請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 陳衍安 | zh_TW |
| dc.contributor.author | Yen-An Chen | en |
| dc.date.accessioned | 2024-08-09T16:19:22Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | [1] S. K. Sahoo, B. Manoharan, and N. Sivakumar, “Introduction: Why perovskite and perovskite solar cells?," in Perovskite Photovoltaics: Elsevier, 2018, pp. 1-24.
[2] N. K. Elumalai, M. A. Mahmud, D. Wang, and A. Uddin, “Perovskite solar cells: progress and advancements,” Energies, vol. 9, no. 11, p. 861, 2016. [3] H. Tang, S. He, and C. Peng, “A short progress report on high-efficiency perovskite solar cells,” Nanoscale Res. Lett., vol. 12, pp. 1-8, 2017. [4] S.-H. Chan, M.-C. Wu, K.-M. Lee, W.-C. Chen, T.-H. Lin, and W.-F. Su, “Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide,” J. Mater. Chem. A, vol. 5, no. 34, pp. 18044-18052, 2017. [5] W. Zhao, Z. Yao, F. Yu, D. Yang, and S. Liu, “Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells,” Adv. Sci., vol. 5, no. 2, p. 1700131, 2018. [6] G. Casas, M. Á. Cappelletti, A. P. Cedola, B. M. Soucase, and E. P. y Blancá, “Analysis of the power conversion efficiency of perovskite solar cells with different materials as Hole-Transport Layer by numerical simulations,” Superlattices Microstruct., vol. 107, pp. 136-143, 2017. [7] J. W. Jo et al., “Improving performance and stability of flexible planar‐heterojunction perovskite solar cells using polymeric hole‐transport material,” Adv. Funct. Mater., vol. 26, no. 25, pp. 4464-4471, 2016. [8] B. Chen, H. Hu, T. Salim, and Y. M. Lam, “A facile method to evaluate the influence of trap densities on perovskite solar cell performance,” J. Mater. Chem. C, vol. 7, no. 19, pp. 5646-5651, 2019. [9] C. Michelson, A. Gelatos, and J. Cohen, “Drive‐level capacitance profiling: Its application to determining gap state densities in hydrogenated amorphous silicon films,” Appl. Phys. Lett., vol. 47, no. 4, pp. 412-414, 1985. [10] Z. Ni et al., “Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells,” Science, vol. 367, no. 6484, pp. 1352-1358, 2020. [11] S. Ryu, B. Gil, B. Kim, J. Kim, and B. Park, “Understanding the Trap Characteristics of Perovskite Solar Cells via Drive-Level Capacitance Profiling,” ACS Appl. Mater. Interfaces, vol. 15, no. 49, pp. 56909-56917, 2023. [12] J. T. Heath, J. D. Cohen, and W. N. Shafarman, “Bulk and metastable defects in CuIn 1− x Ga x Se 2 thin films using drive-level capacitance profiling,” J. Appl. Phys., vol. 95, no. 3, pp. 1000-1010, 2004. [13] M. Ćwil, M. Igalson, P. Zabierowski, C. A. Kaufmann, and A. Neisser, “Capacitance profiling in the CIGS solar cells,” Thin Solid Films, vol. 515, no. 15, pp. 6229-6232, 2007. [14] G. Zapalac, K. Demirkan, and N. Mackie, "Drive-level capacitance profiling of Cu (In, Ga) Se 2 solar cells for different Cu/III ratios," in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014: IEEE, pp. 0452-0455. [15] O. Gunawan et al., “Electronic properties of the Cu2ZnSn (Se, S) 4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods,” Appl. Phys. Lett., vol. 100, no. 25, 2012. [16] H. S. Duan, W. Yang, B. Bob, C. J. Hsu, B. Lei, and Y. Yang, “The role of sulfur in solution‐processed Cu2ZnSn (S, Se) 4 and its effect on defect properties,” Adv. Funct. Mater., vol. 23, no. 11, pp. 1466-1471, 2013. [17] F. Babbe, H. Elanzeery, M. Melchiorre, A. Zelenina, and S. Siebentritt, “Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor CuInS e 2 thin film solar cells,” Phys. Rev. Mater., vol. 2, no. 10, p. 105405, 2018. [18] G. Friesen, E. D. Dunlop, and R. Wendt, “Investigation of CdTe solar cells via capacitance and impedance measurements,” Thin Solid Films, vol. 387, no. 1-2, pp. 239-242, 2001. [19] P. N. Goswami, D. Mandal, and A. K. Rath, “The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits,” Nanoscale, vol. 10, no. 3, pp. 1072-1080, 2018. [20] Ş. Aydoğan, M. Sağlam, and A. Türüt, “The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure,” Polymer, vol. 46, no. 2, pp. 563-568, 2005. [21] S. Mahato, D. Biswas, L. G. Gerling, C. Voz, and J. Puigdollers, “Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode,” AIP Adv., vol. 7, no. 8, 2017. [22] V. Janardhanam, A. A. Kumar, V. R. Reddy, and P. N. Reddy, “Study of current–voltage–temperature (I–V–T) and capacitance–voltage–temperature (C–V–T) characteristics of molybdenum Schottky contacts on n-InP (1 0 0),” J. Alloys Compd., vol. 485, no. 1-2, pp. 467-472, 2009. [23] D. Menossi, E. Artegiani, A. Salavei, S. Di Mare, and A. Romeo, “Study of MgCl2 activation treatment on the defects of CdTe solar cells by capacitance-voltage, drive level capacitance profiling and admittance spectroscopy techniques,” Thin Solid Films, vol. 633, pp. 97-100, 2017. [24] Ş. Aydoğan, M. Sağlam, and A. Türüt, “Current–voltage and capacitance–voltage characteristics of polypyrrole/p-InP structure,” Vacuum, vol. 77, no. 3, pp. 269-274, 2005. [25] S. Ravishankar, T. Unold, and T. Kirchartz, “Comment on “Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells”,” Science, vol. 371, no. 6532, p. eabd8014, 2021. [26] M. Fischer, K. Tvingstedt, A. Baumann, and V. Dyakonov, “Doping profile in planar hybrid perovskite solar cells identifying mobile ions,” ACS Appl. Energy Mater., vol. 1, no. 10, pp. 5129-5134, 2018. [27] S. Wang, P. Kaienburg, B. Klingebiel, D. Schillings, and T. Kirchartz, “Understanding thermal admittance spectroscopy in low-mobility semiconductors,” The Journal of Physical Chemistry C, vol. 122, no. 18, pp. 9795-9803, 2018. [28] M. Jiang et al., “Observation of lower defect density in CH3NH3Pb (I, Cl) 3 solar cells by admittance spectroscopy,” Appl. Phys. Lett., vol. 108, no. 24, 2016. [29] H.-S. Duan et al., “The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics,” Phys. Chem. Chem. Phys., vol. 17, no. 1, pp. 112-116, 2015. [30] R. A. Awni et al., “Influence of charge transport layers on capacitance measured in halide perovskite solar cells,” Joule, vol. 4, no. 3, pp. 644-657, 2020. [31] Q. Dong, C. H. Y. Ho, H. Yu, A. Salehi, and F. So, “Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer,” Chem. Mater., vol. 31, no. 17, pp. 6833-6840, 2019. [32] S. Tang et al., “Composition engineering in doctor‐blading of perovskite solar cells,” Adv. Energy Mater., vol. 7, no. 18, p. 1700302, 2017. [33] P. Fernandes et al., “Admittance spectroscopy of Cu2ZnSnS4 based thin film solar cells,” Appl. Phys. Lett., vol. 100, no. 23, 2012. [34] J. Kneisel, K. Siemer, I. Luck, and D. Bräunig, “Admittance spectroscopy of efficient CuInS 2 thin film solar cells,” J. Appl. Phys., vol. 88, no. 9, pp. 5474-5481, 2000. [35] D. Losee, “Admittance spectroscopy of impurity levels in Schottky barriers,” J. Appl. Phys., vol. 46, no. 5, pp. 2204-2214, 1975. [36] M. Burgelman and P. Nollet, “Admittance spectroscopy of thin film solar cells,” Solid State Ionics, vol. 176, no. 25-28, pp. 2171-2175, 2005. [37] F. H. Seymour, V. Kaydanov, T. R. Ohno, and D. Albin, “Cu and CdCl2 influence on defects detected in CdTe solar cells with admittance spectroscopy,” Appl. Phys. Lett., vol. 87, no. 15, 2005. [38] V. Bhatt et al., “Impact of Na diffusion on Cu (In, Ga) Se2 solar cells: Unveiling the role of active defects using thermal admittance spectroscopy,” Thin Solid Films, vol. 767, p. 139673, 2023. [39] N. D. Nguyen, M. Germain, M. Schmeits, B. Schineller, and M. Heuken, “Thermal admittance spectroscopy of Mg-doped GaN Schottky diodes,” J. Appl. Phys., vol. 90, no. 2, pp. 985-993, 2001. [40] M. Samiee et al., “Defect density and dielectric constant in perovskite solar cells,” Appl. Phys. Lett., vol. 105, no. 15, 2014. [41] F. Ebadi, N. Taghavinia, R. Mohammadpour, A. Hagfeldt, and W. Tress, “Origin of apparent light-enhanced and negative capacitance in perovskite solar cells,” Nat. Commun., vol. 10, no. 1, p. 1574, 2019. [42] D. Lang, “Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors,” J. Appl. Phys., vol. 45, no. 7, pp. 3023-3032, 1974. [43] S. Amor, A. Ahaitouf, A. Ahaitouf, J.-P. Salvestrini, and A. Ougazzaden, “Evidence of minority carrier traps contribution in deep level transient spectroscopy measurement in n–GaN Schottky diode,” Superlattices Microstruct., vol. 101, pp. 529-536, 2017. [44] J. Versluys, P. Clauws, P. Nollet, S. Degrave, and M. Burgelman, “Characterization of deep defects in CdS/CdTe thin film solar cells using deep level transient spectroscopy,” Thin Solid Films, vol. 451, pp. 434-438, 2004. [45] Z. Wang et al., “Majority and minority carrier traps in NiO/β-Ga 2 O 3 p+-n heterojunction diode,” IEEE Trans. Electron Devices, vol. 69, no. 3, pp. 981-987, 2022. [46] A. Hierro et al., “Optically and thermally detected deep levels in n-type Schottky and p+-n GaN diodes,” Appl. Phys. Lett., vol. 76, no. 21, pp. 3064-3066, 2000. [47] X. Ren et al., “Deep‐level transient spectroscopy for effective passivator selection in perovskite solar cells to attain high efficiency over 23%,” ChemSusChem, vol. 14, no. 15, pp. 3182-3189, 2021. [48] A. Vasilev, D. Saranin, P. Gostishchev, S. Didenko, A. Polyakov, and A. Di Carlo, “Deep-level transient spectroscopy of the charged defects in pin perovskite solar cells induced by light-soaking,” Opt. Mater.: X, vol. 16, p. 100218, 2022. [49] S. Heo et al., “Deep level trapped defect analysis in CH 3 NH 3 PbI 3 perovskite solar cells by deep level transient spectroscopy,” Energy Environ. Sci., vol. 10, no. 5, pp. 1128-1133, 2017. [50] L. Kerr et al., “Investigation of defect properties in Cu (In, Ga) Se2 solar cells by deep-level transient spectroscopy,” Solid-State Electron., vol. 48, no. 9, pp. 1579-1586, 2004. [51] S. Reichert, J. Flemming, Q. An, Y. Vaynzof, J.-F. Pietschmann, and C. Deibel, “Ionic-defect distribution revealed by improved evaluation of deep-level transient spectroscopy on perovskite solar cells,” Phys. Rev. Appl., vol. 13, no. 3, p. 034018, 2020. [52] A. Polyakov et al., “Trap states in multication mesoscopic perovskite solar cells: A deep levels transient spectroscopy investigation,”Appl. Phys. Lett., vol. 113, no. 26, 2018. [53] X. Wen et al., “Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency,” Nat. Commun., vol. 9, no. 1, p. 2179, 2018. [54] M. Pols, J. M. Vicent-Luna, I. Filot, A. C. Van Duin, and S. Tao, “Atomistic insights into the degradation of inorganic halide perovskite cspbi3: a reactive force field molecular dynamics study,” J. Phys. Chem. Lett., vol. 12, no. 23, pp. 5519-5525, 2021. [55] N. Liu and C. Yam, “First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers,” Phys. Chem. Chem. Phys., vol. 20, no. 10, pp. 6800-6804, 2018. [56] C. Deger, S. Tan, K. Houk, Y. Yang, and I. Yavuz, “Lattice strain suppresses point defect formation in halide perovskites,” Nano Res., vol. 15, no. 6, pp. 5746-5751, 2022. [57] M. Taufique, R. Khanal, S. Choudhury, and S. Banerjee, “Impact of iodine antisite (IPb) defects on the electronic properties of the (110) CH3NH3PbI3 surface,” J. Chem. Phys., vol. 149, no. 16, 2018. [58] L. Wang et al., “Carrier Transport Layer‐Free Perovskite Solar Cells,” ChemSusChem, vol. 14, no. 21, pp. 4776-4782, 2021. [59] Z. Zhou and S. Pang, “Highly efficient inverted hole-transport-layer-free perovskite solar cells,” J. Mater. Chem. A, vol. 8, no. 2, pp. 503-512, 2020. [60] L. Etgar, “Hole-transport material-free perovskite-based solar cells,” MRS Bull., vol. 40, no. 8, pp. 674-680, 2015. [61] L. Lin et al., “Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation,” Sol. Energy, vol. 215, pp. 328-334, 2021. [62] H. G. Abdulzahraa and M. K. Mohammed, “Improving photovoltaic stability and efficiency of hole-transporting layer-free perovskite solar cells with benzhydroxamic acid additive,” Ionics, vol. 29, no. 12, pp. 5517-5524, 2023. [63] A. Shpatz Dayan and L. Etgar, “Study of Electron Transport Layer‐Free and Hole Transport Layer‐Free Inverted Perovskite Solar Cells,” Solar RRL, vol. 6, no. 1, p. 2100578, 2022. [64] W. Q. Wu, J. F. Liao, J. X. Zhong, Y. F. Xu, L. Wang, and J. Huang, “Suppressing interfacial charge recombination in electron‐transport‐layer‐free perovskite solar cells to give an efficiency exceeding 21%,” Angew. Chem., vol. 132, no. 47, pp. 21166-21173, 2020. [65] S. Shin and H. Shin, “Aging of Perovskite Solar Cells: A mini Review,” Mater. Today Energy, p. 101381, 2023. [66] D. Bryant et al., “Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells,” Energy Environ. Sci., vol. 9, no. 5, pp. 1655-1660, 2016. [67] S. C. Ezike, A. B. Alabi, A. N. Ossai, and A. O. Aina, “Stability-improved perovskite solar cells through 4-tertbutylpyridine surface-passivated perovskite layer fabricated in ambient air,” Opt. Mater., vol. 112, p. 110753, 2021. [68] X. Kong et al., “Improving stability and efficiency of perovskite solar cells via a cerotic acid interfacial layer,” Surf. Interfaces, vol. 25, p. 101163, 2021. [69] F. Bella et al., “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science, vol. 354, no. 6309, pp. 203-206, 2016. [70] D. W. Kim et al., “Efficient MAPbI3-based perovskite solar cells exceeding 21% efficiency via aging treatment,” Chem. Eng. J., vol. 475, p. 146451, 2023. [71] O. Almora, C. Aranda, E. Mas-Marzá, and G. Garcia-Belmonte, “On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells,” Appl. Phys. Lett., vol. 109, no. 17, 2016. [72] P. Singh and N. M. Ravindra, “Analysis of series and shunt resistance in silicon solar cells using single and double exponential models,” Emerging Mater. Res., vol. 1, no. 1, pp. 33-38, 2012. [73] Y. Wu et al., “On the origin of hysteresis in perovskite solar cells,” Adv. Funct. Mater., vol. 26, no. 37, pp. 6807-6813, 2016. [74] P. Liu, W. Wang, S. Liu, H. Yang, and Z. Shao, “Fundamental understanding of photocurrent hysteresis in perovskite solar cells,” Adv. Energy Mater., vol. 9, no. 13, p. 1803017, 2019. [75] H. J. Snaith et al., “Anomalous hysteresis in perovskite solar cells,” J. Phys. Chem. Lett., vol. 5, no. 9, pp. 1511-1515, 2014. [76] E. J. Juarez-Perez et al., “Photoinduced giant dielectric constant in lead halide perovskite solar cells,” J. Phys. Chem. Lett., vol. 5, no. 13, pp. 2390-2394, 2014. [77] R. Gottesman et al., “Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions,” J. Phys. Chem. Lett., vol. 5, no. 15, pp. 2662-2669, 2014. [78] L. Xiong et al., “Fully high‐temperature‐processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis‐free mesoporous perovskite solar cells,” Adv. Funct. Mater., vol. 28, no. 10, p. 1706276, 2018. [79] Y. Zhang et al., “Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells,” Mater. Horiz., vol. 2, no. 3, pp. 315-322, 2015. [80] W. Tress, J. P. Correa Baena, M. Saliba, A. Abate, and M. Graetzel, “Inverted current–voltage hysteresis in mixed perovskite solar cells: polarization, energy barriers, and defect recombination,” Adv. Energy Mater., vol. 6, no. 19, p. 1600396, 2016. [81] H.-S. Kim and N.-G. Park, “Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer,” J. Phys. Chem. Lett., vol. 5, no. 17, pp. 2927-2934, 2014. [82] Z. Liu et al., “Rationally induced interfacial dipole in planar heterojunction perovskite solar cells for reduced J–V hysteresis,” Adv. Energy Mater., vol. 8, no. 23, p. 1800568, 2018. [83] H.-S. Kim et al., “Control of I–V hysteresis in CH3NH3PbI3 perovskite solar cell,” J. Phys. Chem. Lett., vol. 6, no. 22, pp. 4633-4639, 2015. [84] A. Kumar, S. Singh, and M. Al-Bahrani, “Enhancement in power conversion efficiency and stability of perovskite solar cell by reducing trap states using trichloroacetic acid additive in anti-solvent,” Surf. Interfaces., vol. 34, p. 102341, 2022. [85] M. Lyu et al., “Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3− xClx films,” J. Colloid Interface Sci., vol. 453, pp. 9-14, 2015. [86] Z. Y. Ni, S. Xu, and J. S. Huang, “Response to Comment on "Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells",” Science, vol. 371, no. 6532, 2021 [87] O. Almora, C. Aranda, I. Zarazua, A. Guerrero, and G. Garcia-Belmonte, “Noncapacitive hysteresis in perovskite solar cells at room temperature,” ACS Energy Lett., vol. 1, no. 1, pp. 209-215, 2016. [88] J. Carrillo et al., “Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells,” Adv. Energy Mater., vol. 6, no. 9, p. 1502246, 2016. [89] A. Guerrero et al., “Interfacial degradation of planar lead halide perovskite solar cells,” ACS Nano, vol. 10, no. 1, pp. 218-224, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93904 | - |
| dc.description.abstract | 鈣態礦電池發展至今約有15到20年的歷史,且因為製作成本相對較低再加上其效率從一開始的3.8%到2020年時達到了25.2%,所以可見其備受許多地關注,此外,科學家們透過更改電池的製作方式例如改變電池的組成結構、改變傳輸層材料、改變鈣態礦吸收層的摻雜金屬或添加物等方式以求達成更高的效率與穩定性。
不過阻礙電池效率的最大因素即為電池內部的缺陷密度因為缺陷密度會促使電子與電洞的結合進而降低電池效率,而上一段所提到的改變電池結構、改變傳輸層材料或者是電池的老化等皆會影響電池的缺陷密度,因此如何透過實驗來量測出缺陷密度,並找出和外在變因的關聯性是一個相當重要地課題。 本研究使用了單接面市售蕭特基二極體與雙接面鈣態礦電池,目的是為了量測接面與材料內部的缺陷深度與位置,本研究透過改變電壓、溫度、頻率等參數包含了DLCP、TAS、DLTS等實驗方式來對電池進行量測。在實驗設計上則採用一個實驗去量測一種變因的兩個電池的方式(例如DLTS分析變因A;TAS分析變因B)。 透過DLTS實驗發現不同時間比之下所量測出的缺陷深度與密度也會有所不同,推測在不同時間比之下可以找到不同種類之缺陷,另外有添加添加物時缺陷密度會從2.64×10^13 cm^(-3)降低到2.22×10^13 cm^(-3)進而使效率從19.33%上升到19.67%;另外透過DLCP實驗發現在沒有電洞傳輸層的電池其界面缺陷密度從9.88×10^16 cm^(-3)升高到4.36×10^17 cm^(-3),因此效率從17.91%降低到11.72%;透過TAS發現老化的電池的缺陷密度從9.69×10^14 cm^(-3)上升到1.35×10^15 cm^(-3),使的電池的效率從5.1%降低到約0.3%;透過CV實驗發現蕭特基二極體的載子濃度圖形,和電池的載子濃度圖形是不同的,且也說明了CV實驗之載子濃度會大於DLCP之載子濃度;最後則是透過暗室下的IV實驗檢測元件以及利用不同掃描速率的方式發現掃的速度越慢其遲滯現象越明顯。這些實驗結果和文獻比較後都是吻合的,由此便可以更加地了解外在變因對於缺陷密度之影響。 | zh_TW |
| dc.description.abstract | Perovskite solar cells have been developed for approximately 15-20 years , and because its production cost is low, and the beginning of the efficiency is 3.8% which improves to 25.2% in 2020, it can be seen that it raises a lot of attention. Furthermore, the scientists use a lot of methods including changing the structure of the solar cell, changing the material of the transport layers, changing the doping materials of the perovskite absorber etc. in order to achieve a higher efficiency and stability.
But the most important factor that hinders the progress of the solar cells is the defect density because it promotes the recombination of holes and electrons which lower down the efficiency of the solar cells, and the factors which were mentioned in the last paragraph including changing the structure of the solar cell, changing the material of the transport layers or aging of the solar cell have influences on the defect density of the solar cells, thus how to measure the defect density through experiment and find out the relationship between defect density and the external factors is the important issue. This research uses the perovskite solar cells to measure the defect density, and it also measures Schottky diode to compare with the result of the solar cells, this research uses DLCP, TAS, DLTS etc. methods to measure, for the experimental design, we use one experiment to analyze one external factor of a group of two solar cells (e.g. DLTS on factor A, TAS on factor B). Through DLTS it was found out that under different time ratios the defect densities and defect depths are also different which maybe corresponds to different types of defect, and also find out that adding addictive can lower down defect densities from 2.64×10^13 cm^(-3) to 2.22×10^13 cm^(-3)to enhance the efficiency from 19.33% to 19.67%, furthermore from DLCP measurement it was found out that solar cells without HTL its interface defects rises from 9.88×10^16 cm^(-3) to 4.36×10^17 cm^(-3), hence the efficiency drops from 17.91% to 11.72%; from TAS measurement, it was found out that aging solar cells the densities rises from 9.69×10^14 cm^(-3) to 1.35×10^15 cm^(-3) , as a result, the efficiency drops from 5.1% to 0.3%; from CV measurement, it was found out that Schottky barrier carrier density profile is different from the solar cell’s, and it also found out that the carrier density from CV measurement is higher than the results from DLCP, finally, we use dark iv measurement to check the samples and use different scan rates to find out that the lower the scan rate, the hysteresis behavior becomes more obvious. These experiment results fit well with the research before, from this we can know more about the influences of external factors on the defect densities of solar cells. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:19:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:19:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 目次 vi 圖次 viii 表次 xv 符號表 xvi 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 缺陷量測方式 2 1.2.2 各種電池之相關研究 13 第二章 理論 17 2.1 半導體理論 17 2.1.1 半導體特性與導電原理 17 2.1.2 太陽能電池發電基本原理 18 2.1.3 空乏區內的電場、電位與能帶分布 19 2.2 電容量測理論 22 2.2.1 C-f 22 2.2.2 CV 24 2.2.3 TAS 27 2.2.4 DLTS 33 2.2.5 DLCP 42 第三章 電池樣本說明 47 3.1 電池效率與遲滯現象 47 3.2 電池樣本介紹 51 第四章 量測實驗設計 53 4.1 實驗儀器介紹 53 4.1.1 Keithley 2450多功能電源電錶 53 4.1.2 E4980A LCR錶 53 4.1.3 溫度控制器與探針座 54 4.2 量測實驗流程 55 4.2.1 儀器架設 55 4.2.2 實驗流程 57 第五章 結論與未來展望 59 5.1 實驗結果分析 59 5.1.1 介電常數和內建電場之取得 59 5.1.2 DLTS 60 5.1.3 DLCP 71 5.1.4 TAS 77 5.1.5 CV和DLCP之數據探討與比較 83 5.1.6 IV 97 5.2 結論與未來展望 100 參考文獻 103 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鈣態礦太陽能電池 | zh_TW |
| dc.subject | 缺陷密度 | zh_TW |
| dc.subject | DLCP | zh_TW |
| dc.subject | TAS | zh_TW |
| dc.subject | DLTS | zh_TW |
| dc.subject | 蕭特基二極體 | zh_TW |
| dc.subject | DLCP | en |
| dc.subject | Perovskite solar cells | en |
| dc.subject | Schottky diode | en |
| dc.subject | DLTS | en |
| dc.subject | TAS | en |
| dc.subject | Defect density | en |
| dc.title | 電性量測應用於太陽能電池之缺陷分析 | zh_TW |
| dc.title | Electrical measurements applied to the defect analysis of solar cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許麗;林彥宏 | zh_TW |
| dc.contributor.oralexamcommittee | Xu Li;Yen-Hung Lin | en |
| dc.subject.keyword | 鈣態礦太陽能電池,缺陷密度,DLCP,TAS,DLTS,蕭特基二極體, | zh_TW |
| dc.subject.keyword | Perovskite solar cells,Defect density,DLCP,TAS,DLTS,Schottky diode, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202402044 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
