請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93875完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周逸儒 | zh_TW |
| dc.contributor.advisor | Yi-Ju Chou | en |
| dc.contributor.author | 廖奕銓 | zh_TW |
| dc.contributor.author | Yi-Chuan Liao | en |
| dc.date.accessioned | 2024-08-08T16:42:13Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | Allen, J. R. L. (1965). "Sedimentary Structures: Their Character and Physical Basis".Elsevier.
Bagnold, R. A. (1941). "The Physics of Blown Sand and Desert Dunes". Methuen & Co. Chang, Y.-J. (2022). Development of a data-driven computational platform for multi-scale modeling of complex suspension flows. Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei City. Cassar C, Nicolas M, Pouliquen O. (2005). Submarine granular flows down inclined planes. Phys. Fluids 17:103301 Duan, Y., Jing, L., Umbanhowar, P. B., Ottino, J. M., & Lueptow, R. M. (2022). Segregation forces in dense granular flows: closing the gap between single intruders and mixtures. Cambridge University Press. Fan, Y., & Hill, K. M. (2011). Theory for shear-induced segregation of dense granular mixtures. New Journal of Physics, 13(9), 095009. Ferdowsi, B., Ortiz, C. P., Houssais, M., & Jerolmack, D. J. (2017). River-bed armouring as a granular segregation phenomenon. Nature Communications, 8(1), 1363. Forterre, Y., & Pouliquen, O. (2008). Flows of Dense Granular Media. Annual Review of Fluid Mechanics, 40, 1-24. Gray, J. M. N. T., & Thornton, A. R. (2005). A theory for particle size segregation in shallow granular free-surface flows. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2057), 1447-1473. Gray, J. M. N. T., & Chugunov, V. A. (2006). Particle-size segregation and diffusive remixing in shallow granular avalanches. Journal of Fluid Mechanics, 569, 365-398. Guillard, F., Forterre, Y., & Pouliquen, O. (2016). Scaling laws for segregation forces in dense sheared granular flows. Journal of Fluid Mechanics, 807, R1. Huang, H.-Y. (2023). Development of a numerical viscometer by using immersed boundary method and discrete element method. Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei City. Hertz, H. (1882). Über die Berührung fester elastischer Körper. J. Reine Angew. Math., 92, 156–171. Johnson, C. G., Kokelaar, B. P., Iverson, R. M., Logan, M., LaHusen, R. G., & Gray, J. M. N. T. (2012). Grain-size segregation and levee formation in geophysical mass flows. Journal of Geophysical Research: Earth Surface, 117(F1). Kelly, E. G., & Spottiswood, D. J. (1982). Introduction to Mineral Processing. Wiley. Kempe T, Fröhlich J. Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. J Fluid Mech 2012;709:445. Maurin, R., Chauchat, J., & Frey, P. (2016). Dense granular flow rheology in turbulent bedload transport. Journal of Fluid Mechanics, 804, 490-512. May, L. B. H., Golick, L. A., Phillips, K. C., Shearer, M., & Daniels, K. E. (2010). Shear-driven size segregation of granular materials: Modeling and experiment. Physical Review E, 81(5), 051301. Patro, S., Prasad, M., Tripathi, A., Kumar, P., & Tripathi, A. (2021). Rheology of two-dimensional granular chute flows at high inertial numbers. Physics of Fluids, 33(11), 113321. Rousseau, H., Chauchat, J., & Frey, P. (2022). Experiments on a single large particle segregating in bedload transport. Physical Review Fluids, 7(6), 064305. Staron, L. (2018). Rising dynamics and lift effect in dense segregating granular flows. Physics of Fluids, 30(12), Article 123303. Schlick, C. P., Fan, Y., Isner, A. B., Umbanhowar, P. B., Ottino, J. M., & Lueptow, R. M. (2015). Granular segregation in circular tumblers: theoretical model and scaling laws. Journal of Fluid Mechanics, 765, 632-652. Savage, S. B., & Lun, C. K. K. (1988). Particle size segregation in inclined chute flow of dry cohesionless granular solids. Journal of Fluid Mechanics, 189, 311-335. Silbert, L. E., Landry, J. W., & Grest, G. S. (2003). Size segregation of granular materials under shear. Physical Review E, 68(2), 021302. Thornton, A.R., Weinhart, T., Luding, S., & Bokhove, O. (2012). Modeling of particle size segregation: Calibration using the discrete particle method. International Journal of Modern Physics C, 23(8), 1240014. Thornton, C., Cummins, S. J., & Cleary, P. W. (2013). An investigation of the comparative behavior of alternative contact force models during inelastic collisions. Powder Technology, 233, 30-46. Vargas, W. L., McCarthy, J. J., Ottino, J. M., & Lueptow, R. M. (2011). Size segregation in granular materials: Modelling and experiment. Powder Technology, 207(1-3), 59-67. Wiederseiner, S., Andreini, N., Épely-Chauvin, G., Moser, G., Monnereau, M., Gray, J. M. N. T., & Ancey, C. (2011). Experimental investigation into segregating granular flows down chutes. Physics of Fluids, 23(1), 013301. Zhang, X., Wang, W., Liu, X., & Liu, K. (2022). Transient evolution of rheological properties of dense granular inertial flow under plane shear. Granular Matter, 24(2), 35. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93875 | - |
| dc.description.abstract | 本研究針對顆粒流中的尺寸分離現象進行深入探討,特別是分析大顆粒在眾多小顆粒中的運動行為及受力情形。透過離散元素法建立數值模型,本研究模擬並統計了大顆粒在無流體環境下的顆粒流中的受力狀況,以了解其運動機制。數值模擬提供了詳細的數據,使我們能夠精確觀察大顆粒在垂直方向上的位置變化及其所受的各種力的大小和方向。基於這些數據,本研究將大顆粒的運動分為兩類:上升區間與非上升區間,並進一步分析這兩類運動模式之間的差異。
通過比較大顆粒在上升區間和非上升區間的受力情形,我們試圖找出影響大顆粒上升的關鍵機制。研究結果顯示,大顆粒在上升過程中受到的碰撞力和重力的相互作用,對其運動行為有顯著影響。為了驗證這些發現,本研究進一步調整了顆粒的物理參數,觀察這些參數的變化如何影響碰撞力及顆粒的運動行為。除此之外,利用數值模擬的方法,詳細分析了大顆粒在顆粒流中的受力分佈。結果顯示,大顆粒在上升區間內的運動行為顯著不同於非上升區間,這主要歸因於兩區間內顆粒所受力的不同組合和大小。利用碰撞力區分接觸顆粒所扮演的角色,並且在更細分接觸顆粒與大顆粒的相對位置,利用碰撞顆粒位於大顆粒的第幾象限去做分析,如此一來便能清楚地知道接觸顆粒在不同接觸象限所扮演的角色是什麼,以及對大顆粒的碰撞力所扮演的角色。 本研究的結果不僅揭示了大顆粒在顆粒流中上升的機制,還提供了調整顆粒物理參數以控制其運動行為的方法。這些發現對於工程應用和自然現象的預測具有重要意義。例如,在礦物處理、土壤改良和自然災害防治等領域,理解和控制顆粒的運動行為可以提高處理效率和安全性。 | zh_TW |
| dc.description.abstract | This study investigates size segregation in granular flows, focusing on the behavior and force conditions of large particles among smaller particles. Using the Discrete Element Method (DEM), we established a numerical model to simulate and analyze the forces experienced by large particles in a fluid-free granular flow environment. Numerical simulations provide detailed data, allowing precise observation of the vertical positional changes and the forces acting on large particles. Based on these data, we categorized the motion of large particles into ascending and non-ascending intervals and analyzed the differences between these motion patterns.
Comparing the force conditions in these intervals, we identified key mechanisms influencing the ascent of large particles. Results indicate that the interaction between collision forces and gravity significantly impacts their motion. To validate these findings, we adjusted particle physical parameters and observed how these changes affect collision forces and particle motion behavior. Additionally, the study analyzed the force distribution on large particles, showing significant differences in motion behavior between ascending and non-ascending intervals. By distinguishing the roles of contact particles through collision forces and quadrant positions, we clarified the impact of contact particles. The findings reveal the mechanisms behind the ascent of large particles and offer methods for adjusting physical parameters to control their motion. These insights are crucial for applications in mineral processing, soil improvement, and natural disaster prevention, enhancing processing efficiency and safety. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:42:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:42:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
論文摘要 ii Abstract iii 目次 iv 圖次 vi 表次 iix 符號列表 ix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機 9 1.4 論文內容概述 10 第二章 研究方法 11 2.1統御方程式 11 2.2碰撞模型 12 2.2.1正向碰撞模型 16 2.2.2切向碰撞模型 18 2.3 顆粒運動 20 第三章 分析方式與模擬結果 22 3.1 二維DEM模型 22 3.2 分析方式 25 3.2.1不同顆粒尺寸比的大顆粒受力分析 26 3.2.1.1大顆粒受力分布圖 28 3.2.1.2碰撞頻率分析 33 3.2.2不同底板傾斜角度的受力分析 36 3.2.3顆粒物理參數敏感度分析 41 3.2.3.1動摩擦係數對顆粒水平速度的影響 42 3.2.3.2不同動摩擦係數的顆粒運動及受力分析 44 第四章 結論與未來工作 60 4.1 結論 60 4.2 未來工作 61 附錄A 62 參考文獻 73 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 尺寸分離 | zh_TW |
| dc.subject | 顆粒流 | zh_TW |
| dc.subject | numerical simulation | en |
| dc.subject | size segregation | en |
| dc.subject | granular flow | en |
| dc.title | 利用離散元素法模擬及分析粒徑大小導致的顆粒流動分離行為 | zh_TW |
| dc.title | Using discrete element method to simulate and analyze the phenomenon of particle size segregation in granular flow | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李政賢;林洸銓;曾建洲;邱德耀 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Hsien Lee;Kuang-Chuan Lin;Chien-Chou Tseng;Te-Yao Chiu | en |
| dc.subject.keyword | 尺寸分離,顆粒流,數值模擬, | zh_TW |
| dc.subject.keyword | size segregation,granular flow,numerical simulation, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202402637 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
