Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林智仁zh_TW
dc.contributor.advisorChih-Jen Linen
dc.contributor.author林鶴哲zh_TW
dc.contributor.authorHe-Zhe Linen
dc.date.accessioned2024-08-09T16:07:44Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citation[1] WeiCheng Chang, Daniel Jiang, Hsiang-Fu Yu, ChoonHui Teo, Jiong Zhang, Kai Zhong, Kedarnath Kolluri, Qie Hu, Nikhil Shandilya, Vyacheslav Ievgrafov, Japinder Singh, and Inderjit S Dhillon. Extreme multilabel learning for semantic matching in product search. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2021.
[2] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. Extreme multilabel loss functions for recommendation, tagging, ranking & other missing label applications. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 935–944, 2016.
[3] Kush Bhatia, Kunal Dahiya, Himanshu Jain, Purushottam Kar, Anshul Mittal, Yashoteja Prabhu, and Manik Varma. The extreme classification repository: Multilabel datasets and code, 2016.
[4] Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael Bommarito, Ion Androutsopoulos, Daniel Katz, and Nikolaos Aletras. LexGLUE: A benchmark dataset for legal language understanding in English. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, pages 4310–4330, 2022.
[5] HsiangFu Yu, Kai Zhong, Jiong Zhang, WeiCheng Chang, and Inderjit S. Dhillon. PECOS: Prediction for enormous and correlated output spaces. Journal of Machine Learning Research, 23(98):1–32, 2022.
[6] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik Varma. Parabel: Partitioned label trees for extreme classification with application to dynamic search advertising. In Proceedings of the 2018 World Wide Web Conference (WWW), pages 993–1002, 2018.
[7] Sujay Khandagale, Han Xiao, and Rohit Babbar. Bonsai: diverse and shallow trees for extreme multilabel classification. Machine Learning, 109:2099–2119, 2020.
[8] ChoJui Hsieh, KaiWei Chang, ChihJen Lin, S. Sathiya Keerthi, and Sellamanickam Sundararajan. A dual coordinate descent method for largescale linear SVM. In Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML), 2008.
[9] Leonardo Galli and ChihJen Lin. A study on truncated Newton methods for linear classification. IEEE Transactions on Neural Networks and Learning Systems, 33(7):2828–2841, 2022.
[10] Rohit Babbar and Bernhard Schölkopf. DiSMEC: Distributed sparse machines for extreme multilabel classification. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM), pages 721–729, 2017.
[11] Ian EnHsu Yen, Xiangru Huang, Pradeep Ravikumar, Kai Zhong, and Inderjit Dhillon. PDsparse : A primal and dual sparse approach to extreme multiclass and multilabel classification. In Proceedings of The 33rd International Conference on Machine Learning (ICML), pages 3069–3077, 2016.
[12] Ian En Hsu Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit Dhillon, and Eric Xing. PPDsparse: A parallel primaldual sparse method for extreme classification. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 545–553, 2017.
[13] Kalina JasinskaKobus, Marek Wydmuch, Krzysztof Dembczynski, Mikhail Kuznetsov, and Robert BusaFekete. Probabilistic label trees for extreme multilabel classification, 2020.
[14] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and Shanfeng Zhu. AttentionXML: Label treebased attentionaware deep model for high performance extreme multilabel text classification. In Advances in Neural Information Processing Systems, volume 32, 2019.
[15] Charles Elkan. Using the triangle inequality to accelerate kmeans. In Proceedings of the Twentieth International Conference on International Conference on Machine Learning (ICML), pages 147–153, 2003.
[16] James MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages 281–297, 1967.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93880-
dc.description.abstract巨量多標籤分類問題旨在從大量標籤中找出與給定資料相關之標籤。針對此分類問題,基於標籤樹的線性模型 (tree-based linear models) 是種簡單而有效率的方法。然而,鮮少研究專注於該方法的所需空間分析。許多過去的研究假定該方法訓練出的模型過大,進而使用權重修剪等方法減少模型大小,但這卻可能導致模型預測能力變差。在這篇論文中,我們透過理論和實驗分析樹狀線性模型在資料的向量為稀疏的狀況下所耗費的空間。此一對於資料的稀疏假設常見於文本分類的問題中。我們發現在樹狀方法在該假設之下會有很多資料特徵在訓練二元分類器時不會被使用到,導致學習到的權重向量包含許多零值。因此,使用稀疏矩陣儲存這些權重可以大幅的節省所需空間。實驗結果顯示,在多標籤文本分類問題之中,相對於標準的二元相關 (binary relevance) 方法,樹狀模型可以省下高達 95% 的儲存空間。該研究結果也提供在訓練樹狀模型之間可以估計模型大小的方法。因此,若估計模型大小已符合空間資源限制,使用者可避免使用權重修剪等方法更動模型。zh_TW
dc.description.abstractExtreme multi-label classification (XMC) aims to identify relevant subsets from numerous labels. Among the various approaches for XMC, tree-based linear models are effective due to their superior efficiency and simplicity. However, the space complexity of tree-based methods is not well-studied. Many past works assume that storing the model is not affordable and apply techniques such as pruning to save space, which may lead to performance loss. In this work, we conduct both theoretical and empirical analyses on the space to store a tree model under the assumption of sparse data, a condition frequently met in text data. We found that some features may be unused when training binary classifiers in a tree method, resulting in zero values in the weight vectors. Hence, storing only non-zero elements can greatly save space. Our experimental results indicate that tree models can achieve up to a 95% reduction in storage space compared to the standard one-vs-rest method for multi-label text classification. Our research provides a simple procedure to estimate the size of a tree model before training any classifier in the tree nodes. Then, if the model size is already acceptable, this approach can help avoid modifying the model through weight pruning or other techniques.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:07:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:07:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
1 Introduction 1
2 Linear Methods for XMC 4
2.1 One­-vs-­rest (OVR) Method 4
2.2 Tree-­based Methods 5
3 Time and Space Analysis for Linear Methods 7
3.1 Time Analysis 8
3.2 Space Analysis 9
4 Techniques for Reducing Model-­size and Their Issues 11
5 Inherent Pruning in Tree-­based Methods for Sparse Data 13
5.1 Analysis on Balanced Trees 14
6 Experimental Results 18
6.1 Experimental Settings 18
6.2 Estimating Model Size Prior to Training 19
6.3 Empirical Analysis on the Model Size 20
7 Conclusions 22
Bibliography 23
Appendix 25
A Time Analysis on Tree Models 26
B Proof of Theorems 29
B.1 Proof of Theorem 1 29
B.2 Theorem 1 for the Exceptional Case of Kα = 1 31
B.3 Proof of Theorem 2 32
C Comments on Theorem 2 34
-
dc.language.isoen-
dc.subject多標籤zh_TW
dc.subject分類zh_TW
dc.subject樹狀模型zh_TW
dc.subject空間效益zh_TW
dc.subjectClassificationen
dc.subjectMulti-labelen
dc.subjectSpace Efficiencyen
dc.subjectTree-based Modelsen
dc.title探究巨量多標籤分類中使用樹狀線性方法之所需空間zh_TW
dc.titleExploring Space Efficiency in a Tree-based Linear Model for Extreme Multi-label Classificationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林軒田;李育杰zh_TW
dc.contributor.oralexamcommitteeHsuan-Tien Lin;Yuh-Jye Leeen
dc.subject.keyword多標籤,分類,樹狀模型,空間效益,zh_TW
dc.subject.keywordMulti-label,Classification,Tree-based Models,Space Efficiency,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202402093-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-03-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved