請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9387完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鍾孝文 | |
| dc.contributor.author | Yi-Yu Shih | en |
| dc.contributor.author | 施逸優 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:20:15Z | - |
| dc.date.available | 2009-08-01 | |
| dc.date.available | 2021-05-20T20:20:15Z | - |
| dc.date.copyright | 2009-07-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-04-09 | |
| dc.identifier.citation | 1. Matson, G.B. and M.W. Weiner, Spectroscopy. Magnetic Resonance Imaging, ed. D.D. Stark and W.G. Bradley, Jr. Vol. 1. 1999, St. Louis: Mosby, Inc. 181-214.
2. Heitler, W. and E. Teller, Time Effects in the Magnetic Cooling Method. I. Proc. Roy. Soc. (London), 1936. A155(886): p. 629-639. 3. Uhlenbeck, G.E. and S.A. Goudsmit, Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. Naturwissenschaften, 1925. 13: p. 953-954. 4. van Vleck, J.H., The Theory of Electric and Magnetic Susceptibilities. 1932, New York: Oxford University Press. 5. Bloch, F., Nuclear Induction. Physical Review, 1946. 70(7-8): p. 460. 6. Bloch, F., W.W. Hansen, and M. Packard, Nuclear Induction. Physical Review, 1946. 69(3-4): p. 127. 7. Bloch, F., W.W. Hansen, and M. Packard, The Nuclear Induction Experiment. Physical Review, 1946. 70(7-8): p. 474. 8. Purcell, E.M., H.C. Torrey, and R.V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a Solid. Physical Review, 1946. 69(1-2): p. 37. 9. Dickinson, W.C., Dependence of the F19 Nuclear Resonance Position on Chemical Compound. Physical Review, 1950. 77(5): p. 736. 10. Proctor, W.G. and F.C. Yu, The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound. Physical Review, 1950. 77(5): p. 717. 11. Damadian, R., Tumor detection by nuclear magnetic resonance. Science, 1971. 171(976): p. 1151-3. 12. Weisman, I.D., et al., Recognition of cancer in vivo by nuclear magnetic resonance. Science, 1972. 178(67): p. 1288-90. 13. Moon, R.B. and J.H. Richards, Determination of intracellular pH by 31P magnetic resonance. J Biol Chem, 1973. 248(20): p. 7276-8. 14. Lauterbur, P.C., Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature, 1973. 242(5394): p. 190-191. 15. Gyulai, L., et al., Phosphorylethanolamine--the major constituent of the phosphomonoester peak observed by 31P-NMR on developing dog brain. FEBS Lett, 1984. 178(1): p. 137-42. 16. Sillerud, L.O. and R.G. Shulman, Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry, 1983. 22(5): p. 1087-94. 17. Hahn, E.L. and D.E. Maxwell, Chemical Shift and Field Independent Frequency Modulation of the Spin Echo Envelope. Physical Review, 1951. 84(6): p. 1246. 18. Ramsey, N.F. and E.M. Purcell, Interactions between Nuclear Spins in Molecules. Physical Review, 1952. 85(1): p. 143. 19. Schupp, D.G., et al., Localized detection of glioma glycolysis using edited 1H MRS. Magn Reson Med, 1993. 30(1): p. 18-27. 20. Knuttel, A. and R. Kimmich, Double-quantum filtered volume-selective NMR spectroscopy. Magn Reson Med, 1989. 10(3): p. 404-10. 21. Reddy, R., et al., Longitudinal spin-order-based pulse sequence for lactate editing. Magn Reson Med, 1991. 19(2): p. 477-82. 22. Rothman, D.L., et al., Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo. Proc Natl Acad Sci U S A, 1984. 81(20): p. 6330-4. 23. Terpstra, M. and R. Gruetter, 1H NMR detection of vitamin C in human brain in vivo. Magn Reson Med, 2004. 51(2): p. 225-9. 24. Lambert, J.B. and E.P. Mazzola, Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods. 2004, Upper Saddle River, NJ: Pearson Prentice Hall. 25. Natt, O., et al., Use of phased array coils for a determination of absolute metabolite concentrations. Magn Reson Med, 2005. 53(1): p. 3-8. 26. Frahm, J., et al., Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med, 1989. 9(1): p. 79-93. 27. Bottomley, P.A., Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci, 1987. 508: p. 333-48. 28. Di Costanzo, A., et al., Proton MR spectroscopy of the brain at 3 T: an update. Eur Radiol, 2007. 17(7): p. 1651-62. 29. Brown, T.R., B.M. Kincaid, and K. Ugurbil, NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A, 1982. 79(11): p. 3523-6. 30. Maudsley, A.A., et al., Reduced phase encoding in spectroscopic imaging. Magn Reson Med, 1994. 31(6): p. 645-51. 31. Duyn, J.H. and C.T. Moonen, Fast proton spectroscopic imaging of human brain using multiple spin-echoes. Magn Reson Med, 1993. 30(4): p. 409-14. 32. Mansfield, P., Spatial mapping of the chemical shift in NMR. Magn Reson Med, 1984. 1(3): p. 370-86. 33. Posse, S., C. DeCarli, and D. Le Bihan, Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology, 1994. 192(3): p. 733-8. 34. Mescher, M., et al., Simultaneous in vivo spectral editing and water suppression. NMR Biomed, 1998. 11(6): p. 266-72. 35. Hafner, H.P., S. Muller, and J. Seelig, Numerical analysis of multislice MR excitation and inversion with multifrequency selective rf pulses. Magn Reson Med, 1990. 13(2): p. 279-92. 36. Terpstra, M., P.G. Henry, and R. Gruetter, Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra. Magn Reson Med, 2003. 50(1): p. 19-23. 37. Terpstra, M., et al., Detection of an antioxidant profile in the human brain in vivo via double editing with MEGA-PRESS. Magn Reson Med, 2006. 56(6): p. 1192-9. 38. Thiel, T., et al., Phase coherent averaging in magnetic resonance spectroscopy using interleaved navigator scans: compensation of motion artifacts and magnetic field instabilities. Magn Reson Med, 2002. 47(6): p. 1077-82. 39. Hu, X., et al., Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med, 1995. 34(2): p. 201-12. 40. Ordidge, R.J., et al., Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging, 1994. 12(3): p. 455-60. 41. Wang, Y., et al., 3D coronary MR angiography in multiple breath-holds using a respiratory feedback monitor. Magn Reson Med, 1995. 34(1): p. 11-6. 42. McGregor, G.P. and H.K. Biesalski, Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care, 2006. 9(6): p. 697-703. 43. Padayatty, S.J., et al., Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med, 2004. 140(7): p. 533-7. 44. Rice, M.E., Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci, 2000. 23(5): p. 209-16. 45. Terpstra, M., et al., Quantification of vitamin C in the rat brain in vivo using short echo-time 1H MRS. Magn Reson Med, 2006. 55(5): p. 979-83. 46. Davies, M.B., J. Austin, and D.A. Partridge, Vitamin C: its chemistry and biochemistry. 1991, Cambridge: Royal Society of Chemistry. 47. Nishikimi, M., et al., Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J Biol Chem, 1994. 269(18): p. 13685-8. 48. May, J.M., et al., Ascorbic acid decreases oxidant stress in endothelial cells caused by the nitroxide tempol. Free Radic Res, 2005. 39(2): p. 195-202. 49. Kyrtopoulos, S.A., et al., Studies in gastric carcinogenesis. V. The effects of ascorbic acid on N-nitroso compound formation in human gastric juice in vivo and in vitro. Carcinogenesis, 1991. 12(8): p. 1371-6. 50. Goodyear-Bruch, C. and J.D. Pierce, Oxidative stress in critically ill patients. Am J Crit Care, 2002. 11(6): p. 543-51; quiz 552-3. 51. Lefer, D.J. and D.N. Granger, Oxidative stress and cardiac disease. Am J Med, 2000. 109(4): p. 315-23. 52. Bucca, C., et al., Effect of ascorbic acid on increased bronchial responsiveness during upper airway infection. Respiration, 1989. 55(4): p. 214-9. 53. Fain, O., E. Mathieu, and M. Thomas, Scurvy in patients with cancer. Bmj, 1998. 316(7145): p. 1661-2. 54. Mayland, C.R., M.I. Bennett, and K. Allan, Vitamin C deficiency in cancer patients. Palliat Med, 2005. 19(1): p. 17-20. 55. Shimpo, K., et al., Ascorbic acid and adriamycin toxicity. Am J Clin Nutr, 1991. 54(6 Suppl): p. 1298S-1301S. 56. Galbusera, C., et al., Increased susceptibility to plasma lipid peroxidation in Alzheimer disease patients. Curr Alzheimer Res, 2004. 1(2): p. 103-9. 57. Charlton, K.E., et al., Lowered plasma vitamin C, but not vitamin E, concentrations in dementia patients. J Nutr Health Aging, 2004. 8(2): p. 99-107. 58. Besler, H.T., S. Comoglu, and Z. Okcu, Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis. Nutr Neurosci, 2002. 5(3): p. 215-20. 59. Mai, J., P.S. Sorensen, and J.C. Hansen, High dose antioxidant supplementation to MS patients. Effects on glutathione peroxidase, clinical safety, and absorption of selenium. Biol Trace Elem Res, 1990. 24(2): p. 109-17. 60. Spector, R., Vitamin homeostasis in the central nervous system. N Engl J Med, 1977. 296(24): p. 1393-8. 61. Rajan, D.P., et al., Human placental sodium-dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun, 1999. 262(3): p. 762-8. 62. Wang, Y., et al., Human vitamin C (L-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun, 2000. 267(2): p. 488-94. 63. Spector, R. and A.V. Lorenzo, Ascorbic acid homeostasis in the central nervous system. Am J Physiol, 1973. 225(4): p. 757-63. 64. Hughes, R.E., R.J. Hurley, and P.R. Jones, The retention of ascorbic acid by guinea-pig tissues. Br J Nutr, 1971. 26(3): p. 433-8. 65. Takanaga, H., B. Mackenzie, and M.A. Hediger, Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch, 2004. 447(5): p. 677-82. 66. Hardman, J.G., L.E. Limbird, and A.G. Gilman, Goodman & Gilman's The pharmacological basis of therapeutics, 10th edition. 2001, New York: McGraw-Hill Professional. 67. Kallner, A., D. Hartmann, and D. Hornig, Steady-state turnover and body pool of ascorbic acid in man. Am J Clin Nutr, 1979. 32(3): p. 530-9. 68. Levine, M., et al., A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci U S A, 2001. 98(17): p. 9842-6. 69. von Elverfeldt, D., et al. Evidence for Detection of Ascorbic Acid in the Human Brain at 3T in Int'l Soc Mag Reson Med. 2006. Seattle, USA. 70. Govindaraju, V., K. Young, and A.A. Maudsley, Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed, 2000. 13(3): p. 129-53. 71. Davey, M.W., et al., Plant L-ascorbic acid : chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric., 2000. 80(7): p. 825-860. 72. Fan, T.W.-M., Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 1996. 28(2): p. 161-219. 73. Willker, W., et al., Metabolite Detection in Cell Extracts and Culture Media by Proton-detected 2D-H,C-NMR Spectroscopy. J. Magn. Res. Anal., 1996. 2: p. 21-32. 74. Provencher, S.W., Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med, 1993. 30(6): p. 672-9. 75. Bartha, R., Effect of signal-to-noise ratio and spectral linewidth on metabolite quantification at 4 T. NMR Biomed, 2007. 20(5): p. 512-21. 76. Gruber, S., V. Mlynarik, and E. Moser, High-resolution 3D proton spectroscopic imaging of the human brain at 3 T: SNR issues and application for anatomy-matched voxel sizes. Magn Reson Med, 2003. 49(2): p. 299-306. 77. Macri, M.A., et al., In vivo quantitative 1H MRS of cerebellum and evaluation of quantitation reproducibility by simulation of different levels of noise and spectral resolution. Magn Reson Imaging, 2004. 22(10): p. 1385-93. 78. Gonen, O., et al., Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. AJNR Am J Neuroradiol, 2001. 22(9): p. 1727-31. 79. Cavassila, S., et al., Cramer-Rao bound expressions for parametric estimation of overlapping peaks: influence of prior knowledge. J Magn Reson, 2000. 143(2): p. 311-20. 80. Brooks, J.C., et al., A proton magnetic resonance spectroscopy study of age-related changes in frontal lobe metabolite concentrations. Cereb Cortex, 2001. 11(7): p. 598-605. 81. Kadota, T., T. Horinouchi, and C. Kuroda, Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol, 2001. 22(1): p. 128-35. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9387 | - |
| dc.description.abstract | 磁共振頻譜在臨床上的應用已有多年的進展,尤其在腦部研究上,更是經常被拿來作為疾病的診斷。雖然維他命C在中樞神經系統中扮演相當重要的角色,但在臨床上的磁振頻譜分析中卻從未有更進一步的討論。在這篇論文中,我們使用臨床上經常使用的磁振頻譜脈衝序列,單點像素解析頻譜,搭配線性疊加模型分析軟體,驗證分析得到的維他命C濃度是否值得信賴。在收集的76筆腦部頻譜資料中,極大多數都可以成功偵測到維他命C的存在。另外我們模擬不同濃度的維他命C頻譜加入三筆不同譜線寬的臨床資料中,發現模擬加入的濃度與分析得到的濃度呈現相當好的線性關係 (R2 > 0.985)。因此認為,利用一般臨床的掃描程序搭配線性疊加模型分析軟體即可穩定偵測維他命C,並且在一般臨床的頻譜分析中應該加入維他命C的分析基底,減低對其他代謝物定量的誤差。 | zh_TW |
| dc.description.abstract | Magnetic resonance spectroscopy (MRS) has been used in clinical applications, especially in brains, for many years. Even though vitamin C plays an important role in central nervous system, its analysis was not included in traditional MRS studies. To evaluate whether vitamin C is detectable, we used a clinical routine MRS sequence, point-resolved spectroscopy (PRESS), combined LCModel analysis, and verified the reliability of its estimated concentration. Seventy-six in vivo single voxel spectra were analyzed and vitamin C could be successfully detected from most of them. Furthermore, we simulated multiple concentration levels by adding adapted ascorbate spectra to the in vivo data, and the results showed very good linearity (R2 > 0.985) between the added ascorbate concentrations and the LCModel estimated concentrations at three different linewidth cases. This dissertation demonstrates the ability to detect vitamin C in the human brain under common clinical MRS standards in combination with LCModel. Besides, it also supports the necessity to include ascorbate in the standard MRS analysis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:20:15Z (GMT). No. of bitstreams: 1 ntu-98-F92921041-1.pdf: 1795656 bytes, checksum: d6005de2718db594eff5a7fbcb7f8c68 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Chapter 1 Introduction to MRS
1.1 Background………………………………………………… 1 1.2 Theory and Data Acquisition…………………………… 5 1.3 Three-Dimensional Localization Techniques…………… 11 1.4 Improvements of Localization Techniques……………… 15 Chapter 2 Vitamin C: Function and Detection 2.1 Background of Vitamin C…………………………………… 19 2.2 Detection of Vitamin C…………………………………… 27 Chapter 3 Detectability and Reliability of Vitamin C Using MRS 3.1 Motives……………………………………………………… 33 3.2 Materials and Methods……………………………………… 37 3.2.1 In vivo Spectra Collection and Analyses……… 37 3.2.2 Virtual Titration……………………………… 41 3.3 Results……………………………………………………… 45 3.3.1 In Vivo Spectra Analysis…………………………… 45 3.3.2 Virtual Titration…………………………………… 52 3.4 Discussions………………………………………………… 61 3.5 Future Work………………………………………………… 70 Chapter 4 Conclusion…………………………………………………… 73 References …………………………………………………………………… 75 | |
| dc.language.iso | en | |
| dc.title | 人體腦部維他命C的偵測與定量:利用標準磁振頻譜技術的可行性 | zh_TW |
| dc.title | The detectability and reliability of vitamin C detection in human brain using standard 1H spectroscopy on a clinical 3T MR-system | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡尚岳,吳文超,劉益瑞,賴炳宏,黎俊蔚,柯正雯,林發暄 | |
| dc.subject.keyword | 維他命C頻譜,臨床磁共振頻譜,單點像素解析頻譜,線性疊加模型, | zh_TW |
| dc.subject.keyword | vitamin C spectrum,clinical MRS,traditional PRESS,LCModel, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-04-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 1.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
