . . . . . . . . . . . . . 18 4.2.2 Anomaly Scoring Function . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Training Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 5 Experiments 20 5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.1 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1.2 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2.2 Evaluation Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Subgraph-level Anomaly Detection Results . . . . . . . . . . . . . . 26 5.3.1 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.2 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4 Parameter Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Chapter 6 Conclusion 35 References 36 | - |
| dc.language.iso | en | - |
| dc.subject | 子圖層次異常檢測 | zh_TW |
| dc.subject | 圖神經網絡 | zh_TW |
| dc.subject | 對比 | zh_TW |
| dc.subject | 結構感知 | zh_TW |
| dc.subject | Graph Neural Network | en |
| dc.subject | Contrastive | en |
| dc.subject | Subgraph-level Anomaly Detection | en |
| dc.subject | Structure-aware | en |
| dc.title | 在屬性圖中進行子圖層次異常檢測之結構感知雙對比圖神經網絡 | zh_TW |
| dc.title | Structure-aware Dual Contrastive Graph Neural Network for Subgraph-level Anomaly Detection in Attributed Graphs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳祝嵩;彭文志;高宏宇 | zh_TW |
| dc.contributor.oralexamcommittee | Chu-Song Chen;Wen-Chih Peng;Hung-Yu Kao | en |
| dc.subject.keyword | 子圖層次異常檢測,圖神經網絡,對比,結構感知, | zh_TW |
| dc.subject.keyword | Subgraph-level Anomaly Detection,Graph Neural Network,Contrastive,Structure-aware, | en |
| dc.relation.page | 43 | - |
| dc.identifier.doi | 10.6342/NTU202402429 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
