Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor單秋成zh_TW
dc.contributor.advisorChow-Shing Shinen
dc.contributor.author黃順亘zh_TW
dc.contributor.authorShun-Hsuan Huangen
dc.date.accessioned2024-08-09T16:13:32Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citation1. Almeida Jr, J. H. S., Faria, H., Marques, A. T., & Amico, S. C. “Load sharing ability of the liner in type III composite pressure vessels under internal pressure.” Journal of Reinforced Plastics and Composites, 2014, 33(24), pp.2274-2286.
2. Roseman, M., Martin, R., & Morgan, G. “10-Composites in offshore oil and gas applications.” In Marine Applications of Advanced Fibre-Reinforced Composites, Woodhead Publishing, 2016, pp. 233-257.
3. Alam, P., Robert, C., & Brádaigh, C. M. Ó. “Tidal turbine blade composites-A review on the effects of hygrothermal aging on the properties of CFRP.” Composites Part B: Engineering, 2018, 149, pp. 248-259.
4. Rocha, I. B. C. M., Raijmaekers, S., Nijssen, R. P. L., Van der Meer, F. P., & Sluys, L. J. “Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades.” Composite Structures, 2017, 174, pp. 110-122.
5. “How Long Are Wind Turbine Blades?” 2019 (cited 2023/09/19)https://www.clean-energy-ideas.com/wind/wind-turbines/how-long-are-wind-turbine-blades/
6. “Boeing 787 from the group up.” 2008 (cited 2023/09/19)https://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/article_04_2.html
7. “Composites in Airbus. A Long Story of Innovations and Experiences.” By Guy Hellard, 2017 (cited 2023/09/19)https://docplayer.net/25342669-Composites-in-airbus-a-long-story-of-innovations-and-experiences-presented-by-guy-hellard.html
8. Carello, M., & Airale, A. G. “Composite suspension arm optimization for the city vehicle XAM 2.0.” Design and computation of modern engineering materials, 2014, pp. 257-272.
9. Keating, E. M., Raath, N., Winnett, J., Hughes, D. J., Hope, G., Ravaioli, M., & Cozien-Cazuc, S. “Opportunities for the Use of Composite Materials in Rail Applications–a Case Study.” In 21st International Conference on Composit Materials, 2017, pp. 1-7.
10. Gong, M., Sun, S. G., & Li, Q. “Carbon fiber reinforced composite materials for self-supporting subway train cab.” In IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, 436(1), 012007
11. Katnam, K. B., Sargent, J. P., Crocombe, A. D., Khoramishad, H., & Ashcroft, I. A. “Characterisation of moisture-dependent cohesive zone properties for adhesively bonded joints.” Engineering Fracture Mechanics, 2010, 77(16), pp. 3105-3119.
12. Xu, D., Liu, P. F., Li, J. G., & Chen, Z. P. “Damage mode identification of adhesive composite joints under hygrothermal environment using acoustic emission and machine learning.” Composite structures, 2019, 211, pp. 351-363.
13. Meng, M. A. O. Z. H. O. U., Rizvi, M. J., Grove, S. M., & Le, H. R. “Effects of hygrothermal stress on the failure of CFRP composites.” Composite Structures, 2015, 133, pp. 1024-1035.
14. Barbosa, A. Q., Da Silva, L. F. M., & Öchsner, A. “Hygrothermal aging of an adhesive reinforced with microparticles of cork.” Journal of Adhesion Science and Technology, 2015, 29(16), pp. 1714-1732.
15. Park, Y. B., Song, M. G., Kim, J. J., Kweon, J. H., & Choi, J. H. “Strength of carbon/epoxy composite single-lap bonded joints in various environmental conditions.” Composite Structures, 2010, 92(9), pp. 2173-2180.
16. Mojškerc, B., Kek, T., & Grum, J. “Ultrasonic disbond detection in adhesive joints.” In Proceedings of the International Conference of the Slovenian Society for Non-Destructive Testing, Bernardin, Slovenia, 2017, pp. 4-6.
17. Asif, M., Khan, M. A., Khan, S. Z., Choudhry, R. S., & Khan, K. A. “Identification of an effective nondestructive technique for bond defect determination in laminate composites—A technical review.” Journal of Composite Materials, 2018, 52(26), pp. 3589-3599.
18. Yilmaz, B., Ba, A., Jasiuniene, E., Bui, H. K., & Berthiau, G. “Evaluation of bonding quality with advanced nondestructive testing (Ndt) and data fusion.” Sensors, 2020, 20(18), 5127.
19. Karpenko, O., Khomenko, A., Koricho, E., Haq, M., & Udpa, L. “Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors.” In AIP conference proceedings, AIP Publishing, 2016, 1706(1).
20. Scarselli, G., & Nicassio, F. “Analysis of debonding in single lap joints based on employment of ultrasounds.” In Health Monitoring of Structural and Biological Systems, SPIE, 2017, 10170, pp.408-418.
21. Davis, M. J., & McGregor, A. “Assessing adhesive bond failures: mixed-mode bond failures explained.” In ISASI Australian Safety Seminar, Canberra, 2010, pp. 4-6.
22. Baker, A. A., & Wang, J. “Adhesively Bonded Repair/Reinforcement of Metallic Airframe Components: Materials, Processes, Design and Proposed Through-Life Management.” In Aircraft Sustainment and Repair, Butterworth-Heinemann, 2018, pp. 191-252.
23. Toptaş, E., & Akkuş, N. “Damage detection of carbon fibers in filament winding machines using an electrical resistance method.” The International Journal of Advanced Manufacturing Technology, 2017, 93, pp. 671-679.
24. Saeed, M. U., Li, B., Chen, Z., & Khan, Z. M. “A novel processing approach to produce microchannel embedded carbon-epoxy composites.” Journal of Manufacturing Processes, 2016, 22, pp. 26-33.
25. Zhang, C., Sun, L., Huang, B., Yang, X., Chu, Y., & Zhan, B. “Electrical and mechanical properties of CNT/CB dual filler conductive adhesives (DFCAs) for automotive multi-material joints.” Composite Structures, 2019, 225, 111183.
26. Sam-Daliri, O., Farahani, M., Faller, L. M., & Zangl, H. “Structural health monitoring of defective single lap adhesive joints using graphene nanoplatelets.” Journal of Manufacturing Processes, 2020, 55, pp. 119-130.
27. Kumar, S., Falzon, B. G., & Hawkins, S. C. “Ultrasensitive embedded sensor for composite joints based on a highly aligned carbon nanotube web.” Carbon, 2019, 149, pp. 380-389.
28. Sanchez-Romate, X. F., Moriche, R., Jimenez-Suarez, A., Sanchez, M., Güemes, A., & Urena, A. “An approach using highly sensitive carbon nanotube adhesive films for crack growth detection under flexural load in composite structures.” Composite Structures, 2019, 224, 111087.
29. Doshi, S. M., Lyness, T. B., & Thostenson, E. T. “Damage monitoring of adhesively bonded composite-metal hybrid joints using carbon nanotube-based sensing layer.” Nanocomposites, 2020, 6(1), pp. 12-21.
30. Sánchez-Romate, X. F., García, C., Rams, J., Sánchez, M., & Ureña, A. “Structural health monitoring of a CFRP structural bonded repair by using a carbon nanotube modified adhesive film.” Composite Structures, 2021, 270, 114091.
31. Lee, B. M., & Loh, K. J. “A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films.” Journal of Materials Science, 2015, 50, pp. 2973-2983.
32. Li, C., & Chou, T. W. “Modeling of damage sensing in fiber composites using carbon nanotube networks.” Composites Science and Technology, 2008, 68(15-16), pp. 3373-3379.
33. Hu, N., Karube, Y., Arai, M., Watanabe, T., Yan, C., Li, Y., Liu, Y., & Fukunaga, H. “Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor.” Carbon, 2010, 48(3), pp. 680-687.
34. Hu, N., Karube, Y., Yan, C., Masuda, Z., & Fukunaga, H. “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor.” Acta Materialia, 2008, 56(13), pp. 2929-2936.
35. Stampfer, C., Helbling, T., Jungen, A., & Hierold, C. “Piezoresistance of single- walled carbon nanotubes.” International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, 2007, pp. 1565-1568.
36. Yang, L., Anantram, M. P., Han, J., & Lu, J. P. “Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain.” Physical Review B, 1999, 60(19), 13874.
37. 王俊凱, “利用導電性監測複材膠合接口濕熱老化.” 臺灣大學機械工程學系研究所碩士論文, 2023, pp.1-118.
38. Gaitonde, V., Karnik, S. R., Rubio, J. C., Correia, A. E., Abrão, A. M., & Davim, J. P. “Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites.” Journal of materials processing technology, 2008, 203(1-3), pp. 431-438.
39. Mohan, N. S., Ramachandra, A., & Kulkarni, S. M. “Influence of process parameters on cutting force and torque during drilling of glass–fiber polyester reinforced composites.” Composite Structures, 2005, 71(3-4), pp. 407-413.
40. Mallick, P. K. “Fiber-reinforced composites: materials, manufacturing, and design.” CRC press, 2007. 41. Hashish, M., & Kent, W. A. “Trimming of CFRP aircraft components.” In WJTA- IMCA conference and Expo, 2013.
41. Hashish, M., & Kent, W. A. “Trimming of CFRP aircraft components.” In WJTA-IMCA conference and Expo, 2013.
42. Saleem, M., Toubal, L., Zitoune, R., & Bougherara, H. “Investigating the effect of machining processes on the mechanical behavior of composite plates with circular holes.” Composites Part A: Applied Science and Manufacturing, 2013, 55, pp. 169-177.
43. Wang, C., Liu, G., An, Q., & Chen, M. “Occurrence and formation mechanism of surface cavity defects during orthogonal milling of CFRP laminates.” Composites Part B: Engineering, 2017, 109, pp. 10-22.
44. Singh, A. P., Sharma, M., & Singh, I. “A review of modeling and control during drilling of fiber reinforced plastic composites.” Composites Part B: Engineering, 2013, 47, pp. 118-125.
45. ASTM, “D5868-01 Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding.” ASTM International www.satm.org, 2014.
46. Pires, I., Quintino, L., Durodola, J. F., & Beevers, A. “Performance of bi-adhesive bonded aluminium lap joints.” International Journal of Adhesion and Adhesives, 2003, 23(3), pp. 215-223.
47. Quaresimin, M., & Ricotta, M. “Fatigue behaviour and damage evolution of single lap bonded joints in composite material.” Composites Science and Technology, 2006, 66(2), pp. 176-187.
48. Seong, M. S., Kim, T. H., Nguyen, K. H., Kweon, J. H., & Choi, J. H. “A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum.” Composite Structures, 2008, 86(1-3), pp. 135-145.
49. 楊易叡, “光纖光柵在單搭接膠合接口完整性監測應用.” 臺灣大學機械工程學研究所碩士論文, 2016, pp. 1-203.
50. Li, H. C. H., Herszberg, I., Mouritz, A. P., Davis, C. E., & Galea, S. C. “Sensitivity of embedded fibre optic Bragg grating sensors to disbonds in bonded composite ship joints.” Composite Structures, 2004, 66(1-4), pp. 239-248.
51. Shin, C. S., & Lin, T. C. “Hygrothermal damage monitoring of composite adhesive joint using the full spectral response of fiber bragg grating sensors.” Polymers, 2022, 14(3), 368.
52. Zhuang, Y., Kopsaftopoulos, F., Dugnani, R., & Chang, F. K. “Integrity monitoring of adhesively bonded joints via an electromechanical impedance-based approach.” Structural Health Monitoring, 2018, 17(5), pp. 1031-1045.
53. Medeiros, R. D., Souza, G. S. C., Marques, D. E. T., Flor, F. R., & Tita, V. “Vibration- based structural monitoring of bi-clamped metal-composite bonded joint: Experimental and numerical analyses.” The Journal of Adhesion, 2021, 97(10), pp. 891-917.
54. Li, C., Pain, D., Wilcox, P. D., & Drinkwater, B. W. “Imaging composite material using ultrasonic arrays.” NDT & E International, 2013, 53, pp. 8-17.
55. Obitayo, W., & Liu, T. “A review: Carbon nanotube-based piezoresistive strain sensors.” Journal of Sensors, 2012, 2012, 652438.
56. Yu, Y., Song, G., & Sun, L. “Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes.” Journal of Applied Physics, 2010, 108(8), 084319.
57. Foygel, M., Morris, R. D., Anez, D., French, S., & Sobolev, V. L. “Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity.” Physical Review B—Condensed Matter and Materials Physics, 2005, 71(10), 104201.
58. Simmons, J. G. “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film.” Journal of applied physics, 1963, 34(6), pp. 1793-1803.
59. Li, C., Thostenson, E. T., & Chou, T. W. “Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites.” Applied Physics Letters, 2007, 91(22), 223114.
60. Lee, B. M., & Loh, K. J. “A 2D percolation-based model for characterizing the piezoresistivity of carbon nanotube-based films.” Journal of materials science, 2015, 50, pp. 2973-2983.
61. Sam-Daliri, O., Faller, L. M., Farahani, M., Roshanghias, A., Araee, A., Baniassadi, M., ... & Zangl, H. “Impedance analysis for condition monitoring of single lap CNT-epoxy adhesive joint.” International Journal of Adhesion and Adhesives, 2019, 88, pp. 59-65.
62. Baek, S. J., Kim, M. S., An, W. J., & Choi, J. H. “Defect detection of composite adhesive joints using electrical resistance method.” Composite Structures, 2019, 220, pp. 179-184.
63. Sánchez-Romate, X. F., Sbarufatti, C., Sánchez, M., Bernasconi, A., Scaccabarozzi, D., Libonati, F., ... & Ureña, A. “Fatigue crack growth identification in bonded joints by using carbon nanotube doped adhesive films.” Smart Materials and Structures, 2020, 29(3), 035032.
64. Viana, G. M. S. O., Costa, M., Banea, M. D., & Da Silva, L. F. M. “A review on the temperature and moisture degradation of adhesive joints.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231(5), pp. 488-501.
65. Banea, M. D., & da Silva, L. F. “The effect of temperature on the mechanical properties of adhesives for the automotive industry.” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224(2), pp. 51-62.
66. Crank, J. “The mathematics of diffusion.” Oxford. England: Clarendon, 1975.
67. Li, W., Pang, B., Han, X., Tang, L., Zhao, K., & Hu, P. “Predicting the strength of adhesively bonded T-joints under cyclic temperature using a cohesive zone model.” The Journal of Adhesion, 2016, 92(11), pp. 892-907.
68. Jojibabu, P., Ram, G. J., Deshpande, A. P., & Bakshi, S. R. “Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging.” Polymer Degradation and Stability, 2017, 140, pp. 84-94.
69. Gibson, R. F. “Principles of composite material mechanics.” CRC press, 2007, Chapter 5 Analysis of Lamina Hygrothermal Behavior.
70. Guo, J., Zhan, L., Ma, B., Zhang, D., Fan, Y., Yao, S., & Feng, J. “A review on failure mechanism and mechanical performance improvement of FRP-metal adhesive joints under different temperature-humidity.” Thin-Walled Structures, 2023, 188, 110788.
71. Nawab, Y., Jacquemin, F., Casari, P., Boyard, N., Borjon-Piron, Y., & Sobotka, V. “Study of variation of thermal expansion coefficients in carbon/epoxy laminated composite plates.” Composites Part B: Engineering, 2013, 50, pp. 144-149.
72. Leone, M., Matthys, S., & Aiello, M. A. “Effect of elevated service temperature on bond between FRP EBR systems and concrete.” Composites Part B: ngineering,2009 , 40(1), 85-93.
73. Liu, W., Gao, Y., Liu, X., Qiu, Y., & Xu, F. “Tensile and interfacial properties of dry- jet wet-spun and wet-spun polyacrylonitrile-based carbon fibers at cryogenic condition.” Journal of Engineered Fibers and Fabrics, 2019, 14, 1558925019835164.
74. Lee, Y. M., You, J., Kim, M., Kim, T. A., Lee, S. S., Bang, J., & Park, J. H. “Highly improved interfacial affinity in carbon fiber-reinforced polymer composites via oxygen and nitrogen plasma-assisted mechanochemistry.” Composites Part B: Engineering, 2019, 165, pp. 725-732.
75. Rider, A. N., Brack, N., Andres, S., & Pigram, P. J. “The influence of hydroxyl group concentration on epoxy–aluminium bond durability.” Journal of Adhesion Science and Technology, 2004, 18(10), pp. 1123-1152.
76. Arif, M. F., Meraghni, F., Chemisky, Y., Despringre, N., & Robert, G.“In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity.” Composites Part B: Engineering, 2014, 58, pp. 487-495.
77. Hota, G., Barker, W., & Manalo, A. “Degradation mechanism of glass fiber/vinylester-based composite materials under accelerated and natural aging.” Construction and Building Materials, 2020, 256, 119462.
78. Tamboura, S., Abdessalem, A., Fitoussi, J., Daly, H. B., & Tcharkhtchi, A. “On the mechanical properties and damage mechanisms of short fibers reinforced composite submitted to hydrothermal aging: Application to sheet molding compound composite.” Engineering Failure Analysis, 2022, 131, 105806.
79. Guermazi, N., Tarjem, A. B., Ksouri, I., & Ayedi, H. F. “On the durability of FRP composites for aircraft structures in hygrothermal conditioning.” Composites Part B: Engineering, 2016, 85, pp. 294-304.
80. Scida, D., Assarar, M., Poilâne, C., & Ayad, R. “Influence of hygrothermal ageing on the damage mechanisms of flax-fibre reinforced epoxy composite.” Composites Part B: Engineering, 2013, 48, pp. 51-58.
81. Wang, Y., & Hahn, T. H. “AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments.” Composites Science and Technology, 2007, 67(1), pp. 92-101.
82. Behera, A., Dupare, P., Thawre, M. M., & Ballal, A. “Effects of hygrothermal aging and fiber orientations on constant amplitude fatigue properties of CFRP multidirectional composite laminates.” International Journal of Fatigue, 2020, 136, 105590.
83. Niu, Y. F., Yan, Y., & Yao, J. W. “Hygrothermal aging mechanism of carbon fiber/epoxy resin composites based on quantitative characterization of interface structure.” Polymer Testing, 2021, 94, 107019.
84. Gude, M. R., Prolongo, S. G., & Ureña, A. “Hygrothermal ageing of adhesive joints with nanoreinforced adhesives and different surface treatments of carbon fibre/epoxy substrates.” International Journal of Adhesion and Adhesives, 2013, 40, pp. 179-187.
85. Machado, J. J. M., Marques, E. A. S., Barbosa, A. Q., & da Silva, L. F. “Effect of hygrothermal aging on the quasi-static behaviour of CFRP joints varying the overlap length.” Composite Structures, 2019, 214, 451-462.
86. Guadagno, L., & Vertuccio, L. “Resistive response of carbon nanotube-based composites subjected to water aging.” Nanomaterials, 2021, 11(9), 2183.
87. 陳佩嫈, “以光纖光柵感測器監測碳纖維複材經衝擊/疲勞破壞/貼片修補之缺陷發展.” 臺灣大學機械工程學系研究所碩士論文, 2012, pp. 1-119.
88. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. “NIH Image to ImageJ: 25 years of image analysis.” Nature Methods, 2012, 9(7), pp. 671-675.
89. Hart-Smith, L. J. “Adhesive-bonded single-lap joints” (No. NASA-CR-112236), 1973.
90. Zhang, X., Ju, Y., Zhu, A., & Zou, T. “Fatigue behavior of single-lap adhesive joints with similar and dissimilar adherends under cyclic loading: a combined experimental and simulation study.” Materials Today Communications, 2023, 37, 107215.
91. Prolongo, S. G., Gude, M. R., & Ureña, A. “Water uptake of epoxy composites reinforced with carbon nanofillers.” Composites Part A: Applied Science and Manufacturing, 2012, 43(12), pp. 2169-2175.
92. Guadagno, L., Vertuccio, L., Sorrentino, A., Raimondo, M., Naddeo, C., Vittoria, V., ... & Russo, S. “Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes.” Carbon, 2009, 47(10), pp. 2419-2430.
93. Morris, D. R., Liu, S. P., Villegas Gonzalez, D., & Gostick, J. T. “Effect of water sorption on the electronic conductivity of porous polymer electrolyte membrane fuel cell catalyst layers.” ACS applied materials & interfaces, 2014, 6(21), 18609-18618.
94. Dallaev, R., Pisarenko, T., Papež, N., Sadovský, P., & Holcman, V. A Brief Overview on Epoxies in Electronics: Properties, Applications, and Modifications. Polymers, 2023, 15(19), 3964.
95. Dong, K., Zhang, J., Cao, M., Wang, M., Gu, B., & Sun, B. “A mesoscale study of thermal expansion behaviors of epoxy resin and carbon fiber/epoxy unidirectional composites based on periodic temperature and displacement boundary conditions.” Polymer Testing, 2016, 55, pp. 44-60.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93890-
dc.description.abstract膠合接口在複合材料結構中廣泛應用,與傳統連接方法相比有許多優點。然而,濕熱環境會導致搭接劑和複合材料性能劣化,使其連接機械性能變得不可預測。傳統非破壞檢驗技術(NDT)難以檢測出明顯缺陷形成前的膠合接口破壞情況。透過結構健康監測(SHM),可以監測試片在機械負載和環境影響下的劣化程度。
本研究將奈米碳管(CNT)摻入環氧樹脂搭接劑中,使碳纖維複合材料膠合接口具備導電性。為瞭解試片在正常乾燥環境中的疲勞破壞情況,設定在達到特定電壓變化百分比(2%、10%、18%)時進行螢光液滲透處理,以探討疲勞壽命、電壓變化百分比及破斷面破壞機制之間的關聯性。接著,對試片在濕熱環境中進行 30天和90 天的測試,並同時進行導電性監測,探討不同濕熱環境下的機械性質與監測電壓之間的相關性。最後,通過對破斷面的微觀觀察和監測數據的分析,探討電性與破壞之間的關聯性。
實驗結果顯示,電壓變化百分比與液滲脫層面積之間存在兩種趨勢,並通過微觀觀察揭示了這兩種趨勢的破壞機制。此外,在濕熱環境中的電壓監測結果顯示,電壓值隨時間增加,且與疲勞壽命有一定關聯性。高溫高濕條件下,複合材料基材和搭接劑均出現塑化現象,並存在由水分侵入引起的孔洞。
總體來說,本研究揭示了濕熱環境對複合材料結構的影響,並指出導電性監測與機械性質之間的關聯。這對理解複合材料在特定環境條件下的性能變化至關重要。然而,仍需進一步研究以解釋濕熱老化、導電性和機械性質之間的複雜關係,以提高對複合材料結構性能的預測和控制。
zh_TW
dc.description.abstractAdhesive joints are widely used in composite material structures and offer many advantages compared to traditional connection methods. However, hygrothermal environments can degrade the performance of the adhesive and composite materials, making the mechanical properties of the joints unpredictable. Traditional non-destructive testing (NDT) techniques have difficulty detecting adhesive joint failures before significant defects form. Structural health monitoring (SHM) can monitor the degradation of specimens under mechanical loads and environmental impacts.
This study incorporates carbon nanotubes (CNTs) into epoxy adhesives to create conductive adhesive joints in carbon fiber composites. To understand the failure behavior of the specimens under fatigue loads in dry environment, the study used liquid fluorescent penetrant treatment at specific voltage change percentages (2%, 10%, 18%) to explore the relationship between fatigue life, voltage change percentage, and failure mechanisms of the fracture surface. Subsequently, the specimens were tested in hygrothermal environments for 30 and 90 days while monitoring conductivity to investigate the correlation between mechanical properties and monitored voltage under different environmental conditions. Finally, microscopic observations of the fracture surfaces and analysis of the electrical trends during monitoring were conducted to explore the relationship between electrical properties and failure.
The experimental results show two trends between the voltage change percentage and the area of liquid penetration delamination, and microscopic observations revealed the failure mechanisms for these trends. Additionally, voltage monitoring in the hygrothermal environment showed that voltage values increased over time and correlated with fatigue life. Further microscopic observations indicated that both the composite material substrate and the adhesive exhibited plasticization under high temperature and humidity conditions, and pores caused by moisture intrusion were present.
Overall, this study reveals the impact of hygrothermal environments on composite material structures and highlights the differences between conductivity monitoring and mechanical properties. This is crucial for understanding the performance changes of composite materials under specific environmental conditions. However, further research is needed to explain the complex relationships between hygrothermal aging, conductivity, and mechanical properties to improve the prediction and control of composite material structural performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:13:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:13:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ............................................................................................................... I
摘要 ................................................................................................................................. II
誌謝 ................................................................................................................................ III
ABSTRACT .................................................................................................................. IV
目次 ................................................................................................................................ VI
圖次 ................................................................................................................................ XI
表次 ............................................................................................................................... XV
第一章 緒論 .............................................................................................................. 1
1.1 前言 ........................................................................................................................ 1
1.2 研究動機 ................................................................................................................ 3
1.3 論文架構 ................................................................................................................ 4
第二章 文獻回顧 ...................................................................................................... 5
2.1 碳纖維強化複合材料(CFRP) .......................................................................... 5
2.2 單搭接膠合接口(SINGLE LAP JOINT, SLJ) ....................................................... 6
2.2.1 製備參數 ........................................................................................................ 6
2.2.2 應力分布 ........................................................................................................ 7
2.3 複合材料之非破壞性檢驗 .................................................................................. 10
2.3.1 嵌入式感測 .................................................................................................. 10
2.3.1.1 光纖光柵感測 ....................................................................................... 10
2.3.1.2 壓電感測 ............................................................................................... 10
2.3.2 外部檢測 ....................................................................................................... 11
2.3.2.1 結構振動 ................................................................................................ 11
2.3.2.2 超聲波 .................................................................................................... 11
2.3.3 結構健康監控(Structural Health Monitoring, SHM) ............................. 12
2.3.3.1 奈米碳管導電性原理 ........................................................................... 12
2.3.3.2 利用電阻變化進行實時監測 ............................................................... 14
2.4 濕熱老化(HYGROTHERMAL AGING) ................................................................ 18
2.4.1 搭接劑的濕熱老化 ...................................................................................... 18
2.4.2 碳纖維複材的溼熱老化 .............................................................................. 20
2.4.3 碳纖維複材單搭接膠合接口的溼熱老化 .................................................. 26
2.4.4 導電性監測複材濕熱老化 .......................................................................... 30
2.5 總結 ...................................................................................................................... 31
第三章 實驗材料與設備 ........................................................................................ 32
3.1 製備碳纖維複材試片之材料 .............................................................................. 32
3.1.1 碳纖維單向環氧樹脂預浸布 ...................................................................... 32
3.1.2 環氧樹脂搭接劑 .......................................................................................... 33
3.1.3 多壁奈米碳管 .............................................................................................. 33
3.1.4 雙導電銅箔膠帶 .......................................................................................... 33
3.2 製備碳纖維複材試片之設備 .............................................................................. 34
3.2.1 熱壓成型系統 .............................................................................................. 34
3.2.2 深切緩給切割機 .......................................................................................... 35
3.2.3 噴砂機 .......................................................................................................... 36
3.3 調配搭接劑之設備 .............................................................................................. 36
3.3.1 電磁加熱攪拌器 .......................................................................................... 36
3.3.2 超音波打碎機 .............................................................................................. 37
3.3.3 均質機 .......................................................................................................... 37
3.3.4 真空脫泡機 .................................................................................................. 38
3.3.5 食物攪拌器 .................................................................................................. 38
3.4 螢光液滲處理之設備 .......................................................................................... 39
3.4.1 螢光液滲透劑 .............................................................................................. 39
3.4.2 螢光液清潔劑 .............................................................................................. 40
3.4.3 紫外光燈 ...................................................................................................... 40
3.5 環境與溫度控制之設備 ...................................................................................... 41
3.5.1 恆溫水槽 ...................................................................................................... 41
3.5.2 恆溫恆濕箱 .................................................................................................. 41
3.5.3 熱風循環烘箱 .............................................................................................. 42
3.6 重量量測之設備 .................................................................................................. 42
3.6.1 電子天平 ...................................................................................................... 42
3.7 萬能材料試驗機(MATERIAL TESTING SYSTEM, MTS) ................................... 43
3.8 膠合接口健康度監測之設備 .............................................................................. 44
3.8.1 多功能 I/O 數據擷取卡(NI-6009) ......................................................... 44
3.8.2 多功能 I/O 數據擷取卡(NI-6215) ......................................................... 44
3.8.3 電源供應器 .................................................................................................. 44
3.9 掃描式電子顯微鏡 .............................................................................................. 44
第四章 實驗方法與流程 ........................................................................................ 45
4.1 實驗流程 .............................................................................................................. 45
4.2 碳纖維複合材料單搭接試片製作 ...................................................................... 47
4.2.1 製作碳纖維複材積層板材 .......................................................................... 47
4.2.2 製作碳纖維複材試片 .................................................................................. 49
4.2.3 調配搭接劑進行搭接 .................................................................................. 50
4.3 品質管理規則 ...................................................................................................... 51
4.4 螢光液滲透處理 .................................................................................................. 52
4.5 濕熱環境控制處理 .............................................................................................. 53
4.5.1 試片準備處理 .............................................................................................. 53
4.5.2 實驗參數 ...................................................................................................... 53
4.5.3 吸水重量量測 .............................................................................................. 53
4.5.4 導電性量測 .................................................................................................. 53
4.6 機械性質試驗 ...................................................................................................... 54
4.6.1 拉伸試驗 ...................................................................................................... 54
4.6.2 疲勞循環應力試驗 ...................................................................................... 55
4.6.3 電壓監測膠合接口健康度 .......................................................................... 55
4.7 破斷面顯微觀察 .................................................................................................. 55
4.8 試片命名系統規則 .............................................................................................. 56
第五章 實驗結果與討論 ........................................................................................ 57
5.1 拉伸試驗品質管理結果 ...................................................................................... 59
5.1.1 螢光液滲處理之試片 .................................................................................. 59
5.1.2 濕熱環境控制處理試片 .............................................................................. 60
5.2 純乾燥疲勞壽命結果 .......................................................................................... 61
5.3 疲勞壽命與液滲面積之關係 .............................................................................. 62
5.4 電壓變化百分比與液滲面積之關係 .................................................................. 63
5.5 吸水重量量測結果 .............................................................................................. 64
5.6 濕熱環境控制處理之電壓監測結果 .................................................................. 65
5.6.1 高溫高濕(浸泡熱水) .............................................................................. 65
5.6.2 高溫低濕 ...................................................................................................... 67
5.7 濕熱環境控制處理天數及電壓監測值與機械性質試驗結果 .......................... 68
5.7.1 濕熱環境控制處理天數與拉伸強度 .......................................................... 68
5.7.2 濕熱環境控制處理電壓監測與拉伸強度 .................................................. 69
5.7.3 濕熱環境控制處理天數與疲勞壽命 .......................................................... 70
5.7.4 濕熱環境控制處理電壓監測與疲勞壽命 .................................................. 72
5.8 破斷面顯微觀察 .................................................................................................. 73
5.8.1 試片宏觀失效 .............................................................................................. 73
5.8.2 電壓變化百分比與脫層面積之微觀觀察結果 .......................................... 73
5.8.3 濕熱環境控制處理天數差異之微觀觀察結果 .......................................... 75
5.8.3.1 高溫高濕長短天期微觀破壞特徵比較 ............................................... 75
5.8.3.2 高溫低濕長短天期微觀破壞特徵比較 ............................................... 76
5.8.4 高溫高濕(浸泡熱水)電壓上升速率差異之微觀觀察結果 .................. 77
5.8.5 濕熱環境控制處理後之試片微觀觀察總結 .............................................. 78
第六章 結論與未來展望 ........................................................................................ 79
6.1 結論 ...................................................................................................................... 79
6.2 未來展望 .............................................................................................................. 80
參考文獻 ........................................................................................................................ 81
附錄 ................................................................................................................................ 93
附錄A 螢光液滲處理之試片實驗數據 ................................................................... 93
附錄B 濕熱環境控制處理之試片實驗數據 ......................................................... 126
-
dc.language.isozh_TW-
dc.subject碳纖維複合材料zh_TW
dc.subject單搭接膠合接口zh_TW
dc.subject環氧樹脂混合奈米碳管zh_TW
dc.subject螢光液滲處理zh_TW
dc.subject結構健康監測zh_TW
dc.subject濕熱老化zh_TW
dc.subject機械性質zh_TW
dc.subjectSingle lap joint adhesive jointen
dc.subjectMechanical propertyen
dc.subjectStructural health monitoring (SHM)en
dc.subjectHygrothermal agingen
dc.subjectLiquid fluorescent penetrant treatmenten
dc.subjectEpoxy resin mixed with CNTen
dc.subjectCarbon fiber reinforced plasticen
dc.title以導電性監測複材膠合接口濕熱老化破壞之探討zh_TW
dc.titleInvestigation of hygrothermal aging damage in composite adhesive joints monitored by conductivityen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee趙振綱;吳文方;林志郎zh_TW
dc.contributor.oralexamcommitteeChing-Kong Chao;Wen-Fang Wu;Chih-Lang Linen
dc.subject.keyword碳纖維複合材料,單搭接膠合接口,環氧樹脂混合奈米碳管,螢光液滲處理,結構健康監測,濕熱老化,機械性質,zh_TW
dc.subject.keywordCarbon fiber reinforced plastic,Single lap joint adhesive joint,Epoxy resin mixed with CNT,Liquid fluorescent penetrant treatment,Hygrothermal aging,Structural health monitoring (SHM),Mechanical property,en
dc.relation.page185-
dc.identifier.doi10.6342/NTU202402665-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf78.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved