請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林守德 | zh_TW |
| dc.contributor.advisor | Shou-De Lin | en |
| dc.contributor.author | 邱威諭 | zh_TW |
| dc.contributor.author | Wei-Yu Chiu | en |
| dc.date.accessioned | 2024-08-09T16:23:04Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | Yu, F., Liu, Q., Wu, S., Wang, L., & Tan, T. (2016). A Dynamic Recurrent Model for Next Basket Recommendation. In Book title is required! (pp. 729–732). Association for Computing Machinery.
Rendle, S., Freudenthaler, C., & Schmidt-Thieme, L. (2010). Factorizing Personalized Markov Chains for Next-Basket Recommendation. In Proceedings of the 19th International Conference on World Wide Web (pp. 811–820). Association for Computing Machinery. He, R., & McAuley, J. (2016). Fusing Similarity Models with Markov Chains for Sparse Sequential Recommendation. In 2016 IEEE 16th International Conference on Data Mining (ICDM) (pp. 191-200). Harper, F., & Konstan, J. (2015). The MovieLens Datasets: History and Context. , 5(4). Covington, P., Adams, J., & Sargin, E. (2016). Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems (pp. 191–198). Association for Computing Machinery. Tang, J., & Wang, K. (2018). Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 565–573). Association for Computing Machinery. Tan, Y., Xu, X., & Liu, Y. (2016). Improved Recurrent Neural Networks for Session-Based Recommendations. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems (pp. 17–22). Association for Computing Machinery. Kang, W.C., & McAuley, J. (2018). Self-Attentive Sequential Recommendation. In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 197-206). Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., & Jiang, P. (2019). BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 1441–1450). Association for Computing Machinery. Xie, X., Sun, F., Liu, Z., Wu, S., Gao, J., Zhang, J., Ding, B., & Cui, B. (2022). Contrastive Learning for Sequential Recommendation. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 1259-1273). Qiu, R., Huang, Z., Yin, H., & Wang, Z. (2022). Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining (pp. 813–823). Association for Computing Machinery. Shani, G., Brafman, R., & Heckerman, D. (2002). An MDP-Based Recommender System. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (pp. 453–460). Morgan Kaufmann Publishers Inc.. Qiu, R., Li, J., Huang, Z., & YIn, H. (2019). Rethinking the Item Order in Session-Based Recommendation with Graph Neural Networks. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 579–588). Association for Computing Machinery. Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., Jin, D., & Li, Y. (2021). Sequential Recommendation with Graph Neural Networks. In Book title is required! (pp. 378–387). Association for Computing Machinery. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., & Tan, T. (2019). Session-Based Recommendation with Graph Neural Networks. , 33, 346-353. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, u., & Polosukhin, I. (2017). Attention is All you Need. In Advances in Neural Information Processing Systems. Curran Associates, Inc.. Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp. 4171–4186). Association for Computational Linguistics. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A Simple Framework for Contrastive Learning of Visual Representations. JMLR.org. Gao, T., Yao, X., & Chen, D. (2021). SimCSE: Simple Contrastive Learning of Sentence Embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 6894–6910). Association for Computational Linguistics. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., & Isola, P. (2020). What Makes for Good Views for Contrastive Learning?. Curran Associates Inc.. Ekin Dogus Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, & Quoc V. Le (2019). AutoAugment: Learning Augmentation Policies from Data. Li, Y., Hu, G., Wang, Y., Hospedales, T., Robertson, N., & Yang, Y. (2020). Differentiable Automatic Data Augmentation. In Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII (pp. 580–595). Springer-Verlag. Aaron van den Oord, Yazhe Li, & Oriol Vinyals. (2019). Representation Learning with Contrastive Predictive Coding. Liu, Z., Chen, Y., Li, J., Yu, P., McAuley, J., & Xiong, C. (2021). Contrastive self-supervised sequential recommendation with robust augmentation. arXiv preprint arXiv:2108.06479. Li, J., Ren, P., Chen, Z., Ren, Z., Lian, T., & Ma, J. (2017). Neural attentive session-based recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (pp. 1419–1428). Zhang, T., Zhao, P., Liu, Y., Sheng, V., Xu, J., Wang, D., Liu, G., Zhou, X., & others (2019). Feature-level Deeper Self-Attention Network for Sequential Recommendation.. In IJCAI (pp. 4320–4326). Huang, A., Biderman, S., Almubarak, K., Sum, J., & Subramanian, S.. (2022). The annotated Transformer - Harvard University. Jang, E., Gu, S., & Poole, B. (2016). Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144. Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality Reduction by Learning an Invariant Mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (pp. 1735-1742). Zhao, W., Mu, S., Hou, Y., Lin, Z., Chen, Y., Pan, X., Li, K., Lu, Y., Wang, H., Tian, C., Min, Y., Feng, Z., Fan, X., Chen, X., Wang, P., Ji, W., Li, Y., Wang, X., & Wen, J.R. (2021). RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management (pp. 4653–4664). Association for Computing Machinery. Wang, L., Lim, E.P., Liu, Z., & Zhao, T. (2022). Explanation Guided Contrastive Learning for Sequential Recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 2017–2027). Association for Computing Machinery. Zhou, P., Gao, J., Xie, Y., Ye, Q., Hua, Y., Kim, J., Wang, S., & Kim, S. (2023). Equivariant Contrastive Learning for Sequential Recommendation. In (pp. 129–140). Association for Computing Machinery. Gumbel, E. (1935). Les valeurs extremes des distributions statistiques. Annales de l'institut Henri Poincare, 5(2), 115–158. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93913 | - |
| dc.description.abstract | 對比學習已被證明是一種對於訓練穩健的序列式推薦系統非常有效的策略,並且持續達到最先進的性能。在對比學習框架內,先前的研究主要集中如何分辨與產生有效的序列資料擴增方法,而本研究透過提出一個全面的資料擴增框架,引入一種新穎的方法。此方法是一種實例級、與資料本身相關,並可學習的擴增資料選擇器。我們方法的核心機制是能夠從各式各樣的資料擴增手段中,選擇適當的策略。這一機制顯著提升了模型學習過程,確保每次套用的資料擴增手法,是針對特定任務和資料點進行量身定制的,進而使推薦系統的有效性和準確性提高。透過大量實驗,我們驗證了所提出解決方法的有效性,展示了其對提升序列式推薦模型性能的能力。 | zh_TW |
| dc.description.abstract | Contrastive Learning (CL) has proven to be a highly effective strategy in training robust sequence recommendation models, consistently achieving state-of-the-art performance. While previous research has primarily focused on identifying effective methods for generating augmented data sequences within the CL framework, this work introduces a novel approach by proposing a comprehensive framework for finer-grained augmentation. This framework facilitates instance-level, data-dependent, and learnable selection of augmentation sequences. At the core of our approach is a mechanism that enables the selection of appropriate augmentation strategies from a diverse set of options. This mechanism significantly enhances the learning process by ensuring that each augmentation is tailored to the specific task and instance, thereby contributing to improvements in system efficiency and accuracy. Through an extensive array of experiments, we validate the effectiveness of our proposed solution, demonstrating its capability to elevate the performance of sequence recommendation models. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:23:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:23:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures viii List of Tables ix Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Sequential Recommendation . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Auto Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Formulation for Sequential Recommendation . . . . . . . . . . . . . 9 3.2 Formulation for Contrastive Learning . . . . . . . . . . . . . . . . . 10 3.2.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 Contrastive Loss Function . . . . . . . . . . . . . . . . . . . . . . 11 3.2.3 Contrastive Learning for Sequential Recommendation . . . . . . . . . 11 Chapter 4 Methodology: DADARec . . . . . . . . . . . . . . . . . . . . . 13 4.1 Augmentation Selector . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 5 Experiments . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 Experiments Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.4 Augmentation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.1.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 Overall Performance (RQ1) . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Augmentation Selection is Effective (RQ2) . . . . . . . . . . . . . . 29 5.4 Hyper-parameters Sensitivity (RQ3) . . . . . . . . . . . . . . . . . . 31 5.5 The Selection Process of Augmentation Selector (RQ4) . . . . . . . . 32 Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 34 References . . . . . . . . . . . . . . . . . . . . . . . 35 Appendix A — More about augmentations . . . . . . . . . . . . . . . . 40 A.1 Contrastive Learning Augmentaion . . . . . . . . . . . . . . . . . . 40 A.2 Reverse Supervised Signal Augmentation . . . . . . . . . . . . . . . 42 Appendix B — Performance Metric Definition . . . . . . . . . . . . . . . 44 B.1 Definitions of Hit Rate and NDCG . . . . . . . . . . . . . . . . . . . 44 | - |
| dc.language.iso | en | - |
| dc.subject | 資料擴增 | zh_TW |
| dc.subject | 序列式推薦系統 | zh_TW |
| dc.subject | 對比學習 | zh_TW |
| dc.subject | Contrastive Learning | en |
| dc.subject | Sequential Recommendation | en |
| dc.subject | Data Augmentation | en |
| dc.title | 用於對比學習推薦系統的可微分自動化資料擴增方法 | zh_TW |
| dc.title | Differentiable Automatic Data Augmentation for Contrastive Learning Recommendation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李宏毅;林軒田;鄭卜壬;廖耿德 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Yi Lee;Hsuan-Tien Lin;Pu-Jen Cheng;Keng-Te Liao | en |
| dc.subject.keyword | 序列式推薦系統,資料擴增,對比學習, | zh_TW |
| dc.subject.keyword | Sequential Recommendation,Data Augmentation,Contrastive Learning, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202402133 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
