請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93899完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏嗣鈞 | zh_TW |
| dc.contributor.advisor | Hsu-chun Yen | en |
| dc.contributor.author | 陳英凡 | zh_TW |
| dc.contributor.author | Ying-Fan Chen | en |
| dc.date.accessioned | 2024-08-09T16:17:30Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | [1] Peng Li, Chengyu Liu, Ke Li, Dingchang Zheng, Changchun Liu, and Yinglong Hou. Assessing the complexity of short-term heartbeat interval series by distribution entropy. Medical & biological engineering & computing, 53:77–87, 2015.
[2] Christoph Bandt and Bernd Pompe. Permutation entropy: a natural complexity measure for time series. Physical review letters, 88(17):174102, 2002. [3] Mostafa Rostaghi and Hamed Azami. Dispersion entropy: A measure for time-series analysis. IEEE Signal Processing Letters, 23(5):610–614, 2016. [4] Steven M Pincus. Approximate entropy as a measure of system complexity. Proceedings of the national academy of sciences, 88(6):2297–2301, 1991. [5] Joshua S Richman, Douglas E Lake, and J Randall Moorman. Sample entropy. In Methods in enzymology, volume 384, pages 172–184. Elsevier, 2004. [6] Alfonso Delgado-Bonal and Alexander Marshak. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6):541, 2019. [7] Tao Zhang, Wanzhong Chen, and Mingyang Li. Fuzzy distribution entropy and its application in automated seizure detection technique. Biomedical Signal Processing and Control, 39:360–377, 2018. [8] Hamed Azami, Javier Escudero, and Anne Humeau-Heurtier. Bidimensional distribution entropy to analyze the irregularity of small-sized textures. IEEE Signal Processing Letters, 24(9):1338–1342, 2017. [9] Andreia S Gaudêncio, Mirvana Hilal, João M Cardoso, Anne Humeau-Heurtier, and Pedro G Vaz. Texture analysis using two-dimensional permutation entropy and amplitude-aware permutation entropy. Pattern Recognition Letters, 159:150–156, 2022. [10] Luiz Eduardo Virgilio da Silva, Antonio Carlos Da Silva Senra Filho, Valéria Paula Sassoli Fazan, Joaquim Cezar Felipe, and Luiz Otavio Murta. Twodimensional sample entropy analysis of rat sural nerve aging. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 3345–3348. IEEE, 2014. [11] Luiz Eduardo Virgili Silva, ACS Senra Filho, Valéria Paula Sassoli Fazan, Joaquim Cezar Felipe, and LO Murta Junior. Two-dimensional sample entropy: Assessing image texture through irregularity. Biomedical Physics & Engineering Express, 2(4):045002, 2016. [12] Luiz EV Silva, Juliano J Duque, Joaquim C Felipe, Luiz O Murta Jr, and Anne Humeau-Heurtier. Two-dimensional multiscale entropy analysis: Applications to image texture evaluation. Signal Processing, 147:224–232, 2018. [13] Ricardo Espinosa, Raquel Bailón, and Pablo Laguna. Two-dimensional espen: A new approach to analyze image texture by irregularity. Entropy, 23(10):1261, 2021. [14] Hamed Azami, Luiz Eduardo Virgilio da Silva, Ana Carolina Mieko Omoto, and Anne Humeau-Heurtier. Two-dimensional dispersion entropy: An information theoretic method for irregularity analysis of images. Signal Processing: Image Communication, 75:178–187, 2019. [15] Mirvana Hilal and Anne Humeau-Heurtier. Bidimensional fuzzy entropy: Principle analysis and biomedical applications. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 4811–4814. IEEE, 2019. [16] Cristina Morel and Anne Humeau-Heurtier. Multiscale permutation entropy for twodimensional patterns. Pattern Recognition Letters, 150:139–146, 2021. [17] Mirvana Hilal, Clémence Berthin, Ludovic Martin, Hamed Azami, and Anne Humeau-Heurtier. Bidimensional multiscale fuzzy entropy and its application to pseudoxanthoma elasticum. IEEE Transactions on Biomedical Engineering, 67(7):2015–2022, 2019. [18] Steven M Pincus and Ary L Goldberger. Physiological time-series analysis: what does regularity quantify? American Journal of Physiology-Heart and Circulatory Physiology, 266(4):H1643–H1656, 1994. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93899 | - |
| dc.description.abstract | 信息理論已在各個領域廣泛應用,產生了用於分析時間序列數據的基於熵的度量。本文關注將這些度量擴展到更高維度,對於像圖像分析和分類這樣的任務至關重要。雖然二維樣本熵(SampEn2D)在生物醫學圖像分析中顯示了潛力,但其計算效率低下且無法處理大尺寸圖像的限制限制了其實用性。相反,二維離散熵(DispEn2D)提供了一種更快的替代方案,但在分類具有高不規則性的紋理方面存在困難。為了解決這些限制,本研究介紹了二維離散樣本熵(DispSampEn2D),充分利用了二維樣本熵和二維離散熵的優勢,同時彌補了它們的缺陷。通過使用合成圖像和真實紋理數據集進行驗證,展示了二維離散樣本熵在分類任務中的有效性。此外,本研究強調了利用不同嵌入維度的熵向量的優勢,由於它們的互補特性,導致了改善的分類準確性。 | zh_TW |
| dc.description.abstract | Information theory has found wide applications across diverse domains, giving rise to entropy-based metrics for analyzing time-series data. This thesis focuses on extending these metrics to higher dimensions, a necessity for tasks like image analysis and classification. While two-dimensional sample entropy (SampEn2D) holds promise in biomedical image analysis, its computational inefficiency and inability to handle large-size images limit its utility. Conversely, two-dimensional dispersion entropy (DispEn2D) offers a quicker alternative but struggles with classifying textures exhibiting high irregularity. To overcome these limitations, this study introduces two-dimensional dispersion sample entropy (DispSampEn2D), leveraging the strengths of SampEn2D and DispEn2D while mitigating their weaknesses. Experiments using synthetic images and real-world texture datasets demonstrate the effectiveness of DispSampEn2D in classification tasks. Furthermore, this research underscores the advantages of utilizing entropy vectors with diverse embedding dimensions, resulting in improved classification accuracy due to their complementary characteristics. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:17:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:17:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Related Work 3 2.1 Two-dimensional Dispersion Entropy . . . . . . . . . . . . . . . . . 3 2.2 Two-dimensional Sample Entropy . . . . . . . . . . . . . . . . . . . 5 Chapter 3 Two Dimensional Dispersion Sample Entropy 8 3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Suggested Value for Dispersion Classes . . . . . . . . . . . . . . . . 9 3.3 Linear Approach for Computation . . . . . . . . . . . . . . . . . . . 10 Chapter 4 Datasets 12 4.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Real-world Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 5 Experiments and Results 15 5.1 Validation of DispSampEn2D . . . . . . . . . . . . . . . . . . . . . 15 5.2 Performance on Brodatz dataset . . . . . . . . . . . . . . . . . . . . 17 5.3 Performance on Kylberg dataset . . . . . . . . . . . . . . . . . . . . 19 5.4 Noise Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.5 Entropy Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.6 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Chapter 6 Conclusion 32 References 34 | - |
| dc.language.iso | en | - |
| dc.subject | 資訊理論 | zh_TW |
| dc.subject | 紋理分析 | zh_TW |
| dc.subject | 樣本熵 | zh_TW |
| dc.subject | 離散熵 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | Sample entropy | en |
| dc.subject | Information theory | en |
| dc.subject | Texture analysis | en |
| dc.subject | Image processing | en |
| dc.subject | Dispersion entropy | en |
| dc.title | 二維離散樣本熵: 一種穩定且快速的紋理分析方法 | zh_TW |
| dc.title | Two-dimensional Dispersion Sample Entropy: A Robust and Faster Method to Analyze Image Textures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭斯彥;雷欽隆;王柏堯 | zh_TW |
| dc.contributor.oralexamcommittee | Sy-Yen Kuo;Chin-Laung Lei;BY Wang | en |
| dc.subject.keyword | 資訊理論,紋理分析,樣本熵,離散熵,影像處理, | zh_TW |
| dc.subject.keyword | Information theory,Texture analysis,Sample entropy,Dispersion entropy,Image processing, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202402346 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-03 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
