Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93893
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊哲人zh_TW
dc.contributor.advisorJer-Ren Yangen
dc.contributor.author林泓任zh_TW
dc.contributor.authorHung-Jen Linen
dc.date.accessioned2024-08-09T16:14:54Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] J.J. Rino, D. Chandramohan, K. Sucitharan, V.D. Jebin, An overview on development of aluminium metal matrix composites with hybrid reinforcement, Int. J. Sci. Res 1(3) (2012) 2319-7064.
[2] J.M. Runge, A Brief History of Aluminum and Its Alloys, in: J.M. Runge (Ed.), The Metallurgy of Anodizing Aluminum: Connecting Science to Practice, Springer International Publishing, Cham, 2018, pp. 1-63.
[3] G.E. Totten, D.S. MacKenzie, Handbook of aluminum: vol. 1: physical metallurgy and processes, CRC press2003.
[4] I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light alloys: metallurgy of the light metals, Butterworth-Heinemann2017.
[5] D. Ashkenazi, How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives, Technological Forecasting and Social Change 143 (2019) 101-113.
[6] R.S. Long, E. Boettcher, D. Crawford, Current and Future Uses of Aluminum in the Automotive Industry, JOM 69(12) (2017) 2635-2639.
[7] E.A. Starke Jr, J.T. Staley, Application of modern aluminum alloys to aircraft, Progress in aerospace sciences 32(2-3) (1996) 131-172.
[8] M.C. Santos, A.R. Machado, W.F. Sales, M.A. Barrozo, E.O. Ezugwu, Machining of aluminum alloys: a review, The International Journal of Advanced Manufacturing Technology 86 (2016) 3067-3080.
[9] F.M. Mazzolani, Competing issues for aluminium alloys in structural engineering, Progress in Structural Engineering and Materials 6(4) (2004) 185-196.
[10] J.G. Kaufman, Introduction to aluminum alloys and tempers, ASM international2000.
[11] J.C. Benedyk, International temper designation systems for wrought aluminum alloys, Light metal age 67 (2010) 3-6.
[12] E.A. Starke, Historical Development and Present Status of Aluminum–Lithium Alloys, Aluminum-lithium Alloys2014, pp. 3-26.
[13] The Influence of Grain Structure on the Ductility of the Al-Cu-Li-Mn-Cd Alloy 2020, (1982).
[14] Review Aluminium-lithium alloys, (1987).
[15] J. Pickens, F. Heubaum, T. Langan, L. Kramer, Al-(4.5-6.3) Cu-1.3 Li-0.4 Ag-0.4 Mg-0.14 Zr alloy weldalite 049, Proceedings of the Fifth International Conference on Aluminum-Lithium Alloys. Birmingham: Materials and Component Engineering Publications Ltd, 1989, pp. 1397-1411.
[16] A. Abd El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, D. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review, J Adv Res 10 (2018) 49-67.
[17] J. Ma, X. Liu, D. Yan, L. Rong, A novel GP-Li precursor and the correlated precipitation behaviors in Al-Cu-Li alloys with different Cu/Li ratio, Acta Mater. 243 (2023) 118442.
[18] B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, M. Weyland, The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys, Acta Mater. 61(6) (2013) 2207-2218.
[19] E. Lavernia, T.S. Srivatsan, F. Mohamed, Strength, deformation, fracture behaviour and ductility of aluminium-lithium alloys, Journal of Materials Science 25 (1990) 1137-1158.
[20] E. Gumbmann, W. Lefebvre, F. De Geuser, C. Sigli, A. Deschamps, The effect of minor solute additions on the precipitation path of an Al Cu Li alloy, Acta Mater. 115 (2016) 104-114.
[21] E. Gumbmann, F. De Geuser, C. Sigli, A. Deschamps, Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy, Acta Mater. 133 (2017) 172-185.
[22] A. Chen, L. Zhang, G. Wu, Y. Peng, Y. Li, Effect of Mn addition on microstructure and mechanical properties of cast Al–2Li–2Cu–0.8Mg–0.4Zn–0.2Zr alloy, Journal of Materials Research 31(2) (2016) 250-258.
[23] D. Tsivoulas, J.D. Robson, Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys, Acta Mater. 93 (2015) 73-86.
[24] A. Guinier, Structure of age-hardened aluminium-copper alloys, Nature 142(3595) (1938) 569-570.
[25] G. Preston, The diffraction of X-rays by age-hardening aluminium copper alloys, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 167(931) (1938) 526-538.
[26] R. Nicholson, J. Nutting, Direct observation of the strain field produced by coherent precipitated particles in an age-hardened alloy, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 3(29) (1958) 531-535.
[27] Y. Chang, Crystal Structure and Nucleation Behavior of (111) Precipitates in an Al-3.9 Cu-0.5 Mg-0.5 Ag Alloy, 1993.
[28] 鍾采甫, AA7050 (Al-Zn-Mg) 和 AA2050 (Al-Cu-Li) 鋁合金原子級析出物之演化, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 2019, p. 239.
[29] T.-F. Chung, Y.-L. Yang, C.-N. Hsiao, W.-C. Li, B.-M. Huang, C.-S. Tsao, Z. Shi, J. Lin, P.E. Fischione, T. Ohmura, J.-R. Yang, Morphological evolution of GP zones and nanometer-sized precipitates in the AA2050 aluminium alloy, International Journal of Lightweight Materials and Manufacture 1(3) (2018) 142-156.
[30] Y. Deng, J. Bai, X. Wu, G. Huang, L. Cao, L. Huang, Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy, Journal of Alloys and Compounds 723 (2017) 661-666.
[31] S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys, International Materials Reviews 50(4) (2005) 193-215.
[32] R.A. Herring, F.W. Gayle, J.R. Pickens, High-resolution electron microscopy study of a high-copper variant of weldalite 049 and a high-strength AI-Cu-Ag-Mg-Zr alloy, Journal of Materials Science 28(1) (1993) 69-73.
[33] J.C.H.A.J. Ardell, Crystal structure and stability of T, precipitates in aged AI-Li-Cu alloys, (1987).
[34] J.L. J.M. HOWE, and A. K. VASUDI~VAN, Structure and Deformation Behavior of T1 Precipitate Plates in an AI-2Li-1Cu Alloy, (1988).
[35] A.M. S. VAN SMAALEN, AND J. L. DE BOER, Refinement of the Crystal Structure of Hexagonal AI2CuLi, (1990).
[36] P. Donnadieu, Y. Shao, F. De Geuser, G.A. Botton, S. Lazar, M. Cheynet, M. de Boissieu, A. Deschamps, Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering, Acta Mater. 59(2) (2011) 462-472.
[37] C. Dwyer, M. Weyland, L.Y. Chang, B.C. Muddle, Combined electron beam imaging and ab initio modeling of T1 precipitates in Al–Li–Cu alloys, Applied Physics Letters 98(20) (2011).
[38] K. Kim, B.-C. Zhou, C. Wolverton, First-principles study of crystal structure and stability of T1 precipitates in Al-Li-Cu alloys, Acta Mater. 145 (2018) 337-346.
[39] B. Na, B.-C. Zhou, C. Wolverton, K. Kim, First-principles Calculations of Bulk and Interfacial Thermodynamic Properties of the T1 phase in Al-Cu-Li alloys, Scripta Materialia 202 (2021).
[40] L. Bourgeois, C. Dwyer, M. Weyland, J.-F. Nie, B.C. Muddle, Structure and energetics of the coherent interface between the θ′ precipitate phase and aluminium in Al–Cu, Acta Mater. 59(18) (2011) 7043-7050.
[41] X. Zhao, W. Liu, D. Xiao, Y. Ma, L. Huang, Y. Tang, A critical review: Crystal structure, evolution and interaction mechanism with dislocations of nano precipitates in Al-Li alloys, Materials & Design 217 (2022).
[42] H. Djaaboube, D. Thabet-Khireddine, TEM diffraction study of Al2CuMg (S′/S) precipitation in an Al–Li–Cu–Mg(Zr) alloy, Philosophical Magazine 92(15) (2012) 1876-1889.
[43] Z. Gao, J.Z. Liu, J.H. Chen, S.Y. Duan, Z.R. Liu, W.Q. Ming, C.L. Wu, Formation mechanism of precipitate T1 in AlCuLi alloys, Journal of Alloys and Compounds 624 (2015) 22-26.
[44] Y. Feng, X. Chen, Y. Hao, X. Li, B. Chen, Coarsening mechanism of T1 precipitation and calculation of T1/Al interface properties in 2198 Al–Cu–Li alloys: Experimental and DFT studies, Vacuum 204 (2022).
[45] T. Gladman, Precipitation hardening in metals, Materials science and technology 15(1) (1999) 30-36.
[46] A.J. Ardell, Precipitation hardening, Metallurgical Transactions A 16(12) (1985) 2131-2165.
[47] Symposium on Internal Stresses in Metals and Alloys, Nature 164(4164) (1949) 296-296.
[48] B.C.M. J.F. Nie, On the form of the age-hardening response in high strength aluminium alloys, (2001).
[49] T. Dorin, A. Deschamps, F.D. Geuser, C. Sigli, Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy, Acta Mater. 75 (2014) 134-146.
[50] T. Dorin, F. De Geuser, W. Lefebvre, C. Sigli, A. Deschamps, Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy, Materials Science and Engineering: A 605 (2014) 119-126.
[51] B.I. Rodgers, P.B. Prangnell, Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195, Acta Mater. 108 (2016) 55-67.
[52] EFFECT OF A PRIOR STRETCH ON THE AGING RESPONSE OF AN AI-Cu-Li-Ag-Mg-Zr ALLOY, (1990).
[53] The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al±Li±Cu±X alloy, (2001).
[54] J. Xu, Y. Deng, J. Chen, Y. Xie, X. Guo, Effect of ageing treatments on the precipitation behavior and mechanical properties of Al–Cu–Li alloys, Materials Science and Engineering: A 773 (2020).
[55] L. Zhan, J. Lin, T. Dean, A review of the development of creep age forming: Experimentation, modelling and applications, International Journal of Machine Tools and Manufacture 51(1) (2011) 1-17.
[56] Y. Xu, L. Zhan, W. Li, Effect of pre-strain on creep aging behavior of 2524 aluminum alloy, Journal of Alloys and Compounds 691 (2017) 564-571.
[57] E. Yucelen, I. Lazic, E.G.T. Bosch, Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution, Sci Rep 8(1) (2018) 2676.
[58] H. Wang, L. Liu, J. Wang, C. Li, J. Hou, K. Zheng, The Development of iDPC-STEM and Its Application in Electron Beam Sensitive Materials, Molecules 27(12) (2022).
[59] Y.-C. Huang, C.-S. Tsao, C. Lin, Y.-C. Lai, S.-K. Wu, C.-H. Chen, Evolution of Guinier-Preston zones in cold-rolled Al0.2CoCrFeNi high-entropy alloy studied by synchrotron small-angle X-ray scattering, Materials Science and Engineering: A 769 (2020) 138526.
[60] E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribology Letters 65(1) (2016) 23.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93893-
dc.description.abstract本實驗使用高強度且輕量化的AA2050 (Al-Cu-Li) 鋁合金,對其施加預應變,使材料內部充滿差排以促使析出物成核,再以不同的時效方法(如人工時效和潛變時效)促使大量奈米析出物T1生成,以強化材料基地。隨後測量材料的機械性能,包括硬度及拉伸試驗,並使用穿透式電子顯微鏡(TEM)和小角度X光散射(SAXS)分析不同時效階段的析出物形貌,探討材料顯微結構與機械性能之間的關係。
在材料預應變後,利用明場像及高角度環形暗場影像(HAADF)技術,觀察到T1析出物在差排、二次相邊界及晶界上的異質成核。發現基地中的差排和二次相邊界上析出許多單層T1,而晶界上則出現特殊的八層粗大T1析出物。這樣的晶界偏析也會造成析出空乏區。使用潛變時效能減少析出空乏區的大小,進而減少其帶來的負面影響。相比人工時效,潛變時效不僅可以提高材料的降伏強度(增加21MPa),還能提高材料的延展性,提供了一種有效的方法。
由於雙球差穿透式電子顯微鏡Spectra 300的引入,能夠深入了解析出物的原子尺度結構,本文還分析了T1的前驅物GP(T1)及T1之間的差異與它們的in-situ轉變機制,並發現T1在兩種增厚機制互相糾結的特殊現象。此外,拍攝了拉伸試驗後的試片,展示了在不同晶帶軸下T1析出物被差排切過的影像。最後,通過積分差分相位對比(iDPC)技術,首次實現了T1析出物中鋰原子的直接成像,為深入解析析出物的各項機制提供了新的研究方法。
zh_TW
dc.description.abstractThis study utilizes the high-strength and lightweight AA2050 (Al-Cu-Li) aluminum alloy, which is pre-strain to introduce dislocations within the material, facilitating the nucleation of precipitates. Subsequent aging treatments, such as artificial aging and creep aging, are applied to generate a significant amount of nano-scale T1 precipitates, thereby strengthening the matrix. The mechanical properties, including hardness and tensile tests, are then measured. Additionally, transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) are used to analyze the morphology of the precipitates at different aging stages, exploring the relationship between the microstructure and mechanical properties of the material.
After pre-strain, bright-field (BF) and high-angle annular dark-field (HAADF) imaging techniques reveal the heterogeneous nucleation of T1 precipitates at dislocations, second-phase boundaries, and grain boundaries. Numerous single-layer T1 precipitates are observed at dislocations and second-phase boundaries, while unique eight-layer thick T1 precipitates appear at grain boundaries. This elemental segregation at grain boundaries also results in precipitate-free zones. Creep aging reduces the size of these precipitate-free zones, thereby decreasing their adverse effects. Compared to artificial aging, creep aging not only increases the yield strength of the material (by 21 MPa) but also enhances its ductility, providing an effective treatment method.
With the introduction of the double spherical aberration-corrected transmission electron microscope Spectra 300, an in-depth understanding of the atomic-scale structure of precipitates is achieved. This study also examines the differences between GP(T1) (also known as T1p) and T1, along with their in-situ transformation mechanisms, revealing a unique phenomenon where T1 thickening mechanisms are intertwined. Additionally, post-tensile test samples are imaged, showing dislocation shearing of T1 precipitates along different crystallographic orientations. Finally, by employing integrated differential phase contrast (iDPC) techniques, the direct imaging of lithium atoms within T1 precipitates is achieved for the first time, offering a novel method for detailed analysis of precipitate mechanisms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:14:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:14:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xvi
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 2xxx Series Aluminum Alloys 3
2.1.1 Introduction of Aluminum Alloys 3
2.1.2 Effects of Solute Element Addition 6
2.1.3 Types and Characteristics of Precipitates 10
2.1.4 Evolution Mechanism of T1 Precipitates 20
2.1.5 Coarsening Mechanism of T1 Precipitates 24
2.1.6 Precipitation Hardening 25
2.1.7 Shearing Behavior of T1 Precipitates 29
2.2 Different Aging Treatments 32
2.2.1 Pre-Strain Aging Treatment 32
2.2.2 Creep Age Forming (CAF) 34
2.3 Advanced Analytical Technique 35
2.3.1 Integrated Differential Phase Contrast (iDPC) 35
2.3.2 Small-Angle X-ray Scattering (SAXS) 38
Chapter 3 Experimental Procedures 41
3.1 Experimental Process 41
3.1.1 Pre-Strain Aging Treatment (PA) and Pre-Strain Creep Aging Treatment (PCA) 41
3.2 Sample Preparation 42
3.2.1 Universal Testing Machine 42
3.2.2 Twin-Jet Polisher 43
3.3 Mechanical Test 43
3.3.1 Tensile Test 43
3.3.2 Vickers Hardness Test 44
3.4 Microstructure Characterization 45
3.4.1 Transmission Electron Microscopy (TEM) 45
3.4.2 Small-Angle X-ray Scattering (SAXS) 45
Chapter 4 Results of Different Aging Treatments on Pre-strain Al-Cu-Li Alloy 47
4.1 Solution Heat Treatment (SHT) 47
4.2 Pre-Strain Aging 49
4.2.1 Pre-Strain Aging 4 Hours (PA4) 51
4.2.2 Pre-Strain Aging 8 Hours and 14 Hours (PA8 and PA14) 52
4.2.3 Pre-Strain Aging 20 Hours (PA20) 53
4.2.4 Heterogeneous Nucleation of T1 in PA20 56
4.3 Pre-Strain Creep Aging 58
4.3.1 Pre-Strain Creep Aging 20 Hours (PCA20) 58
4.3.2 Heterogeneous Nucleation of T1 in PCA20 59
4.4 T1 Precipitates Size and Volume Fraction 62
4.4.1 TEM 62
4.4.2 SAXS 63
4.5 Mechanical Property 65
4.6 Summary 66
Chapter 5 Results of Atomic-Scale Investigation of T1 Precipitates 68
5.1 GP(T1) and T1 68
5.1.1 Identifying GP(T1) and T1 68
5.1.2 In-situ Transformation 69
5.2 Coarsening Morphology 71
5.3 Shearing Morphology 73
5.4 IDPC-STEM 74
Chapter 6 Highlights 76
Chapter 7 Future Works 78
Appendix A: Specimen Explosion 79
REFERENCE 81
-
dc.language.isoen-
dc.subject穿透式電子顯微鏡zh_TW
dc.subjectAA2050 (Al-Cu-Li) 鋁合金zh_TW
dc.subject時效處理zh_TW
dc.subject積分差分相位對比zh_TW
dc.subjectT1析出物zh_TW
dc.subjectintegrated differential phase contrasten
dc.subjectT1 precipitatesen
dc.subjecttransmission electron microscopyen
dc.subjectAA2050 (Al-Cu-Li) aluminum alloyen
dc.subjectaging treatmenten
dc.title時效處理對預應變Al-Cu-Li合金的影響及T1 析出物的原子尺度研究zh_TW
dc.titleEffect of Aging Treatments on Pre-Strain Al-Cu-Li Alloy and Atomic-Scale Investigation of T1 Precipitatesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾采甫;王涵聖;陳志遠;蕭健男zh_TW
dc.contributor.oralexamcommitteeTsai-Fu Chung;Han-Shen Wang;Chih-Yuan Chen;Chien-Nan Hsiaoen
dc.subject.keywordAA2050 (Al-Cu-Li) 鋁合金,穿透式電子顯微鏡,T1析出物,積分差分相位對比,時效處理,zh_TW
dc.subject.keywordAA2050 (Al-Cu-Li) aluminum alloy,transmission electron microscopy,T1 precipitates,integrated differential phase contrast,aging treatment,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202402902-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf8.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved