請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93873完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成 | zh_TW |
| dc.contributor.advisor | Chow-Shing Shin | en |
| dc.contributor.author | 劉維桀 | zh_TW |
| dc.contributor.author | Wei-Jie Liu | en |
| dc.date.accessioned | 2024-08-08T16:41:32Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | 1. 3DMart. 【3D 列印知識】新手入門:五種常見 3D 列印技術比較及原理. 2021 [cited 2024 May 9]; Available from: https://3dmart.com.tw/news/comparing-fff-sla-and-slstechnologies.
2. Mu, Q., et al., Digital light processing 3D printing of conductive complex structures. Additive Manufacturing, 2017. 18: p. 74-83. 3. Gibson, I., et al., Additive manufacturing technologies. Vol. 17. 2021: Springer. 4. Wong, K.V. and A. Hernandez, A review of additive manufacturing. International scholarly research notices, 2012. 2012(1): p. 208760. 5. Pagac, M., et al., A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers, 2021. 13(4). 6. Formlabs. Guide to Resin 3D Printers: SLA vs. DLP vs. MSLA vs. LCD. 2011 [cited 2024 May 8]; Available from: https://formlabs.com/asia/blog/resin-3d-printer-comparison-slavs-dlp/. 7. 蔡福森, DLP 投影機技術與產品動態. 光連: 光電產業與技術情報, 1998(18): p. 39-42. 8. Dudley, D., W.M. Duncan, and J. Slaughter. Emerging digital micromirror device (DMD) applications. in MOEMS display and imaging systems. 2003. SPIE. 9. Wang, Z., et al., Digital micro-mirror device -based light curing technology and its biological applications. Optics & Laser Technology, 2021. 143: p. 107344. 10. Santoliquido, O., P. Colombo, and A. Ortona, Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 2019. 39(6): p. 2140- 2148. 11. Popov, V.N., Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 2004. 43(3): p. 61-102. 12. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58. 13. Mendoza Reales, O.A. and R. Dias Toledo Filho, A review on the chemical, mechanical and microstructural characterization of carbon nanotubes-cement based composites. Construction and Building Materials, 2017. 154: p. 697-710. 14. Jin, Y. and F. Yuan, Simulation of elastic properties of single-walled carbon nanotubes. Composites Science and Technology, 2003. 63(11): p. 1507-1515. 15. Caupin, F. and E. Herbert, Cavitation in water: a review. Comptes Rendus Physique, 2006. 7(9): p. 1000-1017. 16. Ma, P.-C., et al., Dispersion and functionalization of carbon nanotubes for polymerbased nanocomposites: A review. Composites Part A: Applied Science and Manufacturing, 2010. 41(10): p. 1345-1367. 17. Hecht, D., L. Hu, and G. Grüner, Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Applied Physics Letters, 2006. 89(13). 18. Medellin, A., et al., Vat photopolymerization 3d printing of nanocomposites: a literature review. Journal of Micro-and Nano-Manufacturing, 2019. 7(3): p. 031006. 19. Lim, D.D., et al., High-resolution and electrically conductive three-dimensional printing of carbon nanotube-based polymer composites enabled by solution intercalation. Carbon, 2022. 194: p. 1-9. 20. Tsai, S.-C., et al., Photo curable resin for 3D printed conductive structures. Additive Manufacturing, 2022. 51: p. 102590. 21. 劉俊廷, 以光固化 3D 列印技術製造阿基米德螺旋形微混合器之探討. 國立臺灣大學機械工程學系學位論文, 2017. 2017: p. 1-78. 22. Nelson, P., Geometric Optics for DLP. Texas Instruments, December, 2013. 2016. 23. 呂芊邑, DLP 列印單層厚度控制探討, in 機械工程學系. 2023, 國立臺灣大學: 台北市. p. 81. 24. 王鵬瑞, 灰階修正對數位光處理 3D 列印之探討, in 機械工程學研究所. 2017, 國立臺灣大學. p. 1-153. 25. 唐啓軒, DLP 光固化製程製作具導電性結構探討, in 機械工程學研究所. 2020, 國立臺灣大學: 台北市. p. 142. 26. 黃立揚, DLP 刮刀列印系統之探討, in 機械工程學研究所. 2022, 國立臺灣大學: 台北市. p. 118. 27. 黃曼薇, 含奈米碳管的光固化樹脂列印成品導電性探討, in 機械工程學研究所. 2021, 國立臺灣大學: 台北市. p. 144. 28. Christ, J.F., et al., 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites. Materials & Design, 2017. 131: p. 394-401. 29. Abshirini, M., et al., 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Advanced Engineering Materials, 2018. 20(10): p. 1800425. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93873 | - |
| dc.description.abstract | 本研究是以上照式光固化成型技術為基礎進行積層製造,主要架構是以 DLP 投影機作為光源,並在列印原料的光敏樹脂中摻入奈米碳管使其具備導電性,但在光敏樹脂中添加奈米碳管會使樹脂之黏稠度及不透明度增加,除流動性變差外,散步在光敏樹脂中的奈米碳管會阻擋光線穿透,導致使用上照式列印系統會遇到一定的困難。因此本研究開發出用於控制單層厚度的內缸機構,有效克服列印過程樹脂無法回填列印平台的問題,並成功印製出具備導電性之成品,同時探討列印樹脂之固化前後之電阻差異。
在能穩定印製出具導電性的成品後,便嘗試探討列印參數如切層厚度、列印層數,同時比較各參數下之成品電阻。最後發展出列印成品的應用性,將其作為應變計使用,同時設計出一套懸臂樑實驗架構用於檢驗本實驗之列印成品應用的可行性。 | zh_TW |
| dc.description.abstract | This study is based on top-down photo-curing additive manufacturing. The main framework utilizes a DLP projector as the light source, incorporating carbon nanotubes into the photosensitive resin used as printing material to impart conductivity. However, adding carbon nanotubes to the photosensitive resin increases its viscosity and opacity, leading to decreased flowability and the dispersion of carbon nanotubes in the resin obstructing light penetration. This creates certain difficulties when using a top-down 3D-printing system.
Therefore, this study developed an inner vat mechanism to control the single-layer thickness, successfully overcoming these challenges and producing conductive products. Additionally, the study examines the resistance differences in the resin before and after curing. After stabilizing the production of conductive products, the study explored various printing parameters such as layer thickness and the number of layers, comparing the resistance of products under different parameters. Finally, the application of the printed products was developed, using them as strain gauges, and designing a cantilever beam experiment framework to test the feasibility of applying the printed products in this experiment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:41:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:41:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 表次 viii 圖次 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文架構 2 第二章 文獻回顧 3 2.1 積層製造成型技術(Additive Manufacturing) 3 2.2 光固化成型技術(Photopolymerization) 4 2.3 DLP光固化成型技術 4 2.3.1 DLP光學投影機 5 2.3.2 DMD(Digital Micro-mirror Device)晶片 6 2.3.3 DLP光固化成型之上照式系統與下照式系統 6 2.4 導電性樹脂 8 2.4.1 奈米碳管(Carbon Nanotube,CNT) 8 2.4.2 奈米添加物分散方法 9 2.4.3 導電性樹脂之3D列印 11 第三章 實驗設備及系統架構 14 3.1 列印系統架構與相關設備 14 3.1.1 DLP光學投影機 15 3.1.2 移動平台 16 3.1.3 內缸機構 16 3.1.3.1 內缸設計 17 3.1.3.2 離型膜 18 3.1.4 列印平台 19 3.1.5 CIS數位相機 19 3.2 實驗材料 19 3.2.1 ONYX光敏樹脂 19 3.2.2 奈米碳管 20 3.3 製作具導電性光敏樹脂使用設備 20 3.3.1 電子天秤 20 3.3.2 超音波打碎機 20 3.4 實驗設備 21 3.4.1 電源量測儀器 21 3.4.1.1 導電銀膠 22 3.4.2 立體顯微鏡 22 第四章 實驗方法及流程 24 4.1 實驗原理 24 4.2 列印流程 24 4.2.1 樹脂調配 26 4.2.1.1 曝光時間 26 4.2.2 CAD模型設計 26 4.2.3 模型切層 26 4.2.4 編寫參數 27 4.2.4.1 編排曝光圖及修改G-code 27 4.2.4.2 G-code編寫方法 28 4.2.5 對焦 28 4.2.6 內缸定位及固定 29 4.2.7 樹脂缸放置 31 4.2.8 列印 32 4.2.8.1 列印流程 32 4.2.9 成品清洗與觀察量測 32 4.2.9.1 導電性量測 33 4.3 單層列印方式 33 4.4 曝光圖灰階修正 35 4.4.1 修正方法 35 4.4.2 Matlab程式架構 36 4.5 列印成品負載實驗架構 38 第五章 實驗結果及討論 41 5.1 灰階修正 41 5.2 導電性光固化樹脂 42 5.2.1 樹脂電阻量測 43 5.3 內缸機構DLP列印系統之列印參數探討 45 5.3.1 切層厚度實驗 46 5.3.2 摻奈米碳管樹脂列印實驗 48 5.3.2.1 平面圖形列印實驗 48 5.3.2.2 立體結構列印實驗 49 5.4 內缸機構DLP列印系統問題探討 49 5.4.1 內缸與列印平台距離 49 5.4.2 列印結構基板 50 5.4.3 成品底部接合 51 5.5 列印成品導電性及應用探討 54 5.5.1 靜態電阻量測 54 5.5.1.1 固定層厚不同列印層數之列印成品探討 55 5.5.1.2 不同切層厚度之列印成品探討 59 5.5.1.3 不同切層厚度交疊之列印成品探討 63 5.5.2 列印結構負載電阻量測 65 5.5.2.1 列印結構Pre-load 65 5.5.2.2 列印結構負載電阻變化 69 5.5.3 列印結構應用 70 5.5.3.1 實驗結構應變模擬 70 5.5.3.2 實驗結果探討 72 第六章 結論及未來展望 79 6.1 結論 79 6.2 未來展望 80 參考文獻 81 附錄 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 數位光處理 | zh_TW |
| dc.subject | 光固化成型 | zh_TW |
| dc.subject | 內缸機構 | zh_TW |
| dc.subject | 奈米碳管複合材料 | zh_TW |
| dc.subject | photo-polymerization | en |
| dc.subject | inner vat mechanism | en |
| dc.subject | digital light processing | en |
| dc.subject | carbon nanotube composites | en |
| dc.title | 導電性樹脂之光固化增材製造 | zh_TW |
| dc.title | Additive Manufacturing using Conductive Resin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林志郎;林俊達 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Lang Lin;Guin-Dar Lin | en |
| dc.subject.keyword | 數位光處理,光固化成型,內缸機構,奈米碳管複合材料, | zh_TW |
| dc.subject.keyword | digital light processing,photo-polymerization,inner vat mechanism,carbon nanotube composites, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202402542 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
