請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93911
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林仲彥 | zh_TW |
dc.contributor.advisor | Chung-Yen Lin | en |
dc.contributor.author | 毛鈞加 | zh_TW |
dc.contributor.author | Chun-Chia Mao | en |
dc.date.accessioned | 2024-08-09T16:22:15Z | - |
dc.date.available | 2024-08-10 | - |
dc.date.copyright | 2024-08-09 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | Aciole Barbosa, D., et al. (2022). "Transcriptomic profiling and microsatellite identification in cobia (Rachycentron canadum), using high-throughput RNA sequencing." Marine Biotechnology 24(1): 255-262.
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data, Cambridge, United Kingdom. Andrews, S. (2018). "Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. 2010." URL: https://www. bioinformatics. babraham. ac. uk/projects/fastqc/(accessed 06.12. 2018). Aoyama, J. (2009). "Life History and Evolution of Migration in Catadromous Eels (GenusAnguilla)." Aqua-BioScience Monographs 2(1): 1. Ashburner, M., et al. (2000). "Gene ontology: tool for the unification of biology." Nature genetics 25(1): 25-29. Ayling, M., et al. (2020). "New approaches for metagenome assembly with short reads." Brief Bioinform 21(2): 584-594. Ayling, M., et al. (2020). "New approaches for metagenome assembly with short reads." Briefings in bioinformatics 21(2): 584-594. Barth, J. M., et al. (2020). "Stable species boundaries despite ten million years of hybridization in tropical eels." Nature Communications 11(1): 1433. Batista da Silva, I., et al. (2023). "Discovery of putative long non-coding RNAs expressed in the eyes of Astyanax mexicanus (Actinopterygii: Characidae)." Scientific reports 13(1): 12051. Björnsson, B. T., et al. (2002). "Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action." Fish physiology and biochemistry 27: 227-242. Cabili, M. N., et al. (2011). "Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses." Genes & development 25(18): 1915-1927. Camargo, A. P., et al. (2020). "RNAsamba: neural network-based assessment of the protein-coding potential of RNA sequences." NAR genomics and bioinformatics 2(1): lqz024. Celi, M., et al. (2012). "Elevated cortisol modulates Hsp70 and Hsp90 gene expression and protein in sea bass head kidney and isolated leukocytes." General and comparative endocrinology 175(3): 424-431. Churcher, A. M., et al. (2015). "Deep sequencing of the olfactory epithelium reveals specific chemosensory receptors are expressed at sexual maturity in the E uropean eel A nguilla anguilla." Molecular ecology 24(4): 822-834. Cresci, A. (2020). "A comprehensive hypothesis on the migration of European glass eels (Anguilla anguilla)." Biological Reviews 95(5): 1273-1286. Cunningham, F., et al. (2022). "Ensembl 2022." Nucleic Acids Research 50(D1): D988-D995. Dainat, J., et al. (2020). "NBISweden/AGAT: AGAT-v0. 5.1." Computer software]. Zenodo. https://zenodo. org/record/4205393. Dekker, W. (2003). "Did lack of spawners cause the collapse of the European eel, Anguilla anguilla?" Fisheries Management and ecology 10(6): 365-376. Emms, D. M. and S. Kelly (2015). "OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy." Genome Biol 16: 157. Emms, D. M. and S. Kelly (2015). "OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy." Genome biology 16: 1-14. Emms, D. M. and S. Kelly (2019). "OrthoFinder: phylogenetic orthology inference for comparative genomics." Genome biology 20: 1-14. Enright, A. J., et al. (2002). "An efficient algorithm for large-scale detection of protein families." Nucleic Acids Res 30(7): 1575-1584. Enright, A. J., et al. (2002). "An efficient algorithm for large-scale detection of protein families." Nucleic Acids Research 30(7): 1575-1584. Finn, R. D., et al. (2011). "HMMER web server: interactive sequence similarity searching." Nucleic Acids Research 39(suppl_2): W29-W37. Fontaine, M. and A. Raffy (1932). "Recherches physiologiques et biologiques sur les civelles." Bulletin de l'Institut Océanographique 603: 1-18. Fu, L., et al. (2012). "CD-HIT: accelerated for clustering the next-generation sequencing data." Bioinformatics 28(23): 3150-3152. Grabherr, M. G., et al. (2011). "Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data." Nature biotechnology 29(7): 644. Guo, S., et al. (2023). "Analysis of alternative splicing and long noncoding RNAs after the Edwardsiella anguillarum infected the immunized European Eels (Anguilla anguilla) revealed the role of outer membrane protein A in OmpA subunit vaccine." Marine Biotechnology 25(3): 372-387. Henkel, C. V., et al. (2012). "Primitive duplicate Hox clusters in the European eel's genome." Plos one 7(2): e32231. Hoegg, S., et al. (2004). "Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish." Journal of molecular evolution 59: 190-203. Hsu, H.-Y., et al. (2015). "De novo assembly of the whole transcriptome of the wild embryo, preleptocephalus, leptocephalus, and glass eel of Anguilla japonica and deciphering the digestive and absorptive capacities during early development." Plos one 10(9): e0139105. Hu, X., et al. (2018). "ZFLNC: a comprehensive and well-annotated database for zebrafish lncRNA." Database 2018: bay114. Jain, P., et al. (2013). "Augmenting transcriptome assembly by combining de novo and genome-guided tools." PeerJ 1: e133. Jansen, H. J., et al. (2017). "Rapid de novo assembly of the European eel genome from nanopore sequencing reads." Scientific reports 7(1): 7213. KAGAWA, H., et al. (2001). "Recent progress of research on larvae production of Japanese eel, Anguilla japonica." Aquaculture Science 49(2): 127-132. Kainth, A. S., et al. (2023). "Merging short and stranded long reads improves transcript assembly." PLOS Computational Biology 19(10): e1011576. Kang, Y.-J., et al. (2017). "CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features." Nucleic Acids Research 45(W1): W12-W16. Kodeeswaran, P., et al. (2021). "A new species of Congrid eel, Ariosoma melanospilos sp. nov., from Indian waters with taxonomic description of A. dolichopterum (Congridae: Bathymyrinae)." Marine Biodiversity 51(3): 47. Krogh, A., et al. (2001). "Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes." Journal of molecular biology 305(3): 567-580. Kumar, S., et al. (2022). "TimeTree 5: an expanded resource for species divergence times." Molecular biology and evolution 39(8): msac174. Le Gac, F., et al. (1993). "Growth hormone (GH) and reproduction: a review." Fish physiology and biochemistry 11: 219-232. Lee, W.-C., et al. (2003). "The competitiveness of the eel aquaculture in Taiwan, Japan, and China." Aquaculture 221(1-4): 115-124. Li, W. and A. Godzik (2006). "Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences." Bioinformatics 22(13): 1658-1659. Li, Z., et al. (2012). "Comparison of the two major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-graph." Briefings in functional genomics 11(1): 25-37. Li, Z., et al. (2012). "Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph." Brief Funct Genomics 11(1): 25-37. Miura, C. and T. Miura (2011). "Analysis of spermatogenesis using an eel model." Moriya, Y., et al. (2007). "KAAS: an automatic genome annotation and pathway reconstruction server." Nucleic Acids Research 35(suppl_2): W182-W185. Niimura, Y. (2009). "On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species." Genome biology and evolution 1: 34-44. Niimura, Y. and M. Nei (2005). "Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods." Proc Natl Acad Sci U S A 102(17): 6039-6044. Olfaction, which is an important physiological function for the survival of mammals, is controlled by a large multigene family of olfactory receptor (OR) genes. Fishes also have this gene family, but the number of genes is known to be substantially smaller than in mammals. To understand the evolutionary dynamics of OR genes, we conducted a phylogenetic analysis of all functional genes identified from the genome sequences of zebrafish, pufferfish, frogs, chickens, humans, and mice. The results suggested that the most recent common ancestor between fishes and tetrapods had at least nine ancestral OR genes, and all OR genes identified were classified into nine groups, each of which originated from one ancestral gene. Eight of the nine group genes are still observed in current fish species, whereas only two group genes were found from mammalian genomes, showing that the OR gene family in fishes is much more diverse than in mammals. In mammals, however, one group of genes, gamma, expanded enormously, containing approximately 90% of the entire gene family. Interestingly, the gene groups observed in mammals or birds are nearly absent in fishes. The OR gene repertoire in frogs is as diverse as that in fishes, but the expansion of group gamma genes also occurred, indicating that the frog OR gene family has both mammal- and fish-like characters. All of these observations can be explained by the environmental change that organisms have experienced from the time of the common ancestor of all vertebrates to the present. Nip, K. M., et al. (2020). "RNA-Bloom enables reference-free and reference-guided sequence assembly for single-cell transcriptomes." Genome research 30(8): 1191-1200. Nomura, K., et al. (2018). "Genetic parameters and quantitative trait loci analysis associated with body size and timing at metamorphosis into glass eels in captive-bred Japanese eels (Anguilla japonica)." Plos one 13(8): e0201784. Nomura, K., et al. (2011). "A genetic linkage map of the Japanese eel (Anguilla japonica) based on AFLP and microsatellite markers." Aquaculture 310(3-4): 329-342. Pérez-Sánchez, J. (2000). "The involvement of growth hormone in growth regulation, energy homeostasis and immune function in the gilthead sea bream (Sparus aurata): a short review." Fish physiology and biochemistry 22: 135-144. Peter, R. and T. Marchant (1995). "The endocrinology of growth in carp and related species." Aquaculture 129(1-4): 299-321. Policarpo, M., et al. (2024). "Diversity and evolution of the vertebrate chemoreceptor gene repertoire." Nature Communications 15(1): 1421. Policarpo, M., et al. (2021). "Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape." Molecular biology and evolution 38(9): 3742-3753. Ramos, T. A., et al. (2021). "RNAmining: A machine learning stand-alone and web server tool for RNA coding potential prediction." F1000Research 10. Senatore, A., et al. (2016). "Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, Placozoa, Porifera and Ctenophora." Frontiers in physiology 7: 481. Suzuki, S., et al. (2015). "Faster sequence homology searches by clustering subsequences." Bioinformatics 31(8): 1183-1190. Tanaka, H., et al. (2003). "The first production of glass eel in captivity: fish reproductive physiology facilitates great progress in aquaculture." Fish physiology and biochemistry 28: 493-497. Tsukamoto, K., et al. (2009). Present status of the Japanese eel: resources and recent research. American Fisheries Society Symposium. Tzeng, W.-N. (1996). "Effects of salinity and ontogenetic movements on strontium: calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel." Journal of Experimental Marine Biology and Ecology 199(1): 111-122. Ulitsky, I. and D. P. Bartel (2013). "lincRNAs: genomics, evolution, and mechanisms." Cell 154(1): 26-46. Wang, H., et al. (2022). "A chromosome-level assembly of the Japanese eel genome, insights into gene duplication and chromosomal reorganization." Gigascience 11: giac120. Wang, L., et al. (2013). "CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model." Nucleic Acids Research 41(6): e74-e74. Wu, T. D. and C. K. Watanabe (2005). "GMAP: a genomic mapping and alignment program for mRNA and EST sequences." Bioinformatics 21(9): 1859-1875. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93911 | - |
dc.description.abstract | 這項研究使用了NCBI資料庫中的日本鰻(Anguilla japonica)RNA-seq原始定序資料,涵蓋卵、前期柳葉鰻、柳葉鰻、玻璃鰻和銀鰻等五個不同發育階段的28筆轉錄體定序數據。利用Trinity轉錄體組裝程式,參考實驗室先前組裝的日本鰻基因體,建立了從卵階段到銀鰻階段的完整轉錄體序列,共獲得約97萬條轉錄序列。通過一系列篩選機制,成功鑑定了31,189條長非編碼RNA序列,並將這些資料與原有的58,329條蛋白質編碼序列結合,構建了一個更全面的轉錄體註解資料庫,用於探討不同狀態下的轉錄體變化及差異基因群的生理調控機制。
基於親緣關係相近的8個物種蛋白質體分析結果顯示,GO富集分析結果顯示,日本鰻和歐洲鰻特有的基因群組在細胞過程和代謝過程方面表現顯著。這些基因群組在多種重要的分子功能和細胞結構中發揮關鍵作用,顯示出這兩種鰻魚在生物學功能上的差異與相似之處。 根據不同環境下大腦、肝臟和卵巢的基因分析結果,野生雌鰻在嗅覺感知、基因動態變化、信號傳導、代謝調節和免疫反應等多方面的基因表現顯著高於養殖雌鰻,反映出野生環境對其生理功能的更高需求。隨著鰻魚從玻璃鰻階段逐步成長至銀鰻階段,鈣離子動態調節、GTPase調節因子活性及酶調控等基因表現顯著提升,以適應生長需求和環境變化。 關於長非編碼RNA(LncRNA)的表達,結果顯示其在日本鰻不同組織中的表達在野生和養殖環境下存在顯著差異。在大腦組織中,野生環境下的LncRNA(如TRINITY_GG_176304_c0_g1_i5)表現量顯著高於養殖環境,與免疫調節和蛋白質運輸相關。相反,養殖環境下的LncRNA(如TRINITY_GG_215607_c0_g3_i10)顯著高於野生環境,與免疫相容性抗原相關。在肝臟和卵巢組織中,野生環境下的LncRNA表現量顯著高於養殖環境,分別與醣類代謝和生殖過程相關。這些結果反映了鰻魚在不同環境壓力下的基因調控機制和生理功能變化。 本研究分析了日本鰻在不同環境下的基因表達差異,發現養殖與野生環境中特定基因表達顯著不同,這可能與免疫和生理功能變化相關。特別是一些與免疫反應增強相關的基因在養殖環境中高表達,這為未來基因功能研究和對鰻魚生物學的理解提供了重要資訊。此外,研究還深入分析了影響生殖調控的轉錄序列,探討這些基因在不同發育階段如何影響鰻魚的性成熟和繁殖能力。通過分析與性腺發育相關的轉錄因子和激素信號,揭示了鰻魚生殖調控機制的重要方面,這有助於理解野生和養殖環境下日本鰻的生殖行為差異,並為促進養殖業的可持續發展提供理論支持。 | zh_TW |
dc.description.abstract | This study utilized raw RNA-seq data from the NCBI database for Japanese eel (Anguilla japonica), covering 28 transcriptome sequencing datasets across five different developmental stages: egg, early leptocephalus, leptocephalus, glass eel, and silver eel. Using the Trinity transcriptome assembly program and referencing the previously assembled genome of the Japanese eel from the laboratory, a complete transcriptome sequence was established from the egg stage to the silver eel stage, obtaining approximately 970,000 transcript. Through a series of filtering mechanisms, 31,189 long non-coding RNA (lncRNA) sequences were successfully identified. These data were combined with the existing 58,329 protein-coding sequences to construct a more comprehensive transcriptome annotation database, which was used to explore transcriptome changes under different environments and the physiological regulatory mechanisms of differential gene groups.
Based on proteomic analysis results of eight phylogenetically related species, GO enrichment analysis showed that gene groups specific to the Japanese eel and European eel exhibited significant expression in cellular and metabolic processes. These gene groups play key roles in various important molecular functions and cellular structures, indicating both differences and similarities in biological functions between these two eel species. According to gene analysis results from three tissues under different environments, wild female eels showed significantly higher gene expression than farmed female eels in olfactory perception, gene dynamic changes, signal transduction, metabolic regulation, and immune response, reflecting a higher demand for physiological functions in the wild environment. As the eels grew from the glass eel stage to the silver eel stage, gene expressions related to calcium ion dynamic regulation, GTPase regulatory factor activity, and enzyme regulation were significantly elevated to adapt to growth needs and environmental changes. Regarding the expression of long non-coding RNAs (lncRNAs), the results showed significant differences in their expression in different tissues of Japanese eels under wild and farmed conditions. In brain tissue, lncRNAs (such as TRINITY_GG_176304_c0_g1_i5) were significantly more expressed in the wild environment than in the farmed environment, related to immune regulation and protein transport. Conversely, in the farmed environment, lncRNAs (such as TRINITY_GG_215607_c0_g3_i10) were significantly more expressed than in the wild environment, related to immune compatibility antigens. In liver and ovary tissues, lncRNA expressions were significantly higher in the wild environment than in the farmed environment, associated with carbohydrate metabolism and reproductive processes, respectively. These results reflect the gene regulatory mechanisms and physiological function changes of eels under different environmental stresses. This study analyzed the gene expression differences of Japanese eels under different environments and found significant differences in the expression of specific genes in farmed and wild environments, which may be related to immune and physiological function changes. Notably, some genes associated with enhanced immune response were highly expressed in the farmed environment, providing important information for future gene function research and understanding eel biology. Additionally, the study deeply analyzed the transcript sequences affecting reproductive regulation, exploring how these genes influence the sexual maturity and reproductive capacity of eels at different developmental stages. By analyzing transcription factors and hormone signals related to gonadal development, important aspects of eel reproductive regulation mechanisms were revealed, aiding in understanding the reproductive behavior differences of Japanese eels in wild and farmed environments, and providing theoretical support for the sustainable development of the aquaculture industry. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:22:15Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-09T16:22:15Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract IV 目次 VII 圖次 X 表次 XII 第1章 簡介 1 1.1 研究背景 1 1.1.1 日本鰻之相關研究現況 3 1.1.2 鰻魚資源量的變動對養殖產業的衝擊 5 1.2 日本鰻的基因體研究現況 6 1.2.1 鰻魚屬粒線體基因體研究 11 1.2.2 相關鰻鱺屬基因體組裝狀況 12 1.3 日本鰻的轉錄體研究現況 17 1.4 非編碼RNA在生物研究中的意義 18 1.5 長非編碼RNA鑑定工具 20 1.6 嗅覺受體基因 24 1.7 MOLAS介紹 25 1.8 研究動機 26 第2章 材料與方法 27 2.1 本研究所使用的轉錄體序列來源 27 2.2 本研究所使用的日本鰻基因體與其註解流程 28 2.3 轉錄體序列組裝、預測、註解 28 2.4 序列資料前處理 31 2.5 長非編碼Long non-coding RNA預測 31 2.6 長非編碼Long non-coding RNA定位、分類及註釋 32 2.7 轉錄體組裝結果評估 33 2.7.1 基因體轉譯區域之結構預測與功能性註解 33 2.7.2 比較不同物種間基因組中保守的轉譯蛋白家族 33 2.7.3 親緣關係之分析 34 2.8 差異基因表現分析 35 2.9 嗅覺受體基因的鑑定 36 2.10 MOLAS系統中所使用的轉錄體資料 36 2.11 本研究所使用之軟體版本與下載網址 38 第3章 結果與討論 39 3.1 轉錄體序列前處理結果 40 3.2 轉錄體組裝結果 41 3.3 長非編碼Long non-coding RNA候選轉錄序列 44 3.4 不同物種中長非編碼Long non-coding RNA的保守性 45 3.5 親緣關係分析 47 3.5.1 選取相關物種基因體之緣由 47 3.5.2 同源序列分布 48 3.5.1 親緣關係樹結果 52 3.6 編碼表現序列的差異表達基因分析 53 3.6.1 日本鰻三種組織在不同環境下編碼RNA差異表現基因分析 54 3.6.2 不同生長階段下的編碼RNA差異表達基因分析 68 3.6.3 長非編碼RNA的差異表達基因分析 71 3.6.4 大腦組織的長非編碼RNA差異表達基因分析 73 3.6.5 肝臟組織的長非編碼RNA差異表達基因分析 74 3.6.6 卵巢組織的長非編碼RNA差異表達基因分析 75 3.6.7 不同生長階段下的長非編碼RNA差異表達基因分析 76 3.7 日本鰻與歐洲鰻中的嗅覺受體基因的比較 78 第4章 討論 80 第5章 結論 88 參考資料 91 | - |
dc.language.iso | zh_TW | - |
dc.title | 探究日本鰻成長與成熟階段編碼與長非編碼RNA轉錄體的表現 | zh_TW |
dc.title | Exploring Coding and Long non-coding RNA Transcriptomes Expression in Japanese eel Development and Maturation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃永森;林明德;韓玉山;陳淑華 | zh_TW |
dc.contributor.oralexamcommittee | Yung-Sen Huang;Ming-Der Lin;Han YS;Seu-Hwa Chen | en |
dc.subject.keyword | 日本鰻, | zh_TW |
dc.subject.keyword | Anguilla japonica, | en |
dc.relation.page | 111 | - |
dc.identifier.doi | 10.6342/NTU202402173 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-05 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 漁業科學研究所 | - |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 3.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。