Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93876Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃振康 | zh_TW |
| dc.contributor.advisor | Chen-Kang Huang | en |
| dc.contributor.author | 蔡定甫 | zh_TW |
| dc.contributor.author | Ting-Fu Tsai | en |
| dc.date.accessioned | 2024-08-08T16:42:34Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | 周劭穎。2023。雷射表面改質與應用Mask R-CNN於沸騰熱傳之影響。碩士論文。臺北:國立臺灣大學生物機電工程學系。
陳文安。2019。氧化鎢奈米線及二氧化鈦奈米管於沸騰熱傳之影響。碩士論文。臺北:國立臺灣大學生物產業機電工程學系。 Bankoff, S. G. 1958. Entrapment of gas in the spreading of a liquid over a rough surface. AIChE Journal. 4(1): 24-26. Bejan, A. 2013. Convection heat transfer: John wiley & sons. Bergles, A. E. and Morton, H. L. 1965. Survey and evaluation of techniques to augment convective heat transfer. Bergman, T. L., Lavine, A. S., Incropera, F. P. and DeWitt, D. P. 2011. Introduction to heat transfer: John Wiley & Sons. Borishanskii, V. 1969. Correlation of the effect of pressure on the critical heat flux and heat transfer rates using the theory of thermodynamic similarity. In Problems of Heat Transfer and Hydraulics of Two-Phase Media pp. 16-37: Elsevier. Bromley, L. A. 1949. Heat transfer in stable film boiling Vol. 2295: US Atomic Energy Commission, Technical Information Division. Cao, Z., Xie, X., Zheng, Y., Ouyang, Z., Liao, H. and Long, J. 2023. Effect of thermal contact resistance on the CHF and HTC for pool boiling heat transfer. Applied Thermal Engineering. 229: 120623. Carey, V. P. 2018. Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment: CRC Press. Chen, R., Lu, M. C., Srinivasan, V., Wang, Z., Cho, H. H. and Majumdar, A. 2009. Nanowires for enhanced boiling heat transfer. Nano letters. 9(2): 548-553. Clark, H. B., Strenge, P. and Westwater, J. 1959. Active sites for nucleate boiling. Chem. Eng. Progr. 55. Deb, S., Pal, S., Das, D. C., Das, M., Das, A. K. and Das, R. 2020. Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b. Heat and Mass Transfer. 56: 3273-3287. Deng, D., Feng, J., Huang, Q., Tang, Y. and Lian, Y. 2016. Pool boiling heat transfer of porous structures with reentrant cavities. International Journal of Heat and Mass Transfer. 99: 556-568. Forster, H. K. and Zuber, N. 1955. Dynamics of vapor bubbles and boiling heat transfer. AIChE Journal. 1(4): 531-535. Griffith, P. and Wallis, J. D. 1958. The role of surface conditions in nucleate boiling. Han, C.-Y. 1962. The mechanism of heat transfer in nucleate pool boiling. PhD dissertation. Massachusetts Institute of Technology. Hsu, Y. 1962. On the size range of active nucleation cavities on a heating surface. Huang, C. K., Lee, C. W. and Wang, C. K. 2011. Boiling enhancement by TiO2 nanoparticle deposition. International Journal of Heat and Mass Transfer. 54(23-24): 4895-4903. Jakob, M. 1949. Heat transfer Vol. 2: Wiley. Jones, B. J., McHale, J. P. and Garimella, S. V. 2009. The influence of surface roughness on nucleate pool boiling heat transfer. Kamatchi, R. 2018. Experimental investigations on nucleate boiling heat transfer of aqua based reduced graphene oxide nanofluids. Heat and Mass Transfer. 54(2): 437-451. Kandlikar, S. G. 2006. Nucleation characteristics and stability considerations during flow boiling in microchannels. Experimental Thermal and Fluid Science. 30(5): 441-447. Kandlikar, S. G. 2019. Handbook of phase change: boiling and condensation: Routledge. Kang, M. G. 1998. Experimental investigation of tube length effect on nucleate pool boiling heat transfer. Annals of Nuclear Energy. 25(4-5): 295-304. Kang, M. G. 2000. Effect of surface roughness on pool boiling heat transfer. International journal of heat and mass transfer. 43(22): 4073-4085. Kim, J., Jun, S., Laksnarain, R. and You, S. M. 2016. Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. International Journal of Heat and Mass Transfer. 101: 992-1002. Kruse, C. M., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G. and Ndao, S. 2015. Enhanced pool-boiling heat transfer and critical heat flux on femtosecond laser processed stainless steel surfaces. International journal of heat and mass transfer. 82: 109-116. Liang, G. and Mudawar, I. 2019. Review of pool boiling enhancement by surface modification. International Journal of Heat and Mass Transfer. 128: 892-933. Lienhard, J. H. 1988. Things we don't know about boiling heat transfer: 1988. International communications in heat and mass transfer. 15(4): 401-428. Liu, X., Zou, Q. and Yang, R. 2022. Theoretical analysis of bubble nucleation in liquid film boiling. International Journal of Heat and Mass Transfer. 192: 122911. Mahmoud, M. and Karayiannis, T. 2021. Pool boiling review: Part I–Fundamentals of boiling and relation to surface design. Thermal Science and Engineering Progress. 25: 101024. Moghadasi, H. and Saffari, H. 2021. Experimental study of nucleate pool boiling heat transfer improvement utilizing micro/nanoparticles porous coating on copper surfaces. International Journal of Mechanical Sciences. 196: 106270. Moissis, R. and Berenson, P. J. 1963. On the Hydrodynamic Transitions in Nucleate Boiling. Journal of Heat Transfer. 85(3): 221-226. Mostinski, I. 1963. Application of the rule of corresponding states for calculation of heat transfer and critical heat flux. Teploenergetika. 4(4): 66-71. Mudawar, I. 2001. Assessment of high-heat-flux thermal management schemes. IEEE transactions on components and packaging technologies. 24(2): 122-141. Nukiyama, S. 1966. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. International Journal of Heat and Mass Transfer. 9(12): 1419-1433. Pioro, I. L. 1999. Experimental evaluation of constants for the Rohsenow pool boiling correlation. International Journal of Heat and Mass Transfer. 42(11): 2003-2013. Riveiro, A., Maçon, A. L., del Val, J., Comesaña, R. and Pou, J. 2018. Laser surface texturing of polymers for biomedical applications. Frontiers in physics. 6: 16. Rohsenow, W. M. 1952. A method of correlating heat-transfer data for surface boiling of liquids. Transactions of the American Society of Mechanical Engineers. 74(6): 969-975. Scheiff, V., Baudin, N., Ruyer, P., Sebilleau, J. and Colin, C. 2019. Transient flow boiling in a semi-annular duct: from the onset of nucleate boiling to the fully developed nucleate boiling. International Journal of Heat and Mass Transfer. 138: 699-712. Sciti, D., Trucchi, D., Bellucci, A., Orlando, S., Zoli, L. and Sani, E. 2017. Effect of surface texturing by femtosecond laser on tantalum carbide ceramics for solar receiver applications. Solar Energy Materials and Solar Cells. 161: 1-6. Stephan, K. and Abdelsalam, M. 1980. Heat-transfer correlations for natural convection boiling. International Journal of Heat and Mass Transfer. 23(1): 73-87. Sugioka, K., Meunier, M. and Piqué, A. 2010. Laser precision microfabrication Vol. 135: Springer. Ta, D. V., Dunn, A., Wasley, T. J., Kay, R. W., Stringer, J., Smith, P. J., Connaughton, C. and Shephard, J. D. 2015. Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Applied Surface Science. 357: 248-254. Thome, J. R. 1990. Enhanced boiling heat transfer. Tien, C. 1962. A hydrodynamic model for nucleate pool boiling. International Journal of Heat and Mass Transfer. 5(6): 533-540. Ujereh, S., Fisher, T. and Mudawar, I. 2007. Effects of carbon nanotube arrays on nucleate pool boiling. International Journal of Heat and Mass Transfer. 50(19-20): 4023-4038. Webb, R. L. and Kim, N. 2005. Enhanced heat transfer. Taylor and Francis, NY. Xiao, L., Zhuang, Y., Wu, X., Yang, J., Lu, Y., Liu, Y. and Han, X. 2023. A Review of Pool-Boiling Processes Based on Bubble-Dynamics Parameters. Applied Sciences. 13(21): 12026. Yilbas, B. S., Keles, O. and Toprakli, A. Y. 2017. Surface engineering towards self-cleaning applications: Laser textured silicon surface. Procedia engineering. 184: 716-724. Young, R. 1964. Improved nucleate boiling heat transfer. Chemical engineering progress. 60: 53-58. Zhang, C., Zhang, L., Xu, H., Li, P. and Qian, B. 2019. Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique. International Journal of Heat and Mass Transfer. 128: 570-580. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93876 | - |
| dc.description.abstract | 核沸騰區間作為最有效的熱傳方式之一,在溫度變化很小的情況下能傳遞大量的熱量,因此在工業上被廣泛地運用,也是日常生活中常見的現象。核沸騰的機制非常複雜,其熱傳效能可由三個參數來表徵:核沸騰起始點(Onset of Nucleate Boiling, ONB)的過熱度、熱傳遞係數(Heat Transfer Coefficient, HTC)、臨界熱通量(Critical Heat Flux, CHF),本研究將著重前兩者,並以共三種方式對表面進行改質:三種熱壓銅網結構在純銅表面、一種旋轉塗佈奈米流體薄層結構和四種雷射表面紋理化(Laser Surface Texturing, LST)結構在鋁6061合金表面,以去離子水為工作流體,探討其在常壓飽和狀態下池沸騰熱傳的影響,最後以雷射表面紋理化結構透過實驗驗證Hsu所提出預測孔徑對ONB影響的模型。
實驗結果顯示,相較於平滑表面,三種熱壓銅網結構和一種旋轉塗佈奈米流體薄層結構皆延後ONB過熱度,並抑制了熱傳,下降HTC。四種雷射表面紋理化皆提前ONB過熱度且提升HTC,增強了熱傳。四種結構提前ONB過熱度2.3-6.2 ℃,並在熱通量為500 kW/m2時,四種結構HTC提升90-300 %。 雷射表面紋理化結構在圓心間距400 μm下,部分驗證了Hsu所提出的預測孔徑對ONB影響的模型,實驗所得成核範圍曲線整體趨勢與預測模型的趨勢相似,實驗所得臨界半徑與一些學者預測熱邊界層厚度所預測臨界半徑相近,而在圓心間距1000、2000下,並未發現類似Hsu預測模型的影子。 | zh_TW |
| dc.description.abstract | The nucleate boiling regime is widely used in industrial applications as one of the most efficient modes of heat transfer, in which large amounts of heat can be dissipated from a heated surface with small changes in temperature, and is a common phenomenon observed in our daily lives. The mechanism of nucleate boiling is very complex, and its heat transfer efficiency can be characterized by three parameters: Onset of Nucleate Boiling (ONB) superheat, Heat Transfer Coefficient (HTC), and Critical Heat Flux (CHF). In this study, we will focus on the first two, and modify the surfaces in three ways: three copper mesh structures by hot-pressing on pure copper surfaces, a thin film structure by spin-coating nanofluid and four Laser Surface Texturing (LST) structures on the surface of aluminum 6061 alloy, with deionized water as the working fluid, to investigate the effect of pool boiling heat transfer under the saturated state of atmospheric pressure. Finally, the semi-theoretical model proposed by Hsu in 1962 provides the size range of active nucleation cavities. This study will attempt to validate the model experimentally.
The experimental results show that compared to the smooth surface, three copper mesh structures and a thin film structure delay the superheat at ONB and decrease the HTC. Four laser surface texturing structures advance the superheat at ONB by 2.3-6.2 °C, and increase the HTC by 90-300% at heat flux of 500 kW/m2. The model proposed by Hsu for predicting the size range of active nucleation cavities is partially validated at a cavity pitch of 400 μm. The overall curve trend of the experimentally obtained nucleation range curve is similar to that of the predicted model, and the experimentally obtained critical radius is similar to that one predicted by some scholars for predicting thermal boundary layer thickness. However, in the case of cavity pitches of 1000 and 2000 μm, there is no trace of the Hsu model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:42:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:42:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii ABSTRACT iii 目次 iv 圖次 vii 表次 xi 符號索引 xiii 第一章 緒論 1 1.1 前言 1 1.2 沸騰區間 2 1.3 沸騰熱傳增強 4 1.4 雷射表面紋理化 4 1.5 研究動機 5 1.6 研究目的 5 第二章 文獻探討 7 2.1 核沸騰 7 2.2 微米結構 11 2.3 奈米結構 18 2.4 雷射表面紋理化 25 第三章 研究方法 31 3.1 表面改質 31 3.1.1 熱壓銅網 31 3.1.2 旋轉塗佈奈米流體薄層 32 3.1.3 雷射表面紋理化 34 3.1.3.1雷射剝蝕結構 36 3.1.3.2孔徑對ONB過熱度影響預測模型驗證結構 38 3.2 表面量測 41 3.2.1 接觸角量測 41 3.2.2 顯微鏡影像 43 3.3 池沸騰實驗 44 3.3.1 實驗裝置 44 3.3.2 沸騰試片 46 3.3.3 溫度擷取系統 49 3.3.4 實驗流程 50 3.4 不確定性分析與其他影響實驗因素 51 3.4.1 量測溫度、表面溫度和過熱度之不確定性 51 3.4.2 加熱表面面積不確定性 53 3.4.3 熱通量和熱傳遞係數不確定性 54 3.5 其他影響實驗因素 56 3.5.1 表面影響 56 3.5.2 不同試片對沸騰曲線的影響 61 3.5.3 加熱方向對ONB過熱度的影響 62 第四章 結果與討論 63 4.1 純銅和鋁6061合金平滑表面對沸騰熱傳之影響 63 4.1.1 表面量測 64 4.1.1.1接觸角 64 4.1.1.2顯微鏡影像 65 4.1.2 沸騰曲線 66 4.1.3 汽泡影像 70 4.1.4 與Moissis-Berenson transition模型比較 71 4.2 熱壓銅網 72 4.2.1 表面量測 72 4.2.1.1接觸角 72 4.2.1.2顯微鏡影像 73 4.2.2 沸騰曲線 75 4.3 旋轉塗佈奈米流體薄層 79 4.3.1 表面量測 79 4.3.1.1接觸角 79 4.3.1.2顯微鏡影像 80 4.3.2 沸騰曲線 81 4.3.3 汽泡影像 83 4.4 雷射表面紋理化 84 4.4.1 表面量測 84 4.4.1.1接觸角 84 4.4.1.2顯微鏡影像 85 4.4.2 沸騰曲線 86 4.4.3 汽泡影像 90 4.5 純銅和鋁6061合金試片結構總比較 92 4.6 孔徑對ONB過熱度影響預測模型驗證 94 4.6.1 表面量測 94 4.6.1.1顯微鏡影像 95 4.6.2 熱邊界層厚度和臨界半徑 96 4.6.3 成核範圍 97 4.6.4 汽泡影像 99 第五章 結論與建議 101 5.1 結論 101 5.2 建議 102 參考文獻 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 池沸騰 | zh_TW |
| dc.subject | 熱傳增強 | zh_TW |
| dc.subject | 表面改質 | zh_TW |
| dc.subject | 雷射紋理加工 | zh_TW |
| dc.subject | Heat transfer enhancement | en |
| dc.subject | Pool boiling | en |
| dc.subject | Laser surface texturing | en |
| dc.subject | Surface modification | en |
| dc.title | 雷射表面改質對核沸騰熱傳之影響 | zh_TW |
| dc.title | Effects of Laser Surface Modification on Nucleate Boiling Heat Transfer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 孫珍理;丁健芳 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-li Sun;Chien-Fang Ding | en |
| dc.subject.keyword | 池沸騰,熱傳增強,表面改質,雷射紋理加工, | zh_TW |
| dc.subject.keyword | Pool boiling,Heat transfer enhancement,Surface modification,Laser surface texturing, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202402508 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| Appears in Collections: | 生物機電工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 8.96 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
