Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李國譚zh_TW
dc.contributor.advisorKuo-Tan Lien
dc.contributor.author陸宣涵zh_TW
dc.contributor.authorHsuan-Han Luen
dc.date.accessioned2024-08-08T16:43:17Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation中央氣象署. 2024. CODiS氣候資料服務系統. <https://codis.cwa.gov.tw/>.
王爱华、钟霈霖、吴青青、马红叶、杨仕品、李荣飞、乔荣. 2020. 利用黃毛草莓創制蜜桃香味草莓新株系. 熱帶亞熱帶植物學報 28:599-606.
袁华招、于红梅、夏瑾、庞夫花、陈晓东、赵密珍. 2019. 森林草莓 MYB 家族鑒定及生物資訊學分析. 植物遺傳資源學報 20:695-708.
許雅筑、林書妍. 2021. 光質及溫度對白草莓植株生長及果實呈色之影響. 臺灣園藝 67:175-187.
許雅筑. 2020. 光質及溫度對白草莓植株生長及果實色澤之影響. 國立臺灣大學園藝學系碩士論文. 台北.
野口裕司. 2011. 野生種から新しい香りを導入したイチゴ種間雑種品種 「桃薫 (とうくん)」. におい・かおり環境学会誌 42:122-128.
野口裕司. 2018. 「桃薫」 栽培と利用の手引き. 国立行政法人農業・食品産業技術総合研究機構. <https://www.naro.go.jp/publicity_report/publication/pamphlet/kind-pamph/043913.html>.
農業部. 2023. 農業統計年報(111年). 農業統計資料查詢系統. <https://agrstat.moa.gov.tw/sdweb/public/book/Book.aspx>.
Aaby, K., S. Mazur, A. Nes, and G. Skrede. 2012. Phenolic compounds in strawberry (Fragaria× ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 132:86-97.
Afrin, S., M. Nuruzzaman, J. Zhu, and Z.-Y. Luo. 2014. Combinatorial interactions of MYB and bHLH in flavonoid biosynthesis and their function in plants. J. Plant Biol. Res 3:65-77.
Aharoni, A., C.R. De Vos, M. Wein, Z. Sun, R. Greco, A. Kroon, J.N. Mol, and A.P. O'Connell. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28:319-332.
Alger, E.I., A.E. Platts, S.K. Deb, X. Luo, S. Ou, Y. Cao, K.E. Hummer, Z. Xiong, S.J. Knapp, and Z. Liu. 2021. Chromosome-scale genome for a red-fruited, perpetual flowering and runnerless woodland strawberry (Fragaria vesca). Front. Genet. 12:671371.
Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.
Asif, M.H., P. Dhawan, and P. Nath. 2000. A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol. Biol. Rep. 18:109-115.
Bailey, T.L., J. Johnson, C.E. Grant, and W.S. Noble. 2015. The MEME suite. Nucleic Acids Res. 43:W39-W49.
Baudry, A., M.A. Heim, B. Dubreucq, M. Caboche, B. Weisshaar, and L. Lepiniec. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39:366-380.
Bekaert, M., P.P. Edger, C.M. Hudson, J.C. Pires, and G.C. Conant. 2012. Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol. 196:596-605.
Berardini, T.Z., L. Reiser, D. Li, Y. Mezheritsky, R. Muller, E. Strait, and E. Huala. 2015. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53:474-485.
Bian, R., S. Yu, X. Song, J. Yao, J. Zhang, and Z. Zhang. 2022. An integrated metabolomic and gene expression analysis of ‘Sachinoka’ strawberry and its somaclonal mutant reveals fruit color and volatiles differences. Plants 12:82.
Borevitz, J.O., Y. Xia, J. Blount, R.A. Dixon, and C. Lamb. 2000. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383-2393.
Buendia, B., M.I. Gil, J.A. Tudela, A.L. Gady, J.J. Medina, C. Soria, J.M. Lopez, and F.A. Tomas-Barberan. 2010. HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. J. of Agric. Food Chem. 58:3916-3926.
Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T.L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinform. 10:1-9.
Cao, Q., L. Huang, J. Li, P. Qu, P. Tao, M.J.C. Crabbe, T. Zhang, and Q. Qiao. 2022. Integrated transcriptome and methylome analyses reveal the molecular regulation of drought stress in wild strawberry (Fragaria nilgerrensis). BMC Plant Biol. 22:613.
Cao, Z.-H., S.-Z. Zhang, R.-K. Wang, R.-F. Zhang, and Y.-J. Hao. 2013. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene conferring abiotic stress tolerance in plants. PloS ONE 8:e69955.
Cappellini, F., A. Marinelli, M. Toccaceli, C. Tonelli, and K. Petroni. 2021. Anthocyanins: from mechanisms of regulation in plants to health benefits in foods. Front. Plant Sci. 12.
Castillejo, C., V. Waurich, H. Wagner, R. Ramos, N. Oiza, P. Muñoz, J.C. Triviño, J. Caruana, Z. Liu, and N. Cobo. 2020. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit. Plant Cell 32:3723-3749.
Chang, L., Y. Zhang, J. Dong, R. Sun, J. Sun, C. Zhong, H. Zhang, S. Zheng, and G. Wang. 2021. Volatile components in three strawberry cultivars with white flesh. Acta Hortic. 1309:1041-1046.
Cheel, J., C. Theoduloz, J.A. Rodríguez, P.D. Caligari, and G. Schmeda-Hirschmann. 2007. Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. × ananassa cv. Chandler. Food Chem. 102:36-44.
Chen, C., H. Chen, Y. Zhang, H.R. Thomas, M.H. Frank, Y. He, and R. Xia. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13:1194-1202.
Crecente-Campo, J., M. Nunes-Damaceno, M. Romero-Rodríguez, and M. Vázquez-Odériz. 2012. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria× ananassa Duch, cv Selva). J. Food Compos. Anal. 28:23-30.
Crooks, G.E., G. Hon, J.-M. Chandonia, and S.E. Brenner. 2004. WebLogo: a sequence logo generator. Genome Res. 14:1188-1190.
da Silva, F.L., M.T. Escribano-Bailón, J.J.P. Alonso, J.C. Rivas-Gonzalo, and C. Santos-Buelga. 2007. Anthocyanin pigments in strawberry. LWT-Food Sci. Technol. 40:374-382.
Deng, J., L. Wang, R.N. Damaris, J. Zhao, L. Zhang, T. Wang, C. Yang, J. Huang, T. Shi, and L. Zhu. 2023. Genome-wide identification of R2R3-MYB transcription factor family in Tartary buckwheat (Fagopyrum tataricum) identifies a member involved in anthocyanin biosynthesis. Agronomy 13:2117.
Denoyes, B., A. Prohaska, J. Petit, and C. Rothan. 2023. Deciphering the genetic architecture of fruit color in strawberry. J. Exp. Bot. 74:6306-6320.
Diamanti, J., F. Capocasa, F. Balducci, M. Battino, J. Hancock, and B. Mezzetti. 2012. Increasing strawberry fruit sensorial and nutritional quality using wild and cultivated germplasm. PLoS ONE 7:e46470.
Du, H., B.-R. Feng, S.-S. Yang, Y.-B. Huang, and Y.-X. Tang. 2012. The R2R3-MYB transcription factor gene family in maize. PloS ONE 7:e37463.
Dubos, C., R. Stracke, E. Grotewold, B. Weisshaar, C. Martin, and L. Lepiniec. 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15:573-581.
Durbin, R., S.R. Eddy, A. Krogh, and G. Mitchison. 1998. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge university press.
Dzhanfezova, T., G. Barba-Espín, R. Müller, B. Joernsgaard, J.N. Hegelund, B. Madsen, D.H. Larsen, M.M. Vega, and T.B. Toldam-Andersen. 2020. Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria× ananassa Duch) genetic resource collection. Food Biosci. 36:100620.
Eddy, S. 2023. HMMER user’s guide: bio-logical sequence analysis using profile hidden markov models. URL: http://eddylab.org/software/hmmer/Userguide.pdf.
Edger, P.P., T.J. Poorten, R. VanBuren, M.A. Hardigan, M. Colle, M.R. McKain, R.D. Smith, S.J. Teresi, A.D. Nelson, and C.M. Wai. 2019. Origin and evolution of the octoploid strawberry genome. Nat. Genet. 51:541-547.
Espley, R.V., R.P. Hellens, J. Putterill, D.E. Stevenson, S. Kutty‐Amma, and A.C. Allan. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 49:414-427.
Fait, A., K. Hanhineva, R. Beleggia, N. Dai, I. Rogachev, V.J. Nikiforova, A.R. Fernie, and A. Aharoni. 2008. Reconfiguration of the achene and receptacle metabolic networks during strawberry fruit development. Plant Physiol. 148:730-750.
Feller, A., K. Machemer, E.L. Braun, and E. Grotewold. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66:94-116.
Feng, C., J. Wang, A. Harris, K.M. Folta, M. Zhao, and M. Kang. 2021. Tracing the diploid ancestry of the cultivated octoploid strawberry. Mol. Biol. Evol. 38:478-485.
Feng, S., S. Sun, X. Chen, S. Wu, D. Wang, and X. Chen. 2015. PyMYB10 and PyMYB10. 1 interact with bHLH to enhance anthocyanin accumulation in pears. PloS ONE 10:e0142112.
Finn, R.D., J. Clements, and S.R. Eddy. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39:W29-W37.
Fox, J., and S. Weisberg. 2019. An R companion to applied regression, Third edition. Sage, Thousand Oaks, CA.
Gasteiger, E., C. Hoogland, A. Gattiker, S.e. Duvaud, M.R. Wilkins, R.D. Appel, and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy server, p. 571-607. In: J.M. Walker (ed.). The Proteomics Protocols Handbook. Humana Press, Totowa, NJ.
Gonzalez, A., M. Zhao, J.M. Leavitt, and A.M. Lloyd. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 53:814-827.
González, M., B. Carrasco, and E. Salazar. 2016. Genome-wide identification and characterization of R2R3MYB family in Rosaceae. Genom. Data 9:50-57.
Guo, M., D. Davis, and J.A. Birchler. 1996. Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349-1355.
Guo, R., L. Xue, G. Luo, T. Zhang, and J. Lei. 2018. Investigation and taxonomy of wild Fragaria resources in Tibet, China. Genet. Resour. Crop Evol. 65:405-415.
Han, H., C.R. Barbey, Z. Fan, S. Verma, V.M. Whitaker, and S. Lee. 2022. Telomere-to-telomere and haplotype-phased genome assemblies of the heterozygous octoploid ‘Florida Brilliance’strawberry (Fragaria × ananassa). BioRxiv 509768.
Han, Y., C. Chen, Z. Yan, J. Li, and Y. Wang. 2019. The methyl jasmonate accelerates the strawberry fruits ripening process. Sci. Hortic. 249:250-256.
Hancock, J.F. 2020. Strawberry. 2th ed. CABI, Wallingford, UK.
Hernandez-Garcia, C.M. and J.J. Finer. 2014. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 217:109-119.
Hichri, I., S.C. Heppel, J. Pillet, C. Léon, S. Czemmel, S. Delrot, V. Lauvergeat, and J. Bogs. 2010. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. Plant 3:509-523.
Hirakawa, H., K. Shirasawa, S. Kosugi, K. Tashiro, S. Nakayama, M. Yamada, M. Kohara, A. Watanabe, Y. Kishida, and T. Fujishiro. 2014. Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species. DNA Res. 21:169-181.
Holton, T.A. and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071.
Hossain, M.R., H.-T. Kim, A. Shanmugam, U.K. Nath, G. Goswami, J.-Y. Song, J.-I. Park, and I.-S. Nou. 2018. Expression profiling of regulatory and biosynthetic genes in contrastingly anthocyanin rich strawberry (Fragaria× ananassa) cultivars reveals key genetic determinants of fruit color. Int. J. Mol. Sci. 19:656.
Hou, X.J., S.B. Li, S.R. Liu, C.G. Hu, and J.Z. Zhang. 2014. Genome-wide classification and evolutionary and expression analyses of citrus MYB transcription factor families in sweet orange. PLoS ONE 9:e112375.
Hu, B., J. Jin, A.-Y. Guo, H. Zhang, J. Luo, and G. Gao. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296-1297.
Hu, Y., C. Feng, L. Yang, P.P. Edger, and M. Kang. 2022. Genomic population structure and local adaptation of the wild strawberry Fragaria nilgerrensis. Hortic. Res. 9:uhab059.
Huang, J., Y. Guo, Q. Sun, W. Zeng, J. Li, X. Li, and W. Xu. 2019. Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant Cell Physiol. 60:687-701.
Jaakola, L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 18:477-483.
Jia, H.-F., Y.-M. Chai, C.-L. Li, D. Lu, J.-J. Luo, L. Qin, and Y.-Y. Shen. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188-199.
Jiang, C., X. Gu, and T. Peterson. 2004. Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica. Genome Biol. 5:1-11.
Jiang, L., M. Yue, Y. Liu, N. Zhang, Y. Lin, Y. Zhang, Y. Wang, M. Li, Y. Luo, and Y. Zhang. 2023. A novel R2R3‐MYB transcription factor FaMYB5 positively regulates anthocyanin and proanthocyanidin biosynthesis in cultivated strawberries (Fragaria× ananassa). Plant Biotechnol. J. 21:1140-1158.
Jin, H. and C. Martin. 1999. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol. Biol. 41:577-585.
Jin, X., H. Du, C. Zhu, H. Wan, F. Liu, J. Ruan, J.P. Mower, and A. Zhu. 2023. Haplotype-resolved genomes of wild octoploid progenitors illuminate genomic diversifications from wild relatives to cultivated strawberry. Nat. Plants 9:1252-1266.
Johnson, M.T., E.J. Carpenter, Z. Tian, R. Bruskiewich, J.N. Burris, C.T. Carrigan, M.W. Chase, N.D. Clarke, S. Covshoff, and C.W. Depamphilis. 2012. Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes. PloS ONE 7:e50226.
Jung, S., T. Lee, C.H. Cheng, K. Buble, P. Zheng, J. Yu, J. Humann, S.P. Ficklin, K. Gasic, and K. Scott. 2019. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Res. 47:D1137-D1145.
Kadomura-Ishikawa, Y., K. Miyawaki, A. Takahashi, and S. Noji. 2015. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit. Biol. Plant. 59:677-685.
Kadomura-Ishikawa, Y., K. Miyawaki, A. Takahashi, T. Masuda, and S. Noji. 2015. Light and abscisic acid independently regulated FaMYB10 in Fragaria× ananassa fruit. Planta 241:953-965.
Kassim, A., J. Poette, A. Paterson, D. Zait, S. McCallum, M. Woodhead, K. Smith, C. Hackett, and J. Graham. 2009. Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol. Nutr. Food Res. 53:625-634.
Kaur, A., P.K. Pati, A.M. Pati, and A.K. Nagpal. 2017. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PloS ONE 12:e0184523.
Khusnutdinov, E., A. Sukhareva, M. Panfilova, and E. Mikhaylova. 2021. Anthocyanin biosynthesis genes as model genes for genome editing in plants. Int. J. Mol. Sci. 22:8752.
Kobayashi, S., N. Goto-Yamamoto, and H. Hirochika. 2004. Retrotransposon-induced mutations in grape skin color. Science 304:982.
Koes, R., W. Verweij, and F. Quattrocchio. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236-242.
Konczak, I. and W. Zhang. 2004. Anthocyanins—more than nature's colours. J. Biomed. Biotechnol. 2004:239-240.
Kong, J.M., L.S. Chia, N.K. Goh, T.F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64:923-933.
Kranz, H.D., M. Denekamp, R. Greco, H. Jin, A. Leyva, R.C. Meissner, K. Petroni, A. Urzainqui, M. Bevan, and C. Martin. 1998. Towards functional characterisation of the members of the R2R3‐MYB gene family from Arabidopsis thaliana. Plant J. 16:263-276.
Kumar, S. and S. Bhatia. 2016. A polymorphic (GA/CT)n-SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci. Rep. 6:33280.
Letunic, I. and P. Bork. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49:W293-W296.
Li, H., Z. Yang, Q. Zeng, S. Wang, Y. Luo, Y. Huang, Y. Xin, and N. He. 2020. Abnormal expression of bHLH3 disrupts a flavonoid homeostasis network, causing differences in pigment composition among mulberry fruits. Hortic. Res. 7:83.
Li, X., C. Xue, J. Li, X. Qiao, L. Li, L.a. Yu, Y. Huang, and J. Wu. 2016. Genome-wide identification, evolution and functional divergence of MYB transcription factors in Chinese white pear (Pyrus bretschneideri). Plant Cell Physiol. 57:824-847.
Lin, Y., C. Wang, S. Cao, Z. Sun, Y. Zhang, M. Li, W. He, Y. Wang, Q. Chen, and Y. Zhang. 2023. Proanthocyanidins delay fruit coloring and softening by repressing related gene expression during strawberry (Fragaria× ananassa Duch.) ripening. Int. J. Mol. Sci. 24:3139.
Lin-Wang, K., T.K. McGhie, M. Wang, Y. Liu, B. Warren, R. Storey, R.V. Espley, and A.C. Allan. 2014. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5:651.
Liu, J., J. Wang, M. Wang, J. Zhao, Y. Zheng, T. Zhang, L. Xue, and J. Lei. 2021a. Genome-wide analysis of the R2R3-MYB gene family in Fragaria× ananassa and its function identification during anthocyanins biosynthesis in pink-flowered strawberry. Front. Plant Sci. 12:702160.
Liu, T., M. Li, Z. Liu, X. Ai, and Y. Li. 2021b. Reannotation of the cultivated strawberry genome and establishment of a strawberry genome database. Horti. Res. 8:41.
Liu, W., Y. Feng, S. Yu, Z. Fan, X. Li, J. Li, and H. Yin. 2021c. The flavonoid biosynthesis network in plants. Int. J. Mol. Sci. 22:12824.
Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402-408.
Lloyd, A., A. Brockman, L. Aguirre, A. Campbell, A. Bean, A. Cantero, and A. Gonzalez. 2017. Advances in the MYB–bHLH–WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant Cell Physiol. 58:1431-1441.
Lu, J., L. Qu, G. Xing, Z. Liu, X. Lu, and X. Han. 2023. Genome-wide identification and expression analysis of the MADS gene family in tulips (Tulipa gesneriana). Genes 14:1974.
Madden, T. 2013. The BLAST Sequence Analysis Tool. In: The NCBI Handbook [Internet]. 2nd edition. National Center for Biotechnology Information, Bethesda, MD, US. URL: https://www.ncbi.nlm.nih.gov/books/NBK153387/.
Madeira, F., M. Pearce, A.R. Tivey, P. Basutkar, J. Lee, O. Edbali, N. Madhusoodanan, A. Kolesnikov, and R. Lopez. 2022. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50:W276-W279.
Mao, W., Y. Han, Y. Chen, M. Sun, Q. Feng, L. Li, L. Liu, K. Zhang, L. Wei, and Z. Han. 2022. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1. Plant Cell 34:1226-1249.
Marchler-Bauer, A. and S.H. Bryant. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32:W327-W331.
Marchler-Bauer, A., S. Lu, J.B. Anderson, F. Chitsaz, M.K. Derbyshire, C. DeWeese-Scott, J.H. Fong, L.Y. Geer, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, J.D. Jackson, Z. Ke, C.J. Lanczycki, F. Lu, G.H. Marchler, M. Mullokandov, M.V. Omelchenko, C.L. Robertson, J.S. Song, N. Thanki, R.A. Yamashita, D. Zhang, N. Zhang, C. Zheng, and S.H. Bryant. 2011. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39:D225-D229.
Martínez‐Rivas, F.J., R. Blanco‐Portales, M.P. Serratosa, P. Ric‐Varas, V. Guerrero‐Sánchez, L. Medina‐Puche, L. Moyano, J.A. Mercado, S. Alseekh, and J.L. Caballero. 2023. FaMYB123 interacts with FabHLH3 to regulate the late steps of anthocyanin and flavonol biosynthesis during ripening. Plant J. 114:683-698.
Matus, J.T., F. Aquea, and P. Arce-Johnson. 2008. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol. 8:1-15.
Medina-Puche, L., G. Cumplido-Laso, F. Amil-Ruiz, T. Hoffmann, L. Ring, A. Rodríguez-Franco, J.L. Caballero, W. Schwab, J. Muñoz-Blanco, and R. Blanco-Portales. 2014. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J. Exp. Bot. 65:401-417.
Mehmood, N., Y. Yuan, M. Ali, M. Ali, J. Iftikhar, C. Cheng, M. Lyu, and B. Wu. 2021. Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis. Phytochemistry 181:112590.
Mendiburu, F. de. 2021. Agricolae: Statistical procedures for agricultural research version 1.3-5 [Computer software]. URL: https://CRAN.R-project.org/package=agricolae.
Meng, J., J. Yin, H. Wang, and H. Li. 2022. A TCP transcription factor in Malus halliana, MhTCP4, positively regulates anthocyanins biosynthesis. Int. J. Mol. Sci. 23:9051.
Mistry, J., S. Chuguransky, L. Williams, M. Qureshi, G.A. Salazar, E.L. Sonnhammer, S.C. Tosatto, L. Paladin, S. Raj, and L.J. Richardson. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49:D412-D419.
Nguyen, V.T., J. Stewart, M. Lopez, I. Ioannou, and F. Allais. 2020. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules 25:4537.
Nicholas, K. and H.B. Nicholas Jr. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments. Pittsburgh Supercomputing Center’s National Resource for Biomedical Supercomputing, ver. 2.7. 000.
Niu, S.-S., C.-J. Xu, W.-S. Zhang, B. Zhang, X. Li, K. Lin-Wang, I.B. Ferguson, A.C. Allan, and K.-S. Chen. 2010. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887-899.
Noguchi, Y., T. Mochizuki, and K. Sone. 2002. Breeding of a new aromatic strawberry by interspecific hybridization Fragaria × ananassa × F. nilgerrensis. J. Japan. Soc. Hort. Sci. 71:208-213.
Ogata, K., C. Kanei-Ishii, M. Sasaki, H. Hatanaka, A. Nagadoi, M. Enari, H. Nakamura, Y. Nishimura, S. Ishii, and A. Sarai. 1996. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat. Struct. Biol. 3:178-187.
Ogata, K., S. Morikawa, H. Nakamura, H. Hojo, S. Yoshimura, R. Zhang, S. Aimoto, Y. Ametani, Z. Hirata, and A. Sarai. 1995. Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb. Nat. Struct. Biol. 2:309-320.
Okutsu, K., K. Matsushita, and T. Ikeda. 2018. Differential anthocyanin concentrations and expression of anthocyanin biosynthesis genes in strawberry ‘Sachinoka’during fruit ripening under high-temperature stress. Environ. Control. Biol. 56:1-6.
Olsson, M.E., J. Ekvall, K.-E. Gustavsson, J. Nilsson, D. Pillai, I. Sjöholm, U. Svensson, B. Åkesson, and M.G. Nyman. 2004. Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria× ananassa): effects of cultivar, ripening, and storage. J. Agric. Food Chem. 52:2490-2498.
Pabo, C.O. and R.T. Sauer. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61:1053-1095.
Peršoh, D., S. Theuerl, F. Buscot, and G. Rambold. 2008. Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J. Microbiol. Methods 75:19-24.
Petroni, K. and C. Tonelli. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 181:219-229.
Qiao, Q., P.P. Edger, L. Xue, L. Qiong, J. Lu, Y. Zhang, Q. Cao, A.E. Yocca, A.E. Platts, and S.J. Knapp. 2021. Evolutionary history and pan-genome dynamics of strawberry (Fragaria spp.). Proc. Natl. Acad. Sci. U.S.A. 118:e2105431118.
Rabino, I. and A.L. Mancinelli. 1986. Light, temperature, and anthocyanin production. Plant Physiol. 81:922-924.
Rabinowicz, P.D., E.L. Braun, A.D. Wolfe, B. Bowen, and E. Grotewold. 1999. Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants. Genetics 153:427-444.
Rahim, M.A., N. Busatto, and L. Trainotti. 2014. Regulation of anthocyanin biosynthesis in peach fruits. Planta 240:913-929.
Rombauts, S., P. Déhais, M. Van Montagu, and P. Rouzé. 1999. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 27:295-296.
Sacks, E.J. and D.V. Shaw. 1994. Optimum allocation of objective color measurements for evaluating fresh strawberries. J. Am. Soc. Hortic. Sci. 119:330-334.
Schaart, J.G., C. Dubos, I. Romero De La Fuente, A.M. van Houwelingen, R.C. de Vos, H.H. Jonker, W. Xu, J.M. Routaboul, L. Lepiniec, and A.G. Bovy. 2013. Identification and characterization of MYB‐b HLH‐WD 40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (F ragaria× ananassa) fruits. New Phytol. 197:454-467.
Schultz, J., R.R. Copley, T. Doerks, C.P. Ponting, and P. Bork. 2000. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28:231-234.
Song, H., W. Sun, G. Yang, and J. Sun. 2018. WRKY transcription factors in legumes. BMC Plant Biol. 18:1-13.
Song, X., Q. Yang, Y. Liu, J. Li, X. Chang, L. Xian, and J. Zhang. 2021. Genome-wide identification of Pistacia R2R3-MYB gene family and function characterization of PcMYB113 during autumn leaf coloration in Pistacia chinensis. Int. J. Biol. Macromol. 192:16-27.
Spinardi, A., G. Cola, C.S. Gardana, and I. Mignani. 2019. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci. 10:1045.
Staudt, G. 1989. The species of Fragaria. The taxanomy and geographical distribution. Acta Hortic. 439:55-62.
Stracke, R., M. Werber, and B. Weisshaar. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 4:447-456.
Tamura, K., G. Stecher, and S. Kumar. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38:3022-3027.
Tanaka, Y. and A. Ohmiya. 2008. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr. Opin. Biotechnol. 19:190-197.
Team, R. 2022. RStudio: Integrated development environment for R. (Version 2022.7. 1.554)[Computer software]. RStudio, PBC, Boston, MA URL: http://www.rstudio.com.
Thill, J., S. Miosic, T.P. Gotame, M. Mikulic-Petkovsek, C. Gosch, R. Veberic, A. Preuss, W. Schwab, F. Stampar, and K. Stich. 2013. Differential expression of flavonoid 3’-hydroxylase during fruit development establishes the different B-ring hydroxylation patterns of flavonoids in Fragaria× ananassa and Fragaria vesca. Plant Physiol. Biochem. 72:72-78.
Tõnutare, T. 2015. Possibilities to affect antioxidant properties of strawberries and some methodical aspects in their determination. PhD thesis. Eesti Maaülikool. Tartu, Estonia.
Untergasser, A., H. Nijveen, X. Rao, T. Bisseling, R. Geurts, and J.A. Leunissen. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35:W71-W74.
Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B.C. Faircloth, M. Remm, and S.G. Rozen. 2012. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40:e115-e115.
Valipour, E., A. Kowsari, H. Bayat, M. Banan, S. Kazeminasab, S. Mohammadparast, and M. Ohadi. 2013. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes. Gene 531:175-179.
Walker, A.R., E. Lee, J. Bogs, D.A. McDavid, M.R. Thomas, and S.P. Robinson. 2007. White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J. 49:772-785.
Wang, A., H. Ma, X. Zhang, B. Zhang, and F. Li. 2023. Transcriptomic analysis reveals the mechanism underlying the anthocyanin changes in Fragaria nilgerrensis Schlecht. and its interspecific hybrids. BMC Plant Biol. 23:356.
Wang, H., H. Zhang, Y. Yang, M. Li, Y. Zhang, J. Liu, J. Dong, J. Li, E. Butelli, and Z. Xue. 2020. The control of red colour by a family of MYB transcription factors in octoploid strawberry (Fragaria× ananassa) fruits. Plant Biotechnol. J. 18:1169-1184.
Warner, R., B.-S. Wu, S. MacPherson, and M. Lefsrud. 2021. A review of strawberry photobiology and fruit flavonoids in controlled environments. Front. Plant Sci. 12:611893.
Williams, C.E. and E. Grotewold. 1997. Differences between plant and animal Myb domains are fundamental for DNA binding activity, and chimeric Myb domains have novel DNA binding specificities. J. Biol. Chem. 272:563-571.
Wittkopp, P.J. and G. Kalay. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13:59-69.
Xing, Y., W. Sun, Y. Sun, J. Li, J. Zhang, T. Wu, T. Song, Y. Yao, and J. Tian. 2023. MPK6‐mediated HY5 phosphorylation regulates light‐induced anthocyanin accumulation in apple fruit. Plant Biotechnol. J. 21:283-301.
Xu, P., L. Wu, M. Cao, C. Ma, K. Xiao, Y. Li, and H. Lian. 2021. Identification of MBW complex components implicated in the biosynthesis of flavonoids in woodland strawberry. Front. Plant Sci. 12:774943.
Xu, W., H. Peng, T. Yang, B. Whitaker, L. Huang, J. Sun, and P. Chen. 2014. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiol. Biochem. 82:289-298.
Yamaguchi, M., C. Dieffenbach, R. Connolly, D. Cruess, W. Baur, and J. Sharefkin. 1992. Effect of different laboratory techniques for guanidinium-phenol-chloroform RNA extraction on A260/A280 and on accuracy of mRNA quantitation by reverse transcriptase-PCR. Genome Res. 1:286-290.
Yamamoto, Y.Y., T. Yoshitsugu, T. Sakurai, M. Seki, K. Shinozaki, and J. Obokata. 2009. Heterogeneity of Arabidopsis core promoters revealed by high‐density TSS analysis. Plant J. 60:350-362.
Yang, F., J. Cai, Y. Yang, and Z. Liu. 2013. Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis. Plant Cell Tissue Organ Cult. 115:159-167.
Yang, J., B. Zhang, G. Gu, J. Yuan, S. Shen, L. Jin, Z. Lin, J. Lin, and X. Xie. 2022. Genome-wide identification and expression analysis of the R2R3-MYB gene family in tobacco (Nicotiana tabacum L.). BMC Genom. 23:432.
Yang, X., T. Zhou, M. Wang, T. Li, G. Wang, F.-F. Fu, and F. Cao. 2021. Systematic investigation and expression profiles of the GbR2R3-MYB transcription factor family in ginkgo (Ginkgo biloba L.). Int. J. Biol. Macromol. 172:250-262.
Yanhui, C., Y. Xiaoyuan, H. Kun, L. Meihua, L. Jigang, G. Zhaofeng, L. Zhiqiang, Z. Yunfei, W. Xiaoxiao, and Q. Xiaoming. 2006. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol. Biol. 60:107-124.
Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, and T.L. Madden. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13:1-11.
Yuan, H., W. Cai, X. Chen, F. Pang, J. Wang, and M. Zhao. 2022. Heterozygous frameshift mutation in FaMYB10 is responsible for the natural formation of red and white-fleshed strawberry (Fragaria× ananassa Duch). Front. Plant Sci. 13:1027567.
Yue, M., L. Jiang, N. Zhang, L. Zhang, Y. Liu, Y. Lin, Y. Zhang, Y. Luo, Y. Zhang, and Y. Wang. 2023. Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes. Front. Plant Sci. 14:1145670.
Zhang, C., R. Ma, J. Xu, J. Yan, L. Guo, J. Song, R. Feng, and M. Yu. 2018a. Genome-wide identification and classification of MYB superfamily genes in peach. PloS ONE 13:e0199192.
Zhang, J., Y. Lei, B. Wang, S. Li, S. Yu, Y. Wang, H. Li, Y. Liu, Y. Ma, and H. Dai. 2020a. The high‐quality genome of diploid strawberry (Fragaria nilgerrensis) provides new insights into anthocyanin accumulation. Plant Biotechnol. J. 18:1908-1924.
Zhang, J., Y. Zhang, Y. Dou, W. Li, S. Wang, W. Shi, Y. Sun, and Z. Zhang. 2017. Single nucleotide mutation in FvMYB10 may lead to the yellow fruit in Fragaria vesca. Mol. Breed, 37:1-10.
Zhang, X., Q. Chen, D. Yu, S. Zhou, and H. Tang. 2013. Expression analysis of the ANR and LAR gene in Fragaria× ananassa cv. Toyonaka. J. Agric. Sci. 5:64-69.
Zhang, Y., D. Yin, and H. Song. 2020b. Genome-wide identification and characterization of gene families in Arachis: methods and strategies. Front. Genet. 11:525.
Zhang, Y., J. Wen, and S.S.-T. Yau. 2019. Phylogenetic analysis of protein sequences based on a novel k-mer natural vector method. Genomics 111:1298-1305.
Zhang, Y., X. Peng, Y. Liu, Y. Li, Y. Luo, X. Wang, and H. Tang. 2018b. Evaluation of suitable reference genes for qRT-PCR normalization in strawberry (Fragaria× ananassa) under different experimental conditions. BMC Mol. Biol. 19:1-10.
Zhang, Z., Y. Shi, Y. Ma, X. Yang, X. Yin, Y. Zhang, Y. Xiao, W. Liu, Y. Li, and S. Li. 2020c. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnol. J. 18:2267-2279.
Zhou, B., J. Leng, Y. Ma, P. Fan, Y. Li, H. Yan, and Q. Xu. 2020. BrmiR828 targets BrPAP1, BrMYB82, and BrTAS4 involved in the light induced anthocyanin biosynthetic pathway in Brassica rapa. Int. J. Mol. Sci. 21:4326.
Zhou, Y., J. Xiong, Z. Shu, C. Dong, T. Gu, P. Sun, S. He, M. Jiang, Z. Xia, and J. Xue. 2023. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. Hortic. Res. 10:uhad027.
Zhu, Q., S. Sui, X. Lei, Z. Yang, K. Lu, G. Liu, Y.-G. Liu, and M. Li. 2015. Ectopic expression of the coleus R2R3 MYB-type proanthocyanidin regulator gene SsMYB3 alters the flower color in transgenic tobacco. PloS ONE 10:e0139392.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93878-
dc.description.abstract黃毛草莓(Fragaria nilgerrensis Schltdl. ex J. Gay)為野生二倍體草莓,果實呈白色且具桃香氣,獨特果實品質及抗逆境性有益於栽培種草莓(F. × ananassa Duchesne)的育種。黃毛草莓與栽培種草莓雜交種的果實花青素含量較栽培種草莓的一般品種低,然其分子機制仍未知。R2R3-MYB為調控含花青素在內之類黃酮生合成的主要轉錄因子,本研究首先鑑定黃毛草莓全基因組之R2R3-MYB基因,比較黃毛草莓與栽培種草莓及森林草莓(F. vesca L.)類黃酮生合成相關MYB的差異,再分析種間雜交種‘桃薰’花青素生合成相關基因表現。
本研究共鑑定出91個黃毛草莓R2R3-MYB (FnMYB),為推測其功能,首先利用MEGA 11的鄰近連接法(neighbor-joining)建立其與阿拉伯芥126個R2R3-MYB (AtMYB)之共同親緣關係樹,結果可將FnMYB分為38個亞群(F1-F38)。其中,F9、F23、F27及F11,分別對應AtMYB參與類黃酮生合成的S4、S5、S6及S7亞群。其次利用BLAST (basic local alignment search tool) 對與類黃酮生合成相關的FnMYB、栽培種草莓之FaMYB及森林草莓之FvMYB的蛋白質序列進行比對。結果顯示,FnMYB與另外兩者之序列高度相似。進一步分析DNA上啟動子序列之差異,結果顯示在調控原花青素生合成的F23/S5亞群中,FnMYB11 (evm.model.chr6.3088) 相較於FaMYB11s含有更多離層酸及茉莉酸甲酯反應相關的順式作用元件,且FnMYB11在轉錄起始點處具有長GA雙核苷酸重複序列,推測兩物種MYB11表現模式可能不盡相同。
本研究第二部分探討‘桃薰’與栽培種草莓‘臺大朱蜜’及‘TFB White’花青素生合成的差異,‘臺大朱蜜’為紅皮紅肉品種,‘TFB White’則為白皮白肉品種。試驗於溫室栽培草莓植株,採收’綠果期、白果期及成熟期3個生長階段之果實,供花青素含量測定及花青素生合成相關基因表現分析。研究發現,‘桃薰’充分成熟時果皮呈橘紅色,促進花青素生合成的MYB10表現量略低於‘臺大朱蜜’,MYB11的表現模式則與‘臺大朱蜜’相近。相較於‘TFB White’,‘桃薰’促進花青素生合成之基因表現量大部分較高。總體而言,‘桃薰’的花青素相關基因表現模式與栽培種草莓紅果品種相似。
zh_TW
dc.description.abstractFragaria nilgerrensis Schltdl. ex J. Gay is a wild diploid strawberry species characterized by its white fruits with peach-like aroma. Traits such as unique fruit characteristics and stress resistance in F. nilgerrensis are valuable for the breeding of cultivated strawberry (F. × ananassa Duchesne). The interspecific hybrids between F. nilgerrensis and cultivated strawberry generally bear fruits with less anthocyanin content than the common strawberry cultivars. However, the underlying molecular mechanism remains unclear. The R2R3-MYB transcription factors (TFs) are well-known as key regulators of biosynthesis of flavonoids including anthocyanin. This study aimed to identify the R2R3-MYBs in F. nilgerrensis genome, and to compare the difference in flavonoid biosynthesis-related genes among F. nilgerrensis (FnMYBs), F. × ananassa (FaMYBs), and F. vesca L. (FvMYBs). In addition, the anthocyanin biosynthesis-related gene expression in an interspecific hybrid, ‘Tokun’, was analyzed.
A total of 91 R2R3-MYB genes in F. nilgerrensis were identified in this study. To predict the functions of R2R3-FnMYB proteins, the 91 FnMYBs and 126 Arabidopsis thaliana R2R3-MYBs were integrated into a neighbor-joining tree using MEGA 11. FnMYBs were divided into 38 subgroups (F1-F38). F9, F23, F27, and F11 subgroups correspond to the S4, S5, S6, and S7 subgroups in Arabidopsis R2R3-MYB family that participate in flavonoid metabolic pathway. The protein sequence analysis through BLAST (basic local alignment search tool) showed that almost all flavonoid biosynthesis-related FnMYBs shared high levels of similarity with FaMYBs and FvMYBs. However, promoter analysis of FnMYB11 in F23/S5, the subgroup involved in proanthocyanidin biosynthesis, showed that FnMYB11 contained more abscisic acid (ABA)- and methyl jasmonate (MeJA)-responsive elements compared with FaMYB11s. Furthermore, only FnMYB11 had long GA-dinucleotide repeats spanning the transcription start site, suggesting that FnMYB11 might have different expression patterns from FaMYB11s.
In the second experiment, the differences in anthocyanin biosynthesis between ‘Tokun’ and cultivated strawberry ‘NTU Jumi’ and ‘TFB White’ were investigated. ‘NTU Jumi’ is a strawberry cultivar with red skin and flesh, and ‘TFB White’ is a white strawberry cultivar. In this experiment, strawberry plants were grown in a greenhouse and harvested at green, white, and ripe fruit stages. Anthocyanin content in the fruit was measured, and the expression of genes related to anthocyanin biosynthesis was analyzed. During ripening, the fruits of ‘Tokun’ turned red-orange. The expression level of the main activator of anthocyanin biosynthesis, MYB10, was only slightly lower than that in ‘NTU Jumi’, and the expression pattern of MYB11 in ‘Tokun’ was similar to ‘NTU Jumi’. ‘Tokun’ generally had higher expression levels of genes that promote anthocyanin biosynthesis than ‘TFB White’. Overall, the expression patterns of anthocyanin biosynthesis-related genes in ‘Tokun’ fruits harvested in this study were more similar to those in the red strawberry cultivar.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:43:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:43:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
第一章 前人研究及試驗假說 1
1.1. 前言 1
1.2. 草莓簡介 2
1.2.1. 野生草莓種質資源 2
1.2.2. 黃毛草莓及‘桃薰’特性 2
1.3. 花青素生合成 3
1.3.1. 花青素簡介 3
1.3.2. 類黃酮生合成途徑 4
1.4. R2R3-MYB轉錄因子家族 5
1.4.1. R2R3-MYB特徵及功能 5
1.4.2. MYB-bHLH-WD40複合體調控花青素生合成 7
1.4.3. 黃毛草莓及‘桃薰’花青素生合成 8
1.5. 轉錄因子家族鑑定方法及功能預測 8
1.6. BLAST (basic local alignment search tool)簡介 9
1.7. 啟動子分析 9
1.8. 試驗目的及假說 10
第二章 材料與方法 11
2.1. 黃毛草莓R2R3-MYB基因家族鑑定及分析 11
2.1.1. 黃毛草莓R2R3-MYB鑑定 11
2.1.2. 黃毛草莓R2R3-MYB基本性質、基因結構及蛋白質模組分析 12
2.1.3. 黃毛草莓R2R3-MYB親緣分析及功能預測 12
2.1.4. 黃毛草莓、栽培種草莓MYB11序列比對及啟動子分析 14
2.2. ‘桃薰’果實花青素生合成 15
2.2.1. 植物材料及生長條件 15
2.2.2. 花青素含量分析 16
2.2.3. 基因表現分析 17
2.2.4. MYB10-2啟動子及基因序列分析 18
2.3. 統計分析 20
第三章 結果 21
3.1. 黃毛草莓R2R3-MYB轉錄因子分析 21
3.1.1. 鑑定及基本結構分析 21
3.1.2. 黃毛草莓R2R3-MYB轉錄因子功能預測 22
3.1.3. 黃毛草莓MYB11啟動子序列分析 23
3.2. ‘桃薰’花青素累積與基因表現分析 23
3.3. ‘桃薰’MYB10-2啟動子及基因序列分析 24
第四章 討論 25
第五章 結論 32
參考文獻 50
-
dc.language.isozh_TW-
dc.title黃毛草莓 R2R3-MYB 轉錄因子家族之全基因組鑑定及‘桃薰’果實花青素生合成zh_TW
dc.titleGenome-wide identification of R2R3-MYB transcription factor family in Fragaria nilgerrensis Schltdl. ex J. Gay and anthocyanin biosynthesis of ‘Tokun’en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李金龍;許富鈞;張嵐雁zh_TW
dc.contributor.oralexamcommitteeChing-Lung Lee;Fu-Chiun Hsu;Lan-Yen Changen
dc.subject.keyword野生草莓,親緣分析,類黃酮生合成,基因表現,MYB10,zh_TW
dc.subject.keywordwild strawberry,phylogenetic analysis,flavonoid biosynthesis,gene expression,MYB10,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202402402-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved